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Abstract — We introduce some new concepts of topological spaces which say o — separable topological
space and O-topological group, « — first axiom, « — second axiom, and we find some relations between
them with some applications in normed spaces.
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1. INTRODUCTION AND DEFINITIONS

In this paper, we introduce the new concepts as « — separable space, « — basis, and other concepts which
are extensions of the concepts of separable space and first countablity axiom and others, and we make a
new structure for a topological group called O-topological group. For these new concepts, we obtain some
useful results that have previously been studied for first countablity basis axiom, second countablity basis
axiom and separable space. In this paper, for topological space (X,7), if Ac X, then clA means the
closure of A. We have some new definitions and notions which are as follows:

Let (X,7r) be a topological space and « be a cardinal number. Then, we say that X is
o — separable space if there exists a subset A< X such that cardA =« , clA= X, and moreover, for
each ¥ < a we are not able to find any B < X such that cardB =y, cIB = X . In other words, « is the
smallest cardinal number that for some A < X we have cardA=« and clA= X .

Without loss, we generally let every o — separable space be separable space whenever o < card,
in which ¥ is the set of natural numbers.

For example, the space L”([0,1]) by topology induced by metric d(f,g) = Sup|f(x) g(x)| is
C —separable space whenever ¢ = cardR® . Of course, we know that L”([0,1]) is not separable space. By

Theorem 10 from this paper, we will generally introduce the same examples.
In this paper we use some of the following notions and terminology:
1. The notion < refersto < or =

2. For a topological group space (X 7,*), the notion ZX means X, * X, *.....* X_, and if the sequence
t=1
(Z X )men 1S Unbounded, then we set ZXt =,
t=1 teN
Suppose that J isanetand |, cl,cl,... are finite subsets of J. Then we write th =+o0 if the
* *

sequence (Z X, )¢, is unbounded. t

tely
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3. For every group X , the element e is the identity element of X and we define X~ ={xe X :x<e}

and X" ={xe X :x>¢e}. . o
4. For a topological group space (X,7,*), we say that th = X if the sequence (z X )y CONVerges
toX. t=1 t=1

Let (X,*) be a group and the relation < be partially ordered on the set X . Also, let Y < X . We
say that supY =e ifandonly if x<eforall xeY ,andif x<u forall xeY , this implies that e <u.

More generally, supY =y, if and only if sup{yg)ly: y eY}: e, and in a similar way, infY =y, if
and only if sup{y0 ytiye Y}: e [1,2].

Let (X,*,<) be a commutative group and partially ordered. A set Y < X is said to be directed to e
if for each y,zeY there exists UeY such that y<u and z <u, and moreover, supY =e. A net
(xa )aEI of X is said to be O-convergence to € if and only if there exists a nonempty set Y < X which is
directed to €, and for each yeY there exists e Jsuch that y™' <x, <y forall > . If a net
(X, )1 is O-converges to e, we will writelimx, =e.

A partially ordered set, X , is called an O-space if convergence with respect to the topology is
equivalent to O-convergence [3].

Let (X,r,*,s) be a topological group and O-space in which X<y iff e < Xt *y, and the space
(X,7) satisfies the least-upper bounded property. Then, (X,r,*,s) is called O-topological group space.

For example, the real number (5R,+,S) by standard topology, and (L”([0,1]),+,<) by topology
induced by metric d(f,g) = sup | f(x)— g(x)| and ordinary operator, + and the relation < are an O-
topological group. xe[od]

Now, we define some new concepts in topological spaces which are extensions of the concepts of
first countable basis and second countable basis, and as a consequence, we make some relations between
them and o — separable space.

Let (X,7) be atopological space and « be a cardinal number. We say that the element X € X has
o —Dbasis if there exist a family (B;),., which is the basis at X such that cardl =« and for each y <«
we are not able to find any basis at X such as(C;);_, with cardJ =y . In other words, « is the smallest
cardinal number such that the collection (B;),_, is the basis at x with cardl = « . If each point of X has
a —basis, then it is said that X satisfies the a — first axiom.

For example, if R is real numbers and X is natural numbers, then the space R™ with product
topology and box topology satisfies the first countable basis and ¢ —first axiom, respectively, whenever
¢ =cardR [4].

Now, let (X,7) be a topological space and « be a cardinal number. We say that X has a — second
axiom if there is a family (B;),_, of basis for z such that cardl =« and for all » <o we are not able to
find any basis for 7 as (Cj)jEJ in which cardJ =y . In other words, « is the smallest cardinal number
with cardl = such that the collection (B;),_, is the basis for X .

As a natural example, let J be a set with cardJ = « . Then the space R’ with product topology and
box topology satisfies the « — second axiom and 2 — second axiom, respectively.

Generally, for the above concepts, we can introduce a simple example as follows.

