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Abstract — On a Finsler manifold, we define conformal vector fields and their complete lifts and prove that in
certain conditions they are homothetic.
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1. PRELIMINARIES

Let (M, Q) be a Riemannian manifold, a vector field V on M is called a conformal vector field if its
local 1-parameter group of transformations is a local conformal transformation. It is well known that V is
a conformal vector field on M if and only if there is a scalar function 4 on M such that L, g =249 .
When A is a constant, V is called homothetic, especially when 4 =0,V is a killing vector field or an
infinitesimal isometry [1].

On a Finsler manifold (M ,F), letV be a vector field with the complete lift V¢, then V is called
conformal vector field if there is a scalar function p on TM such that L, .g =2pg , where g =(g;)
. . . . 1,
is the corresponding fundamental Finsler tensor defined by g9; (x,y)=( |:_ )yl_yj (x,y).

Let TM be the tangent space with a canonical coordinate system (x',y'), then the vertical tangent

bundle of TM ; =TM \{0} is defined by

VTM =span{il,..., 8n}.

oy oy
A non-linear connection on TM ; is a complementary distribution HTM defined by

o o

HTM =span{—.,....,—}

P {5x1 5x”}

o 0 j O i . - :
where ——=—+-N, 8y_ and N,’ are the connection coefficients. HTM is a vector bundle

=0

X X ! 4
completely determined by the smooth functions N’ (x,y) on TM [2, 3]. Moreover, we have

TTM, =VTM ®HTM )
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Let V be alinear connection onVTM , then (HTM ,V) is called a Finsler connection on M . Indeed, a
Finsler connection is a triad (N ,F,C) where N (N ji) is a nonlinear, F (F; ') is the horizontal part and
C(C}',) is the vertical part of this connection. Now let (M ,F) be Finsler manifold then a Finsler
connection is called a metric Finsler connection if ¢ is parallel with respect to V. According to the
Miron framework this means ¢ is both horizontally and vertically a metric [4, 5, 6]. The Cartan
connection is a metric Finsler connection for which the deflection, horizontal, and vertical torsion tensor
fields vanish.
The curvature tensor of a metric Finsler connection is defined by

R(X Y )Z[Vx ,Vy ]_v[x,v]

where X Y € Y(TM ).
They are called horizontal or vertical according to the choice of X andY in HTM orVTM . Then
we have [5]
Rkhji :é‘iFkhj _51' Fkr; +Fknj]thi _Fkrinthj +Ckhijn:’
0 0

R =6,N" =N, where we have put 6, =——,8, =——,6, =6, ~N"0_. When V is a Cartan
X

connection then N:“ =y"F". OX; ;i

Proposition 1. [4] Let M be an n -dimensional Finsler manifold with a Cartan connection, then we have
the following equations:

1 im

(1) Fi? :Egh (é}gmj +5jgim_5mgij);
1. m

() Cy :Eakgij where Cyy =C;y9)n;

(3) ymCmij = O;

h mp h

4@ Ry =Yy'Ry-

The Cartan horizontal and vertical covariant derivative of a tensor field of type (1,2) are locally as
follows:

VTS =TS =6 T +FR T -F T, R @

kj mi k m?

VT h=T"
J

kilj

=0T, +C, T, 7 -C T, -CT.1,.

kj'mi

2. LIFT METRICS AND CONFORMAL VECTOR FIELDS
a) Complete Lift Vector Fields and Lie Derivative

LetV =v'd, beavector fieldon M . Then V induces an infinitesimal point transformation on M . This
is naturally extended to a point transformation of the tangent bundle TM which is called extended point
transformation. Let V be a vector fieldon M and {¢,} the local 1-parameter group of M generated by
V. Let @ be the extended point transformation of ¢,, then {@} induces a vector field V° on
TM which is called the complete lift of V [7, 8].

