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Abstract – Let nXX ,...,1  be a random sample from a distribution with sample mean X  and sample 
variance .2S  In this paper we consider certain very general properties of the so-called “Z-scores” 

niSXX i ,....,1 : )/( =− . A representation theorem is then given for Z-scores obtained from an underlying 
normal population, together with a theorem for their limiting distribution as the sample size tends to infinity. 
Finally, two applications involving grading and testing for an outlier are presented. 
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1. INTRODUCTION 
 

Let nXX ,...,1  be independent and identically distributed (iid) random variables from a distribution with 

distribution function )(xF , finite mean ,µ  and finite variance 0.2 >σ  Then the standardized random 

variables ,)/( σµ−iX  ni 1,2,...,= , with mean zero and variance one, are also iid. If the unknown 

parameters µ  and σ  are replaced by their estimators nXX i

n

i
/=

1=
∑  and ,1)/()(= 2

1=
−−∑ nXXS i

n

i

 that 

is, the sample mean and the sample standard deviation, the random variables SXXZ ii )/(= − , 

,1,2,...,= ni  are obtained. These random variables, which do not depend on the units of measurement, are 

usually referred to as Z-scores by behavioral scientists [1, 2] and are often used in education and 

psychology. They are no longer independent, but as we will show in this paper, they are finitely 

exchangeable with 0=)(E iZ  and .1)/(=)(var nnZi −  When )(xF  is a normal distribution, iZ  is 

called a normal Z-score. 
However a literature survey, through journals, monographs, books, and the Internet, shows that there 

is not much theoretical work on the Z-scores as far as we know. 
In an old article, Thompson [3] applied a normal Z-score for the rejection of outliers and discussed its 

distribution.  
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Samuelson [4] and Oklin [5] proved that Z-scores are bounded. Lehmann and Casella [6], and also 
Shao [7], gave the density of a normal Z-score without any discussion. In this article, we obtain some new 
results about Z-scores which may not be found in the existing statistical literature.  

In Section 2, we study the properties of Z-scores for random samples from a general distribution. 
Section 3 presents the exact distribution function of a normal Z-score and the asymptotic distribution of a 
general Z-score. Section 4 gives the moments and the kurtosis of a Z-score. Finally, in Section 5, two 
applications of a normal Z-score are given with numerical examples. 
 

2. GENERAL BASIC PROPERTIES OF Z-SCORES 
 

To study the properties of Z-scores in general, we use the equal in distribution technique which follows 
from the following definition. 
 
Definition 1. Two random vectors ),...,,(= 21 nVVVV  and ),...,,(= 21 nWWWW  are said to be equal in 
distribution, denoted by ,=WV

D
 if they have the same distribution. 

For any two random vectors V and W that are equal in distribution, it is known that )(=)( WgVg
D

 for any 
measurable function )(tg  from nR  to kR  [8]. 
 

Definition 2. The random variables nYYY ,...,, 21  are said to be finitely exchangeable if for every 

permutation niii ,...,, 21  of the integers ,1,2,..., n  ),...,,(=),...,,(
2121 niii

D

n YYYYYY . 

Now, if the iY 's are iid then they are exchangeable, but the converse is not true. Using 121 =),...,,( ttttg n  

we conclude that ,=
11 i

D
YY  i.e. exchangeable random variables are identically distributed. Similarly, 

),(=),(
2121 ii

D
YYYY , ),,(=),,(

321321 iii

D
YYYYYY , and so on. 

In what follows we give some of the basic properties of Z-scores assuming that 2≥n : 
(A) nZZZ ,...,, 21  are finitely exchangeable. 

To prove this property we use ),...,,(=),...,,(
2121 niii

D

n XXXXXX  and the function 

),,...,,(=),...,,( 21
21

t

n

tt
n s

tt
s

tt
s

tttttg −−−  with ntt i

n

i

/=
1=
∑  and 1)./()(= 2

1=

2 −−∑ ntts i

n

i
t  Because of 

exchangeability, nZZZ ,...,, 21  are identically distributed. Thus, in what follows, we consider 

SXXZ )/(= 11 −  as being a representative of all the Z-scores. 
(B) 1Z  is ancillary when µ  and 2σ  are unknown. 

The proof of this property follows on noting that the distribution of the vector 
( ) ( ) ( )( )σµσµσµ −−− nXXX ,...,, 21  does not depend on the parameters µ , 2σ , and 1Z  is a 

function of this vector. This can be shown by expanding 1Z  in terms of the components of the vector as 
follows: 
 

σ
σµµ

/
/)]()[( 11

1 S
XX

S
XX

Z
−−−

=
−

=  

 
Therefore the distribution of 1Z  does not depend on µ , ,2σ  i.e. 1Z  is ancillary.  
(C) 1Z  is bounded. 

