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Abstract – In this work we deal with the coefficients of ( ) 2itA e , where A is in a class of polynomials 
having Unimodular coefficients. We first present a technique that calculates lower bounds for particular 
autocorrelations and then in a more general case we present an upper bound for their maximal order. 
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1. INTRODUCTION 
 

Let ( ) ( )CzzazaazA d
d ∈+++= 10 be a polynomial of degree d with complex coefficients. The 

coefficients of ( )zA2  are called the correlations of A and each of the 2d+1 integers lying in the interval 
[ ]d2,0  is called a frequency of ( )iteA2 . For { }dk ,,1,0∈  define dkdkkk aaaaaac −+ +++= 110  
and set kk cc =− . The 2d+1 complex numbers dd ccc ,,,, 0−  are called the autocorrelations of A. The 
frequencies of the trigonometric polynomial ( ) 2itA e  are those integers in the interval [ ]dd ,− .  

As is mentioned in references [1] and [2], estimating the correlation and autocorrelation (in absolute 
value) of a polynomial with coefficients defined on the unit circle T is a useful tool in telecommunication. 
Most of the work was and still is to find the best upper bound at some class of frequencies and to find the 
lower bound at a given frequency. In [3] we used 2-stable cycle technique and estimated correlation of the 
Rudin-Shapiro polynomials at a particular frequency. In [4] we introduced a quite fast algorithm and 
calculated the autocorrelations numerically. In what follows we stay away from computers, and again 
present a new technique for estimating autocorrelations (in absolute value) of the Rudin-Shapiro 
polynomials.  

Let ( ) d
d zazaazA +++= 10 and ( ) d

d zbzbbzB +++= 10 be polynomials such that their 
coefficients take only the values +1 or -1. The pair (A(z),B(z)) of polynomials is said to have Golay 
condition if 

 
                                                   ( ) ( )2 2 2 2+ = +it itA e B e d .                                                   (1) 
 
In that case, the pair itself is called a Golay polynomial pair. Since the early 1950s Goley polynomials 

have been studied extensively by telecommunication engineers and their properties are provided in [5], [6] 
and [7]. Our main interest is on a type of Golay polynomial pair ( )nn qp ,  inductively defined as follows: 
( ) ( )1,1, 00 =qp  and for any 
integer 1≥n .  

 
            ( ) ( ) ( ) ( ) ( ) ( ) ,, 1111

11 zqzzpzqzqzzpzp n
L

nnn
L

nn
nn

−−−−
−− −=+=                  (2) 
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where n
nL 2= . They are called the Rudin-Shapiro polynomials and were introduced by H. S. Shapiro in 

1951, [5]. To see if they are of Golay form, one can easily verify that.  
 

( ) ( ) ,, 1
110

1
110

−
−

−
− +++=+++= n

n

n

n

L
Ln

L
Ln zzzqzzzp δδδεεε  

 
where kε and kδ  take only the values +1 or -1.  
 
Lemma 1. The Rudin-Shapiro polynomials have Golay condition. 
 
Proof: Note that for 0≥n , the degree of  ( )zpn  and ( )zqn  are 1−nL . Since 

( ) ( )2 2
0 0 1 1 2 2 0 2+ = + = = × +it itp e q e ,  we conclude that ( ) ( )( )zqzp 00 ,  is a Golay 

polynomial pair. Suppose that for some 0≥n , ( ) ( )( )zqzp nn ,  is a Golay polynomial pair. By (2),  
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2 2 2
1

2 2 2 Re

n n

n

it it itL it it it it itL it
n n n n n n n

it it itL it it
n n n n

p e p e e q e p e q e p e e q e

p e q e e p e q e

+ = + + +

= + +
 

and  
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2 2 2
1 1

2 2
12

+ −

−

= − + + −

= + −

n n

n

it it itL it it it it itL it
n n n n n n n

it it itL it it
n n n n

q e p e e q e p e q e p e e q e

p e q e Re e p e q e .
 

 
Hence, since ( )zpn  is of degree 1−nL , by induction, we have 
 

( ) ( ) ( ) ( )
( )[ ]

( )

2 2 2 2
1 1

1

2

2 2 1 2
2 1 2

it it it it
n n n n

n

n

p e q e p e q e

L
L .