Let X be a set with discrete topology and cardX = « . Then, the space X is « — separable space
and satisfies the « — first axiom and « — second axiom. Of course, we know that if & > card, then the
space X is not a separable space or does not satisfy the first countable basis or second countable basis.

2. THE SOME RELATIONS BETWEEN THE NEW CONCEPTS

Theorem 1. If the topological space (X,7) satisfies the a — second axiom, then (X,7) is a — separable
space. The converse holds when X satisfies the y —first axiom whenever y < o .
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Proof: Let the topological space (X,7) satisfy the « —second axiom. Then there is the smallest basis
(B;), for X such that cardl =¢ . Without loss of generality, we usually suppose that B; " B; = ¢
wheneveri = j. We choose an arbitrary element x, € B, forall iel,and set A={x, :x, eB}. Itis
clear that A is dense in X and it is the smallest subset of X with respect to cardinal number such that
cardA = « . Consequently, X is « — separable space.

Conversely, since X is « — separable space, there is the smallest subset A < X with respect to the
cardinal number such that cardA=«a and clA=X . We set A={x, :i € I} where cardl =« . Since
X is y—basis, for eachiel, x has py-basis(y<a) as (B;;);,;. Then, the
collection(B; ), j.; is the smallest basis for topological space (X, 7) with respect to the cardinal number
such that card(B,;);., ., = & . Consequently, the space (X,7) satisfies the o —second axiom and the
proof is complete.

In general, if the topological space (X,7) satisfies the y —first axiom and « — separable space, then
(X,7) is Max{a, 7} —second axiom.

Theorem 2. Let (X, 7,*. <) be an O-topological group, the relation < be a total order on X , and {X,},_,
be a net in X "such that Ilmx =e, ZX =+4o0. If card) =« , then X* is y— separablespace
whenever ¥y < « . t

Proof: Without loss of generality, we get X, # X, for all t=s,(t,s€ J). Let x be an arbitrary element
of X *. We define X, ={x|x, < x,t € J}. Since the net {x},., which is O- converges to e, then the
set X,is not empty and has supremum, which is taken by X . We define X,,X;,--, X, as

Kk
={X, | X, <X A< j<k=1,%, <x*(2x J}and we set SUpPX, = X, - We claim that X:ZXt, or

© j=1 j=1
X = Z X, -
i e

fwe take ZX <X, then ZX *x, <x holds for some B#t,(jeN). So, there is ke N such
that ZX *xﬂ<x We set B= { |x/),<xt ,jeN} in which B¢, and also put MinB=x, .
Therefore we have X, <X, <X, and by noticing the definition of X, , we have x, € X;,,. So we
conclude that x, <X, , which is a contradiction.

Therefore, the set {Zx :me N,teJ} has a cardinal number similar to ¢, and is dense in X ™.
Now, we find the smaIIest subset A c X with respect to the cardinal number such that clA= X and

cardA< «.

Corollary 3. Let (X,7,%,<) be an O-topological group, the relation < be totally ordered on X , and
{x.}.., be anetin X7 such that Ilmx =e, Zx =+oo whenever cardJ =« , then the space X
is ¥ — separable space where y < «r . t

Proof: It is similar that X ~is y — separable space, and we know that X = X~ U X " U{e}. Hence, the
space X isalso y —separable space whenever ¥ <« .

Corollary 4. Let X be an O-topological group, the relation < be totally ordered on X, and
{x.}, < X" where an =40 , limx, =e.Then, X" is separable space.

n=1 n—o
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Corollary 5. Let X be an O-topological group, the relation < be totally ordered on X, and

{X,}..x < X such that an = +o0, limx, =e. Then, for each x of X", there exists a subsequence

n=1
{an}j such that x = anj .
j

nN—oo

Example 6. Suppose that {x }._, is an arbitrary sequence of R™ (positive real number) such that
0 m
D %, =+ and limx, =0, then the set {(-1)" > x, :me N} isdenseinR.

nN—o0 ]

— _
In other words, if {X,}, is an arbitrary sejquence in real numbers R* with limx, =0 and

n—o0

an =+o0, then for each x belonging to R™ there exists a subsequence as {x, }. such that
]

J
n=

1 .
X = anj . For special example see [5].
j

3. SOME DISCUSSION ON THE « —separable

In this part, we study some applications of « — separable space in normed spaces and will prove some
theorems that have been studied in separable space. We suppose that X is a normed space and X~ is a
dual space of X or conjugate space of X , that is, the normed space L(X,R) of all bounded linear
functionals on X with the operator norm. In this section, each topology is induced by a norm on a vector
space.