To prove this properly, we delete 1X  from the sample and consider  
 

                                               .)(
2

1=,
1

1= 2

2=

2

2=
∗∗∗ −

−− ∑∑ XX
n

SX
n

X i

n

i
i

n

i
                                       (1) 
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Now, it is easy to show that  

 

                                           2
1

2

2=

2

1=

)(
1

)(=)( XX
n

nXXXX i

n

i
i

n

i

−
−

+−− ∗∑∑ .                                      (2) 

 
This identity is called Thompson's identity and can be found in [3, 5]. From (2), we have 

 

                                                   ,)(
1

2)(=1)( 2
1

22 XX
n

nSnSn −
−

+−− ∗                                             (3) 

 
                                                            ( ) ( ) .1= 11 nnSXXZ −≤−                                                  (4) 

 
Inequality (4) is often referred to as Samuelson's inequality [4, 5]. 

(D) 0,=)(E 1Z  .1)/(=)(var 1 nnZ −  
To prove these two results, we use the facts that nZZZ ,...,, 21  are identically distributed, bounded, 

and the relations 
 

( ) ( )( ) 1== and0== 2

1=

2
1

1=1=
1

1=
−−− ∑∑∑∑ nZSXXZSXX i

n

i

n

i
i

n

i

n

i
. 

 
If we use nSnSb /1)(= 22 −  (a biased estimator of 2σ ) instead of 2S , we have 
( )( ) 1.=var 1 bSXX −  Therefore, ( ) bSXX −1  with mean zero and standard deviation this can be 

converted to ( ) BSXXAT b +−11 =  with mean B  and standard deviation 0>A .  
(E) .1=),(cov 21 nZZ −  

Using ),(=),( 21 ji

D
ZZZZ  for ,<1 nji ≤≤  ,1)/(=)(var 1 nnZ −  and 0,=var

1=
⎟
⎠

⎞
⎜
⎝

⎛∑ i

n

i
Z  we obtain 

nZZ 1=),(cov 21 −  and the coefficient of correlation ( ).11=),( 21 −− nZZρ  We conclude that although 

the iZ 's are identically distributed, they are clearly not independent. 
(F) The distribution of 1Z  is symmetric about zero if the distribution of the iX  is symmetric about .µ  
This follows from the fact that ( ).,...,,(=),...,, 2121 n

D

n XXXXXX −−−−−− µµµµµµ  Now, using the 
function ( ) tn stttttg −121 =),...,,( , we have SXXSXX

D
)/(=)/( 11 −−  or .= 11 ZZ

D
−  

 
3. TWO IMPORTANT THEOREMS FOR THE NORMAL CASE 

 
Theorem 1. (A representation theorem) Let nXX ...,,1  be a random sample of size 3≥n  from the 

),( 2σµN  distribution and SXXZ )/(= 11 −  be a Z-score with distribution function ).(
1

zFZ Then 
 

                                                     
2

2
1

( 2,1)

( 1) 1=
1 ( 2)

D

n

nZ
n n F −

−
+ −

(a)  ,                                                   (5) 

 
where ),( 21 mmF  is a random variable from the F-distribution with 1m  and 2m  degrees of freedom. 
 

                                      
2

(1, 2) 2 21

1 ( ) ( 2)( ) = ,
2 2 ( 1)Z n

z n n zF z P F
n nz−

δ −⎛ ⎞+ ≤⎜ ⎟− −⎝ ⎠
(b)                                     (6) 

 
where 

n
nz 10 −

≤≤  and 
⎪
⎩

⎪
⎨

⎧

−
=

0<1
00
0>1

=)(
z
z
z

zδ . 
 
Proofs: 
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(a) Dividing both sides of (3) by 2σ , we obtain 
 

,)(
1

2)(=1)(
2

2
1

2

2

2

2

σσσ
XX

n
nSnSn −
−

+
−− ∗  

 
or, more succinctly, 21= QQQ + . If 2

)(kχ  denotes a random variable from the chi-square distribution 
with k  degrees of freedom, we have  
 

,=2)(=,=)(
1

=,=1)(= 2
2)(2

2

2
2
(1)2

2
1

1
2

1)(2

2

−
∗

−

−−
−

−
n

DD

n

D SnQXX
n

nQSnQ χ
σ

χ
σ

χ
σ

 

 
which are three quadratic forms in n iid normal random variables. 

