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Abstract — We study the exponential decay of global solution for an n-dimensional thermo-elasticity system
in a bounded domain of R". By using the multiplier technique and constructing an energy functional well
adapted to the system, the exponential decay is proved.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

For n>1, let Q be adomainin R" of a finite measure with a smooth boundary " = 6Q. Let X, be any
point of R" and define the following partition of boundary T":

I, ={xeI;m(x)-v(x) >0}
I =\, ={xe;m(x)-v(x) <0}

where m(x) = X —X,, v(X) denotes the unit outward normal vector to Q at x € I". On this domain with
time t € R", we consider the system

Uy —AU+uVv=0 in QxR 1)
V, —AV+4Vu, =0 in QxR (2)

(4 # 0 is a real number) with initial and boundary conditions

u=0 on T, xR, ©))
v=0 on TI'xR", 4)
ou N
— =—(m(x)-v(x)h(u,) on T,xN (5)
v
u(x,0) =uy(x), U (x,0)=uy(x), v(x,0)=v,(x) (6)

which can be viewed as an n-dimensional thermo-elasticity system with displacement u and v the
temperature deviation from the reference temperature. The considered model has several sources of
dissipation. It is not only the thermal dissipation, but also the frictional damping acting in the boundary. It
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is known that the model, without any frictional dissipation in the boundary of the domain, enjoys
exponential decay of energy.

In this paper we shall prove an exponential decay of energy for a thermo-elasticity system. Motivated
by this problem, we are interested here in the decay property of the couple (u,Vv) which is the solution of
(1)-(6) with f (s) such that

—oo < lim f(s) < lim f(s) <+, )

if f satisfies at most (1.7), the dissipative effect by f(u,)is as weak as |u, | is large, and for
convenience we call such a term weak dissipation.

Hereafter, we consider the most typical example f(s) = >

. V1+s?

—= skl f(s) I s] if [|s|<1, ®
V2
R CEH ! ©
\/E = — e

which is increasing, globally Lipshitz continuous, satisfies
sf(s)>0 and lim f(s)=+1. (10)
St

Before we present our main result, let us dwell a moment on some previous interesting articles.

Since the pioneering work of Dafermos [1] on linear thermo-elasticity, significant progress has been
made on the mathematical aspect of thermo-elasticity, see [1-12] among others. More precisely, Dafermos
[1] has shown that if

(Ug,Uy,V,) € HE x L2 x L2,
then the energy function of the one-dimensional homogenous thermo-elasticity bar defined as
EQ) =llu, llZ +1u ll; +1IVIE

converges to zero as time goes to infinity. However, no decay rate was given. It is well known that || -||
denotes the L? norm and H' is the usual Sobolev space when uand Vv satisfy the Dirichlet and
Neumann boundary conditions, respectively (or vice versa). Hansen [2] in 1992 succeeded establishing an
energy estimate of the form

E(t) < ME(0)e ™ forall t >0, (11)

where M and o are positive constants. He used the Fourier series expansion method and decoupling
technique. We refer to Gibson et. al [3] for another approach that is a combination of the semi-group
theory and the energy method.

In recent years, the existence, uniqueness and asymptotic behavior of solutions of the system of
thermo-elasticity has been analyzed intensively ([4, 5, 6] and the references cited there in). However, as
far as we know, very little is known about the energy estimate of the form (1.11) for thermo-elasticity
systems. The object of this paper is to prove that (1.11) holds for solutions of (1)-(6) which is assumed to
exist in the class

UeC(R" H*(QNH"(Q)NCHR"  H'(Q)NC*(R*,L*(Q)), (12)
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veC(R* HZ(Q)NHLQ)NCHR", L2(Q)). (13)

The function spaces we use are all familiar and we omit their definitions. Our main tool is an integral
inequality combined with a multiplier technique.
We define the energy of the solution by the formula

E(t) = % [z +1vu P +v?)dx (14)

If (u,V) is a strong solution, then from (1.10) and by simple combination

%E(t)z—{iwu [Pdx+ [ (m-v)u, f (u,)dr}<0, (15)

o

and forall 0 <t <t, <+o0
t t
E(t,)-E(t,) = [ [I Vv [dxdt+ [ [(m-v)u, f (u,)drdt. (16)
4 Q 4 Q

Hence, the energy is non-increasing and our result is the following:
Theorem: There exist two positive constants M and £ such that
E(t) < ME(0)exp(-pt) forall t >0 (17)

for all initial data (U,,U,,V,) € H'(Q) x L?(Q) x L* ().
For the proof of the THEOREM, we need the following useful lemma.

