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1. INTRODUCTION

Throughout A is a unital algebra over a field of characteristic zero and M is an A -bimodule. We
denote the full matrix algebra of nxn matrices over A with the usual operations by M  (A). Eis
1<i,j <n are also usual matrix units in M (A). For all X € A we display matrix whose (i, j)th
entry is X and zero elsewhere, by x ® E;; . The dual A" of A is the set of all linear maps from A into
its field. We denote the action of an element g € A on an element a € A with <g,a>. Also, A" is an
A -bimodule with the following module operations:

<a.f,b>=<f,ba>and < f.a,b>=< f,ab> Va,be A f e A"

A derivation D:A— M is a linear map which satisfies the identity D (ab)=D(a)b +aD (b)
a,b € A. We say that D is inner if there exists m e M such that D(a)=am —ma for all acA .
Every derivation D : A— M induces a derivation D' M,(A) > M, (M) by 5((aij ))=(D(ay))-
Benkart and Osborn [1] characterized derivations of M (A), where A is a unital nonassociative algebra
with char(A') # 2,3 and n > 2. They showed that every derivation of M  (A) is a sum of an inner
derivation generated by a matrix with entries in the nucleus N of A, and a derivation induced by a
derivation of A . A similar result for full matrix rings was proved in [2]. The case of the centers of upper
triangular matrix rings over simple algebras which are finite dimensional modulo, was discussed in [3].
Coelho and Milies in [4] proved a similar result for upper triangular matrices over an arbitrary ring with
identity. Jondrup gave a new proof of the latter result in [5].

In this article we prove an analog of the above mentioned result for derivations from M (A) into its dual
M, (A)". In other words, we prove the following theorem.

Theorem: Every derivation from M, (A) into its dual M (A)" is the sum of an inner derivation and a
derivation induced by a derivation from A into A*.
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2. MAIN RESULT

Let g €M (A)" and 1<i,j <n. Define g; €A™ by <g;,a>=<g,a®E; >. We can identify
M. (A)" with M (A") viathe map

¢:Mn(A)*_)Mn(A*)5 g|_>(gu)

From now on we display g € M (A)" by (g ). Forall (a;) e M (A) we have

<g (a'lj)> <(glj) (alj)>_ Z <glj’alj >

i,j=1

Theorem: Every derivation from M (A) into its dual M (A)" is the sum of an inner derivation and a
derivation induced by a derivation from A into A*.

Proof: Let (f;)eM (A)", (a;) €M (A) and a €A . Then we have
<(f;)(a).a®E, >=<(f)),(a;)[a®E,]>=< (fij),zszl[aska@) E,]>
=Y <fhaa>=<>" fa,a>.
Thus
[(F)(@)]a = Zfs. e @)

Similarly, we have:

(alj )(f ij )]kl Z aIS ks * (2)

Suppose D : M, (A) > M (A)" is a derivation. Define
D' :A—> A", D (a) =[D(a®E,)],, . 1<i, j.k,I <n. ©)

From (1) and (2) we conclude that for every a, b € A and every positive integer m <n the following
equality holds:

[D(a® Elm)[b® Emj ]]kl Z D (a)b mr jk - Dml (a)b§ (4)
Where ¢ is the Kronecker’s delta. Similarly, we have
il ¥'mr

[[a®E,, 1D (b O], =ia6 5,D¥ () =a5, D" (b). ©)

From (4) and (5) we conclude that
Dk'(ab) D (a)b5 +ao, ka(b) (6)

Therefore D! is a derivation from A to A*, for 1<i <n. Using (6) we have
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D/'(a)=Dj()a, Dj'(a)=aDy(1) aecAi=lk=j.

Again, using (6) for every 0<i, j,lI <n, the following equalities hold.
DJ(@) =D} ®a+D/ (a).
D T@)=D, Da+ D ().
D/ (a)=D, (a)+aD/ (1).
(a) aD (1) + D; J ! (a).
From (8) we have
D! @ =-D) .
Also, from (9), (10) and (12) we have
D; M@ =D, Da- aD () +D, (a).
Using (8) and (11) we conclude that
D/ (2)=D!(@)-D}(a-aD! Q)

In addition, using (6), (7) and (14) we obtain

[D(@:))]; = Z Dy (@)

k,I=1

_ZD (1)ak|+ZaJ,D"(1) D!(®a; —a;D}(1)+D} (a;)

- Z DY (Ma, + Z a, D M+D/" (a;).

On the other hand, we have

0=ID(E,E, )l =3 Dk (05 + 38,0} (=D ) +D;' 0

Therefore,
Dy () =-Di (.
Now, for 1<k, j <n define D,; =D, . From (15) and (17) we conclude that
[(D(ars))]ij = Z ij (1)aki - Z ajk Dik (1) DJI (ap)
k=1 k=1
= [(Drs (1))(3.,,5) - (ars)(Drs (1))]|j + Dijji (aji )

Using (13) and (18) for every 1<1 <n we obtain
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D ((a;)) =[(D; (1) +diag (D' (2)....,D .y (W)](&a;)
—(a;)[(D;; (1)) +diag (Dy'@),.... Dy ()] +D—IIII((aij )
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