By definition the rank of a quadratic form Mxx′ , with a vector )...,,,( 21 ′= nxxxx  and an nn×  
symmetric matrix M , is the rank of M . It is easy to show that )(rank)(rank=)(rank 21 QQQ + . 
Therefore, we conclude that 1Q  and 2Q  are independent [9]. Thus, we have  
 

,
2)(1

11)(=
/1)(

=
1)(

)1)((
=

)(
=

2

21

2
1

2

2
1

2

2
12

1 Rnn
n

QQ
nnQ

Sn
XXn

S
XX

Z
−+

−
+
−

−
−−−

 

 
where [ ] .=/1)/(2)/(= 2,1)(12 −− n

D
FQnQR  Now, using the function 

tnn
ntg

2)(1
11)(=)(

2

−+
−

 on both 
sides of 2,1)(= −n

D
FR , we obtain (5). 

(b) It is easy to show that for any continuous random variable Z  with a distribution that is symmetric 
about zero, the distribution of Z  can be written in the following form:  

 

                                                           ).(
2

)(
2
1=)( 22 zZPzzFZ ≤+

δ
                                                      (7) 

 
From property F, we know that for a normal case the distribution of 1Z  is symmetric about zero. 

Now, using (5) and (7), we obtain (6).  
 
Corollary 1. From the proof of (a) we have [ ] 2

2)(2)(1,21 ==2)/(/ −−− n

D

n

D
TFnQQ , and as a result,  

 

                                                               2)(
1 1= −
∗

−−
n

D
T

n
n

S
XX

,                                                         (8) 

 
where 2)( −nT  denotes a random variable from the t-distribution with 2−n  degrees of freedom. 
 
Theorem 2. Let nXX ,...,1  be a random sample of size n from a distribution with finite mean µ  and 
finite variance 0.2 >σ  Also, let nX  and 2

nS  denote X  and 2S  for such a sample of size .n  Then, as 
∞→n : 

(a) The limiting distribution of 
n

n

S
XX

Z
−1

1 =  is the same as the distribution of the standard variable 

.1

σ
µ−X  

(b) In the normal case, the density of 1Z  converges to the standard normal density. 
 
Proofs: 

(a) .
/

)/(== 11
1

n

n

nn

n

S
X

S
X

S
XXZ µ

σ
σµ −
−

−−  Now, by the law of large numbers, 0
P

nX →−µ , and by 

Slutsky's theorem, σ
P

nS → . As a result, 
σ
µ−

→ 1
1

XZ
D

 [10]. 
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(b) Differentiating (6) and using the density of 2)(1, −nF , for 4>n  the density of 1Z  is given by  
 

                              .10,
1)(

1
1

2
2

2
1

2
1

=)(
2

4
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n
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n
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n
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⎢
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                             (9) 

 

Now, as 2
2

4

2

2 2

=
1)(

1lim z

n

n
e

n
nz −

−
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⎦

⎤
⎢
⎣

⎡
−

−  and, using Stirling's formula, ,
2
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1

2
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2
1

lim
−

⎟
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⎞

⎜
⎝
⎛ −

Γ

⎟
⎠
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⎜
⎝
⎛ −

Γ

∞→ n
n

n

n

n
 we 

obtain .
2
1=)(lim

22z
n

n
ezg −

∞→ π
 

 
Remark 1. Density (9) can be derived using the fact that the ancillary SXX )/( 1 −  is independent of the 
complete sufficient statistic ),( 2SX  and, as a result, from S  [6]. But this approach is involved and does 
not illustrate the distributional structure of .1Z  
 
Remark 2. It is observed that part (a) of Theorem 2 implies (0,1)1 NZZ

D
~→  in the normal case. The 

same result can also be obtained from part (a) of Theorem 1 using the distribution of 2)( −nT , and the facts 
that 2

2)(2,1)( 1/= −− n

D

n TF  and (0,1)2)( NZT
D

n ~→− . But statement (b) of Theorem 2 concerning the )(lim zgnn ∞→
 

is stronger than the statement (0,1)1 NZZ
D

~→ , according to Scheffe's useful Convergence Theorem [10]. 
 

4. MOMENTS AND KURTOSIS OF NORMAL Z-SCORES 
 

Differentialing the density )(zgn , 4>n , with respect to z, we observe that it has one maximum point at 
zero. Therefore (9) is unimodal, symmetric, and bell-shaped. 

Theoretically it is interesting to notice that (a) for 2=n , 1Z  is discrete with 
2
1)2( 1 =±=ZP  (b) 

for 3=n , 1Z  is continuous with a minimum point at zero and (c) for 4=n , and 1Z  has a uniform 
density on the interval )

2
3,

2
3(− . 