+ +

+

⎡ ⎤+ = +⎣ ⎦
= − +

= − +

 

 
Thus ( ) ( )( )zqzp nn 11 , ++  is a Golay polynomial pair. Therefore, the Rudin-Shapiro polynomials have 

Golay condition. That is, 
 

                                                          ( ) ( )2 2 12 ++ =it it n
n np e q e .                                                      (3) 

 
2. A LOWER BOUND FOR AUTOCORRELATIONS  

 
In what follows np  and nq  are the Rudin-Shapiro polynomials and the variable z is restricted so that | z | 
= 1. For fixed n, the polynomial np  is of degree 1−nL  and so the frequencies of 

2
np , written 

( )2
nfreq p , are integers in the frequency interval ]1,1[ −− nn LL . Also, since nq  is of degree 

1−nL , both ( )nnqpfreq and ( )nnqpfreq  are integers in ]1,1[ −− nn LL . Let nα  be one of these 
frequencies and { }2∈n n n n n ng p , p q , p q . By the Fourier coefficient of ng  at nα  we mean the 
coefficient for the term nzα , or simply 
 

( ) ( ) ( )
2

0

1
2

π
∧ − αα =

π ∫
nit it

n n ng e g e dt .
 

 
 

One can easily see that in the case 
2

nn pg = , there are 12 1 −+n  Fourier coefficients of ng , which 
are actually the autocorrelations of np . Also, due to the restriction on z  ( )1=zisthat , 
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( ) ( ) ( ) ( )mnnnnn
mLn Lggz −

∧∧− −= αα  for every integer m. We set ( ) ( ) 0=∧
nng α  anytime nα  lies outside 

of the interval ]1,1[ −− nn LL . 
To see the location of frequencies at which the maximum autocorrelations occur, we start to examine 

the 22×22 square representation of |p2|2. It is formed by four 2×2 squares where each is formed by four 
squares as follows:  
 

2p

 
                                               
 
 
                              2p  
 
 
 

 
For any { }4,3,2,1, ∈kj , we label value in the square located at jth row and kth column by bj,k. In the 

above example, bj,k = ± 1 for all j and k. Although it is not our intention here, one use of this square 
representation is that, without calculating, we are able to write ( ) 2

2
itp e as  

 
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

2 3 2
2 1 4 1 3 2 4 1 2 2 3 3 4

1 1 2 2 3 3 4 4

2 3
2 1 3 2 4 3 3 1 4 2 4 1

3 34

− − −

− −

= + + + + +

+ + + +

+ + + + + +

= − + + + −

it it it it
, , , , , ,

, , , ,

it it it
, , , , , ,

it it it it

p e b e b b e b b b e

b b b b

b b b e b b e b e

e e e e .

 

 
In general, one may represent 

2
np  by 2n×2n squares, each of which is formed by four 2n-1×2n-1 

squares and so on. The constant term of ( ) 2it
np e always equals 2n and it is called the central 

coefficient. For the n = 2 case above, the length of all non central coefficients is 1. Therefore the 
maximum autocorrelation of p2 is 1, but this is not so for 3≥n . By presenting the square representation of 

2
4p  the same as above, we noticed that it has maximum autocorrelation of length 5, and is the coefficient 

of the ite11 term (or to say at frequency 11). In 
2

6p and 
2

8p the maxima appear respectively at 
frequencies 43 and 171. Writing the binary representations for 11, 43 and 171 we get 1011 (n = 4), 101011 
(n = 6) and 10101011 (n = 8). Hence we suspected that in a general case, anytime n is an even integer, the 
maximum would occur at 1010…1011 (n digits) and equals ( )123

1 +nL . The square representation of 
2

np  may also be presented as 
 

np

 
                                               
 
 
 
                     np  
 
 

 
and using this square, we write ( ) 2zpn in terms of ,2

2−np ,, 22
2

2 −−− nnn qpq  and 22 −− nn qp  as follows:  
 

1p  1q  

0p  0q  0p  

2
000

2
000

00
2

000
2

0

2
000

2
000

00
2

000
2

0

qqpqqp
qppqpp

qqpqqp
qppqpp

−−−

−

−

−

 