It can be shown that the extended point transformation is a transformation induced by the complete
lift vector field of V ,V © =v'&, +y 'V ,v'0 with respect to the decomposition (1), where V is a linear
connection.
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The Lie derivation of an arbitrary tensor, T, ¥ is given locally by [9]:
LT X =veV T +veVy VT X T, 2Vy 4T, Vy?
or equivalently,
LT, =vi,T,  +y20y 0T, “ -T, %0y  +T oy,
So we have
Lyy' =v0,y" +y 0y opy' —yoN' =y'oy' —y‘oy' =0, ©)
L, g, =V0,0; +Y 0y 0,0, +0,0V*+0,0V°. (@)

where V is a linear connection.
In Finsler geometry, L, is replaced by L, where V is the lift of V . We also have this
interchanging formula between Cartan covariant derivatives and Lie derivatives.

V.Lg;-L Vg :gajL\/Fii'i_gaiLvFjaL' ®)
b) A Lift Metric on Tangent Bundle

V. Oproiu introduced a family of Riemannian metrics on the tangent space of Riemannian manifolds and
considered locally symmetric, Kahlerian and anti-Hermitian conditions with these metrics [10-12]. Then
Abbassi-Sarih proved in [13] that the Oproiu metrics form a particular subclass of the so-called g-natural
metrics on the tangent space [14, 15]. Also in [16], Boeckx-Vanhecke obtained an almost contact metric
on the unit tangent space.

In this section we consider a new Riemannian metric on the tangent space, and in the next section
obtain some conditions which reduce the conformal vector fields to be homothetic.

Let (M ,F) be aFinsler manifold, define a tensor field G on TM by

G(x,y)= Othij (X, Y)dXide + Zﬂhij (%, y)dx‘5yj + 7hij (X, y)é‘yigyj

where «a, f and y are real numbers and hij (x,y) are components of a generalized Lagrange metric [6,
17]. It is clear that G is nonsingular if ay — % #0 and positive definite if ay — % >0, defining,
respectively, a pseudo-Riemannian or Riemannian lift metricson T (M) .

We are going to consider the metric G with h; (x,y) of the following special deformation of g;;(x)

hij (X’y):a(Fz)gij x,y),

where y, =g, (x,y)y’ and a:Im(F?) =R, — R, with a>0. For shortness we set g, = h,dx'dx’,
g, =2h,dx'Sy’ and g, = h,5y'Sy’, therefore G = g, + 9, + 79,

3. MAIN RESULTS

Analogous to the Riemannian geometry, by straightforward calculation we have the following results in
Finsler geometry [18, 19].

Lemma 1. Let (M ,F) be a Finsler manifold with Cartan connection, then we have
(1) [5,,6,1=R";0;;
(2) [6,,0;1=0;N {0y
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®) [0;,0,1=0.

Lemma 2. Let (M ,F) be a Finsler manifold with Cartan connection, then we have
@) L\/cé‘. z_aivhé‘h -L,/N hiaﬁ;

@) L,.0; =0V "Or;

() L,.dx" =0, v"dx™;

@) L,.8y" =L,Nbdx™ +6,v"5y".

Proof: First we give the proof of part (2). By a simple calculation, we have:
L,.0; =%, 0:]
=p"s, +y"™"|, 0:.0.]
=v"[5, 0:]1-0: v ")S, +y ™" |, [0;,0;1-0:(y"v "I )05

:af(VhN hr —y™v' |m)a;

=—0V "0,
The proof of part (1) is similar to (2).
Since (dx ", 5y ") is the dual basis of (5,0, ), if we put

L,.0y" =ahdx™ + B 5y",
then we have
0=L,.(5y" () =(L,.8y")3 +8y"(L,.6) =a ~L, N,

and

0=L,.(5y"(0) = (L, .8y )3, +8y "(L,.0,) = A~ ",

Thus we get (4). In the same way as the proof of part (4), we can prove (3).

Lemma 3. Let (M, g) be a Finsler manifold with Cartan connection, then we have

() L,.9, =a(F*)(2pg; +L, g;)dx 'dx ';

@) L,.9,=2a(F?)g,, (L, N T)dx'dx ' +2a(F*)(2pg; +L, g;)5y 'Sy ’;

@) L,.95=2a(F?*)g,, L, N Jdx'sy’ +a(F*)(2pg; +L, g;)5y 'Sy,
a'(F?)

where Q= ymvlrr]nyhm.