Figure 1 graphs (9) for 15 ,8,,54 3,=n , together with the standard normal density. It can be 
observed from this plot that (9) is reasonably well approximated by the standard normal distribution for a 
sample size of 15=n . 
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Fig. 1. Density of the normal Z-score for n = 3,  4 ,  5 ,  8 ,  15  compared with the normal density 
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All of the moments of 1Z  exist, since 1Z  is bounded (Property C). All the odd moments of a normal 
Z-score are zero because its distribution is symmetric about zero. To find the even moments, we use the 
moments of a beta variable B  and the relation between the beta and F-distributions. Casella and Berger, 
[11]. From (5) we have  

 

                                      ,1)(=
2)(

1)(=)(=
2

2)(1,

2)(1,
2

2

2
12

1 B
n

n
nF

F
n

n
S

XXZ
D

n

n
D −

−+
−−

−

−                                (10) 

 
where B  has a beta distribution with 1/2=α , 2)/2.(= −nβ  Using the moments of B , we obtain 

 

                                          1,2,...=    ,

2
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1

2
1

1)(=)(
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⎜
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⎠
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+Γ

⎟
⎠
⎞

⎜
⎝
⎛ −
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⎠
⎞

⎜
⎝
⎛ +Γ

−
.                                (11) 

 
This result can also be deduced from Basu's theorem [6] since 1Z  is ancillary and ),( 2SX  is a 

complete sufficient statistic for ,(µ )2σ  
From (11) we find nnZE 1)/(=)( 2

1 −  and 1).(/1)3(=)( 234
1 +− nnnZE  Therefore, the coefficient 

of kurtosis for 1Z  is 
 

                                                                    [ ] .
1
1)3(=

)(
)(

22
1

4
1

+
−

n
n

ZE
ZE

                                                            (12) 

 
We observe that, as ,∞→n  3(12) → , the coefficient of kurtosis for the standard normal density. 

Note that the convergence to this limit is fairly swift as the coefficient of kurtosis takes the values 1, 3/2 
and 2 for 3 ,2=n  and 5, respectively. 
 

5. TWO APPLICATIONS OF Z-SCORES 
 

I. Grading 
Z-scores are often employed in grading and testing. Users usually assume that SXX )/( 1 −  has a standard 
normal distribution when the underlying population is normal. However, as we have shown in Section 3, 
the distribution of a Z-score is only approximately normal when the sample size is large. To illustrate this 
point, we consider the following example. 
 
Example 1. A teacher gave a test to a class of 20 students and found that the class average and standard 
deviation had been 16 and 4, respectively. Assuming normality, what is the probability that a student in 
the class obtained a mark of less than 15 out of 20.  
Using the distribution function (6) and the fact that 1Z  and ),( 2SX  are independent, we have  
 

0.4027.=0.25)<(1=

0.0625)<(
2
1

2
1=

4
1<=

4
1615<=

4= and 16=|15<=  4)= and 16=|15<(
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XXP
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X
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PSXXP
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⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
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The equivalent probability obtained, assuming (erroneously) that 1Z  is normally distributed, is 0.4043. 
Given our previous comments regarding the similarity of (9) to the standard normal density for a sample 
size of 20=n , the closeness of the two probabilities is, perhaps, not surprising.  
 
II. Outlier detection 

During data analysis it is generally advisable to examine data for outliers, i.e. extreme observations. 
For example, in practice, a Z-score greater than 3 is often considered as providing evidence that the 
observation in the question is an outlier. 

More formally, in a random sample nXX ,...,1  from the ),( 2σµN  distribution, 1X  can be 

classified as an outlier at the 1<<0 α  level of significance if ( ) .1
1 ααα ≤≥=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥

−
kZPk

S
XX

P  

In order to identify αk  we can use part (a) of Theorem 1 or, for large n, a normal approximation.  

Alternatively, for small sample sizes we can use the statistic 
∗

−
=

S
XX

R 1  as a means of 

investigating whether 1X  is an outlier or not. Clearly, if 1X  is an outlier then XX −1  will be large and, 

by deleting 1X  from the sample, ∗S  will be smaller than S. Consequently, R should be large. Denoting 

the observed value of R by r , the probability of obtaining such an extreme value of R is given by  
 

                                                                  .>11 2)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− − rT

n
P n                                                             (13) 

 
Example 2. The scores of a vocabulary test, out of 4, were: 

 
3.4.  3.0,  3.3,  3.7,  3.9,  2.9,  2.6,  3.5,  3.8,  3.1,  1.6,  3.3,  2.5,  3.4,  2.2,  3.4,  

 
A chi-square goodness-of-fit test showed that the normal distribution, with 3.1=ˆ x=µ , fits the data 

reasonably well.   
Given that the value 1.6 is rather small in comparison with the other results, we investigate whether it 

might be considered to be an outlier. Deleting 1.6 from the scores, we obtain 0.4870=∗s  and 
3.0803.=)/(= 1 ∗− sxxr  Now, from (13), we obtain  

 

0.01.<3.0803>
16
11 (14) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− TP  

 
Therefore, there is strong evidence that the score 1.6 is indeed an outlier. 
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