0q−  

1−np  1−nq  
 

2−np  2−nq  2−np  - 2−nq  

2
222

2
222

22
2

222
2

2

2
222

2
222

22
2

222
2

2

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−

−

−

−

nnnnnn

nnnnnn

nnnnnn

nnnnnn

qqpqqp
qppqpp

qqpqqp
qppqpp
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( ) ( ) ( ) ( )
( )
( ) ( ) ( )

( )
( )

2 2 2

2 2 2

2 2 2

2 2

2 3 2
1,4 1,3 2,4 1,2 2,3 3,4

1,1 2,2 3,3 4,4

2 3
2,1 3,2 4,3 3,1 4,2 4,1

2 23 2
2 2 2 2 2 2

2 2
2 2

2
2 2

2

n n n

n n n

n n n

n n

L L L
n

L L L

L L L
n n n n n n

n n

L L
n n

p z b z b b z b b b z
b b b b

b b b z b b z b z

z p q z p q z p q

p q

z p q z

− − −

− − −

− − −

− −

− − − − − −

− −

− −

= + + + + +

+ + + +

+ + + + + +

= − + − +

+ +

+ + ( ) 22 2 3
2 2 2 2 ,nL

n n n np q z p q−
− − − −− −

 

 
and therefore by Lemma 1, for |z|=1 
 

( ) ( ) ( )
( ) ( )

1 1 2 2

2 2 1 1

2 2 3
2 2 2

3
2 2 1

2

2

− − − −

− − − −

− − −

− − −

= + − −

+ − − + +

n n n n

n n n n

L L L L
n n n n

L L L L n
n n n

p z z z p z z p q

z z p q L z z .
 

 
Hence if nk is a non zero frequency of 

2
np , then 

 

                                    

( ) ( ) ( )[ ] ( )
( ) ( )
( ) ( ).^

^

^2^

22
3

22
3

2
2

2

22

22

11

nnn
LL

nnn
LL

nn
LL

nn

kqpzz

kqpzz

kpzzkp

nn

nn

nn

−−

−−

−

−−

−−

−−

−−

−+

+=

                                            (4) 

 
Now let n be an even integer and put ( )123

1 += nn Lk , which of course is in the frequency interval 
]1,1[ −− nn LL . The right side of the above expression involves six different Fourier coefficients. In the 

first one  
 

( ) ( ) ( ) ( ) ( ) ( ),^2^2^2 2
2

21
2

2
2

2
1

−−−−− =−=−
nnnnnnn

L kpLkpkpz n  
 

and this is because 

( ) ( )[ ]1 1 2
1 1 2

1 1 1 12 1 2 2 2 2 1
3 3 3 3

+ − −
− − −− = + − = − + = + =n n n

n n n n nk L L L k   
 

Similarly, in the fifth term we have  
 

( ) ( ) ( ) ( ) ( ) ( ).^3^^ 222222222
3 2

−−−−−−−−− −=−=−
nnnnnnnnnnn

L LkqpLkqpkqpz n  
 

Finally the second, third, fourth, and sixth expressions in (4) are all zero, because  first of all 
 

( ) ( ) ( ) [ ] ,1,1,, 222222
2

2 −−∈ −−−−−−− nnnnnnn LLqpfreqqpfreqpfreq  
 

and therefore non of these four terms have frequencies in this interval. So putting nnn Lkk −=′ (clearly in 
the frequency interval) , the relation (4) reads 

 
                             ( ) ( ) ( ) ( ) ( ) ( )2 2

2 2 2 2 22 − − − − −′= −n n n n n n np ^ k p ^ k p q ^ k .                            (5) 

 
Next we consider the representation for nnqp ,  
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nq

 
                                               
 
 
 
                     np  
 
 

 
which gives us  
 

( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( )

( )
(

) ( ) .