Lemma: ([7]) Let E:R" — R™ be a non-increasing function and assume that there exists a constant
T > 0 such that

JE(r)drSTE(t) forall te®R". (18)
t

Then
E(t)ﬁE(O)exp(l—%), forall t>T. (19)

2. PROOF OF THE THEOREM

Multiplying the equation (1) by u, we have

].J.(| Vu |2 —u?)dxdt = —[J.uutdx]; + hua—udrdt
00 o 0n OV
= +yhqudxdt.
0Q
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Whence
T T
[Jz+vul? +v*)dxdt = [ [ 2u? +v? — uvv)dxdt
0Q 0Q
—[J'uu dx]g +.|' J' ua—udl“dt.
o nUr, ov
That is

T T
2 j E(t)dt =+ j j(zuf +v2 — quVv)dxdt
0 0Q

—[juu dx]? +j | ua—dl“dt (20)

0 I,Ur,

Next, multiplying the equation (1) by 2m(X) - Vu, we obtain

[ j 2u, (m(x) - vu)]T + ] j 2,Vv(m(X) - Vu)dxdt

o'—.—!

j (2u, (M(X) - Vu,) + 2Au(m(x) - Vu))dxdt. (1)

Here, we formally see
j(zut (M(X) - Vu,) + 2Au(m(x) - Vu))dx
= [((m()- V() -n|vu)dx+ | (m-v)|§—”|2 dr
o) LUr, v

=-nf(ul+|VuPydx+ [ (m-v)(? +| |)dr (22)

LU
Thus, we have from equations (21) and (22) that
4 v du
[~ j u, (M(X) - Vu)dx]? +-= j j vv(m(x) - Vu)dxdt
n Q n 0Q

T T
ou
=21 (u+|Vu [»)dxdt + = m-v)(u2+|— |?)dIdt. 23
M(J %) JJ( IR (23)

Combining equations (20), (2.4) and using boundary conditions (4)-(6) we have

2} E(t)dt
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<[] (uu, +%ut(m(x) -Vu))dx]? + ] [ (v = puvv)dxdt

Au . 2T (U2 4 £ 2
. { i vv(m(x) Vu)dxdt+n j j (m-v)(u? + f 2(u,))drdt

0T,

- h (m-v)uf (u,)d"dt. (24)
I] t

0T,

First, we derive a bound for the last boundary integral on the right-hand side of (24). Using (20) we get

| —] [ (m-v)uf (u,)drdt |

0T,
.
< [Juutdx]g +”(2uf +Vv? — uVv)dxdt. (25)
Q 0Q
We deduce from (24) and (25) that

2} E(t)dt
<[ j (2uu, + %ut (m(x) - Vu))dx]° + 2} j (u2 +v2 — Juvv)dxdt

+E].J'(m.v)(u12 + f 2(u,))drdt _4_'U‘T”v\/(m(x) -Vu)dxdt. (26)
ns T, nvo

Next, by using Holder and Poincare inequalities we majorize the right-hand side of inequality (26). Then
we obtain

|j(2uut +iut(m(x)~Vu))dx|
b n

1 2 2
<+ 2 mil ) uZdx+ (@) + S limll )1 Vu P dx
& & o n o

<o, [(ui+|Vul® +v*)dx
Q

< 2a,E(0), (27)

with

1 2 2
or = max{_+ S| mil, ,eC(@)+ =l 1} and
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ZI (uZ +v? — 1Vv)dx
Q
<2 (uf +V2)dX+2,u{£C(Q)J.|VU I? dx+ij|w > dx}
Q 2 Q 289

<7,E(t) +§( [(m-vyu, f(u)dr, (28)
T
with 7, = max{2, ueC(Q)}. Hence, from (15) we get
2] [l +v? - puvvydxdt < ]/1]. E(t)dt + fE(O), (29)
05 3
and

]
=224 [vu(m(0 - Vu)dt |
n
0Q
2,Ll P 2 1 2
<=Ejimll, [[Ivul dx+=[]vv ] dxdt
n 0 €9

;
2
<7, [E@dt+ 2| m |l E(0), (30)
0 en
. 251
with 7, = max{L,——||m||_ }. We deduce from (27)-(30) that
n .

2- 7/)]. E(t)dt < «E(0) + 3] [ (m-vyuzdrat. (31)
0 n

0T,

If |u, <1, then we obtain from (8) and (31)
.
(2- )| Etydt
0

< 4E(0) +&] [(m-v)u,f (u)drt
n

0T,
N

S(a+¥)E(O).

Choosing y < 2, we obtain the desired result by applying Lemma.
If |u, [>1, then we obtain from the trace theorem H*(Q) = C(Q) = L (I") and (9)

2-7) j E(t)dt
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<aEO)+]u, [l } [(m-v)u,f (u)drdt

0T,

<(a+|lull. )E(),

and hence, the choice ¥ < 2 with Lemma yield the desired decay estimate.
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