Proof: From the above lemma, we get
ch 0.= L\/c (hijdXidX : )=V c(a(Fz)gij )dxidxj +23-(F2) op (L\/cdxi)dxj
=(@"8, +y™" |, 8)aF))gy +( "6, +y™ "I, 0:)9;)a(F?)
+2a(F*)g; (0 'dx ")dx ’
=2a(F*) g g;dx'dx’ +a(F?)L, g;dx 'dx .
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Thus we have (1). (2) and (3) are easily proof in the same way as the proof of (1).

Definition 1. Let X be a conformal vector field on TM with the associated function p. X is called
quasi-inessential vector field if p—¢ is a function of (x"), namely there exists a function Q of (x")
such that p=Q+¢@. If Q is constant, then X is called quasi-homothetic vector field. Moreover, if
Q=0 then X is called quasi-isometry vector fieldon TM .

Remark: These classes of vector fields contain the classes of inessential, homothetic and isometry vector
fields as special cases, respectively (forg=0). Hence, the forthcoming results hold for inessential,
homothetic and isometry vector fields.

Theorem 1. Let (M ,F) be a C”connected Finsler manifold, TM its tangent bundle and G the
Riemannian (or pseudo-Riemannian) metric on TM derived from g . Then every complete lift conformal
vector field on TM is quasi-homothetic.

Proof: Let V be a vector fieldon M, V°© the complete lift vector field of V which is conformal, and let
G be a pseudo-Riemannian metric on TM derived from g. We have by definition L, .G =2oG . The
Lie derivative of G gives

L,.G Zaa(Fz)(zwgij +L, g )dx dx ! +2ﬂa(F2)(2¢)gij +L, gy )dx sy

+2pa(F?)g, L, Njdx 'dx ! +ya(F*)(20g, +L, g;)5y 'Sy’

+2ya(F?)g, L, N idx'sy . ©
So we have
L,.G =a(F*)[a(2pg; +L, 9;)+250, (L, N 5)Jdx dx’
+a(F)[25(209, +L, 9;) + 279, (L, N )ldx 'y
+ra(F*)(2¢9; +L, 9;)8y '8y’ =2p G.
Comparing with the definition of G , we find
al, gy +A(9a Ly N +9,L N T) =22Qg,; )
PLy 9 +794L N T =25Qg;; 8)
rLy 9y =27 Qg5 ©)

Where Q=p—¢.
1) If =0, then from (9) we have

L, 9 =2Qg;
and from (8) we have
L,N%=0.
Using thisand N" = y"F. " we get
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0=L,Ni=L (y"F"\)=y"L R, (10)

where the last equality follows from equation (3).
1) If =0, since ay—B° #0 we have S # 0. From (8) we get

L, 9; =2Qg;
and from (7) we have
gaiLvNaj +gajLVN? :O'

Using this, equation (3) and N = y"F ", we have

y"(9alv Ry + 94 L Fi) =0. (1)
In each case I and Il we have
L, 9; =2Qg, (12)
or from equation (4)
V30,05 + 9,40V +0,0V +y 0y 0,0, =2Qg;.
Applying O to both sides of the above equation, we find that
2%0.LC. +2C

a“ijk

OV +2C 4 0V +20VC,, +2Y%0 N 0,Cyy =20

ajk ~i

10, Q+40C .

By using inijk =0, we obtain 0.Q =0. Therefore Q is a function of X alone. From (5) we have
Y (Vily 95 —L Vi 9;) =y (941 B + 94 L FF).
By using (10), (11) and (12) in each case | and Il we find that
YV, Q=0.

Since Q is a function of X alone, we obtain 0,€2=0. This, together with the connectedness of M ,
shows that € is constant.

Note: In a special case when a’(F?) =0 e.g. a(t) = (t — F?)* +1 follows from lemma 3, that ¢ =0 and
hence L,,.G =2pG , where p depends on x only. Therefore we have:

Corollary 1. Let (M ,F) be a C” connected Finsler manifold, TM its tangent bundle and G the
Riemannian (or pseudo-Riemannian) metric on TM derived from g with a'(F®)=0. Then every
complete lift conformal vector field on TM is homothetic.
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