A subset D of a normed vector space X is said to be fundamental if it generates a dense subspace of
X, that is, if, for every X € X and every ¢ >0 there is a finite subset {X;,X,,....X,}of D and scalars
AyyAg sy € R such that ix— " 2,x,

Let X be a normed space and let A and B be subsets of X and X ", respectively. Define A™ and

< ¢ . For details, see [6].

*B by the formula as
At ={x":x'x=0foreach xe A} and “B={x :x"x=0 foreach x" € B}

A" is recalled as the annihilator of A in X" and “B is recalled as the annihilator of B in X .

Let (X,7) be a vector topological space on field real number and A < X . Then we define the set
<A>, the smallest subspace of X which includes A, and [A], the smallest closed subspace of X which
includes A [7].

Theorem 7. A normed space X over R is a —separable space if and only if it contains a subset A with
cardA = & suchthat A is a fundamental family of vectors for X .

Proof: Let A be a fundamental family of vectors, a subset of X with cardA=« . Let B be a set of
linear combinations of the elements of A with coefficients on the field Q (rational numbers). Then B is
dense in X because its clo§oure, generated by A, is X . On the other hand, B has cardinal nrymber a,
since it is the image of the UQ” x A" under map f defined by f(1,,4,,..4,, X, X,,..X,) = Zijxj .

n=1 j=1

Theorem 8. A normed space X is « —separable space if and only if it has the smallest topology basis
B inwhich cardB =« .
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Proof: Let B be the smallest topology basis for X with cardB=a. We set B=(B,),,
wherecardJ =« . Then we set the net (X,),.; where X, € B,. Thus, the set {X, :t € J} is a fundamental
for X . Consequently, by preceding Theorem 7, X is « — separable space.

Conversely, let A=(X,),.; be the smallest net with respect to the cardinal number with cardJ =«
and cI(A) X. We define the set as B, {B(xt,—) neN} for all teJ whenever
B(X,, ) {xeX:|x —X||<—} If we put B=|JB,, then B is a topological basis for X with

tel
cardlnal number « .

Theorem 9. Let (X,7) be a vector topological space on field real number, and the infinite set Ac X be
an a — separable space, then (A) and [A] are both & — separable space.

Proof: Since A is o —separable space, there exist subset B — A such that cardB =« and cl(B) = A.
Let S be a set consisting of all linear combinations of the elements of B formed using only the scalar
coefficient fromQ.

Then S=(B), so S ;UQ” xB. We conclude cardS =« and so cl(S)=(A), which implies
(A) is a—separable. Since a dense subset of (A) is also a dense subset of [A], the set [A] is also

o —separable.

Theorem 10. Let 1< p<ooand LP(X) be all functions f such that J"f‘pdﬂ@o. If X is
o —separable space, then LP(X) is « —separablespace and for p =oo, thé space L*(X) is also

2% —separable.

Proof: Suppose that (X,2, z) is a positive measure space in which the collection 2. is Borel sets. By
Theorem 8 we have card > =« and set X ={A :teJ}, where card] =« . We choose the collection
as Y(x) :thng,\n (X) whenever t, €J and ¢, €Q, which is dense in L"(X) [8]. Consequently,
LP(X) is & = separable space.

Now, let A be a subset of X with cardA=«a and cl(A)=X. We define the set as
A={x, :teJ} whenever cardJ =a and set S={y;:Be A}. Obviously cardS=2“ and by

Theorem 9, we have card(S)=2%. It is clear cl(S)=L"(X), so the space L*(X) is also
2“ —separable and the proof is complete.

Theorem 11. Let X be a normed space and let A and B be the subset of X and X ™ respectively. Then,
we have

a) The set A* and B are the closed subspace of X * and X respectively.

b) ~(A") =[A]([A] is the smallest closed subspace that includes A)

c) If A is a subspace of X , then “(A") =cl(A).

Proof: See the proposition of (1.10.14) from [7].

Theorem 12. Let X be a normed space. If X ™ is a —separable space, then X is « —separable space.
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Proof: Let J be an arbitrary index set with card] =« , and the set {x; :te J} be dense in X". For

each te J,, let X, be an element of{x & X :|x| <1} such that xt"(xt)“z1 X, |-
If X" e X andx" #0, then there isan t € J such that|x* —x’ <3 x*[, from which it follows that
|2 [~ =[] > 0 and that
4
|x*xt|2|xt*xt|—|(x*—xt*)(xt)|2||x;‘xt||— X* =X/ >% X, —%|x* >% X, —%|xt’“ >0

Therefore, the annihilator of {X, :t € J} contains only the zero element of X, so by Theorem11 we
have [{X, :teJ}]="({x :teJ})="{0}=X.

By Theorem 9, we know that the set [{X, :teJ}] isa—separablespace, then X is
o —separable space.

Corollary 13. Let X be a reflexive (X ™ = X ) normed space. Then X is « —separable space if and
only if X" is a — separable space.
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