2

22
32

2
2

2
2

22

2222

2
2

2
2

2
22

3

3
1,4

2
2,41,33,42,31,2

4,43,32,21,1

4,33,22,1
2

4,23,1
3

4,1

22

22

22

222

222

−−−−−−

−−−−

−−−−

−−

−−

−−

−−−

−−−

−−++

+−

−+=

++++++

++++

+++++=

nn
L

nn
L

nn

nn
L

nn
L

nn
L

nn
L

LLL

LLL
nn

qpzqpzqp

qpzqpz

pqzqpz

zbzbbzbbb

bbbb
zbbbzbbzbzqzp

nn

nn

nn

nnn

nnn

 

 
In a similar fashion as obtaining (5), we calculate the Fourier coefficient of nnqp at the frequency 

nk′  and get  
 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222222
2

2 ^^2^2^ −−−−−−−− ′+′+−=′ nnnnnnnnnnn kqpkqpkpkqp ,                  (6) 

 
on which suggests that the Fourier coefficient of nnqp at nk′  is also needed. From the square 
representation of nnqp  we obtain  

 
             ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222222

2
2 ^^2^2^ −−−−−−−− ′+′+=′ nnnnnnnnnnn kqpkqpkpkqp .                   (7) 

 
Let ( ) ( ) ( ) ( ) ( ) ( )[ ]T

nnnnnnnnn kqpkqpkpw ′′= ^,^,^2
and A be a 3×3 matrix with entries 2, -1, 0, -2, 

2, -1, 2, 2, 1 (started from first row). By (5), (6) and (7) we have 2−= nn Aww . Since this holds for any 
positive even integers, ,0

2
4

2
2 wAwAAww

n

nnn ==== −−  where [ ]Tw 0,1,10 = . If g is the 
characteristic polynomial of A, then ( ) 16125 23 −+−= λλλλg . g has three distinct non zero roots with 
one real and two non real. Let 21,λλ  and 3λ  be the eigenvalues of A on which we may assume that the 
value on 1λ  is larger than both 2λ  and 3λ . These eigenvalues being distinct yields the existence of a 
nonsingular matrix S such that S-1AS=Λ, where Λ=diag [ ]321 ,, λλλ . Since 122 −Λ= SSA

nn
, we have 

0
12

0
2 wSSwAw

nn

n
−Λ== . Therefore, there are constants a,b and c such that 

 
                                                  ( ) ( ) 222

1 32
2 ^

nnn

cbakp nn λλλ ++= .                                                      (8) 
 

Evaluating 1λ  and the constant a in (8), we get 1λ  = 21.46 and a=0.42. So we have the existence of a 
constant B > 0 such that  ( ) .^)( 2

1
2 n

nn Bkp λ> , the existence of an absolute constant B so that  
 

                                                  ( ) ( ) 73.02 12
3
1^ nnn BLLp >⎟

⎠
⎞

⎜
⎝
⎛ + .                                                       (9) 
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−
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If n is an odd integer, then we put ( )1
3
1

+= nn Lk , and with similar calculations we get the same 
estimate.  

We complete our discussion by presenting an upper bound for autocorrelations of the Rudin-Shapiro 
polynomials. In connection with choosing a particular frequency, it will be more general than our lower 
bound result.  

 
Theorem: Suppose the nf  is 

2
np or 

2
nq , where ( nn qp , ) is the Rudin-Shapiro polynomial pair. Then  

 

( ) ( ) 2
1

6
1^max

0 nnk
Lkf >

≠
 

 
Proof: By (2) we have  

 

( )
( )

.
1

1

k
k

Lk

Lk
n zdzf

n

n

∑
−

−

=

−=

=  

 
Clearly d0 = Ln and so  

 

                                    ( )
12 22 22

2 0 1

1 2
2

−π

=

= = +
π ∑∫

nL
it

n n n k k
f f e dt L d .                                 (10) 

 
Also, note that  

 

                                                     .
2
1

3
4

2
1

3
4

2

2

2

nn

n

n LL
f

L
+<<−                                                      (11) 

 
This relation can easily be verified by an induction argument. Therefore (10), together with (11) 

imply that  
 

[ ] .
4
1

6
1

2
1 222

2

2
1

1
nnnnk

L

k
LLLfd

n

−>−=∑
−

=

 

 
Thus 
 

( ) ( ) ( ) .
6

1
112

32
1

1max^max 2
1

21

1

22

00 n
n

nn
L

k
k

n
kknk

L
L

LLd
L

dkf
n

>
−

−
>

−
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−

=
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