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Abstract – The threshold of weak and strong synchronization in a coupled chaotic Gaussian map is 
demonstrated by using the Pyragas’ terminology. However, Vieira and Lichtenberg have shown that the 
Pyragas’ criteria for weak and strong synchronization cannot be used for all chaotic systems. In this article 
we demonstrated some interesting synchronization behavior of two coupled chaotic systems with some zero 
and negative Lyapunov exponents. In such cases the various synchronization behaviors may also depend upon 
the eigenvalues of a system obtained by subtracting two chaotic systems. 
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1. INTRODUCTION 
 

It is well known that, one important tool to measure the sensitivity of chaotic systems to initial values is 
Lyapunov Exponents (LEs) [1-5]. So, LEs play an important role in describing the qualitative behaviour of 
synchronization between two chaotic systems. Pyragas [1, 6] discussed the various synchronization stages 
of coupled chaotic systems by using LEs. He claimed that Weak Synchronization (WS) and Strong 
Synchronization (SS) are dependent upon the signs of the LEs of the coupled chaotic systems. However, 
Vieira and Lichtenberg have shown that this dependency is not generally a distinct property of all coupled 
chaotic systems [2]. They have shown that the Pyragas transition terminology from WS to SS in one 
chaotic system to the other is different. In particular, they analytically found that, for the tent map the 
transition to WS and SS coincide. On the other hand, as we will see, in the Gaussian map WS and SS 
occur in different thresholds. 

In these and similar studies, researchers used LEs to describe the synchronization behaviour of 
coupled chaotic systems. For example, Shuaiet et al. [7] have shown that synchronization between two 
chaotic systems occurs even in the presence of some positive LEs. In this study we demonstrate that in the 
case of zero and negative LEs, we may have some interesting synchronization behaviour in coupled 
chaotic continuous time dependent systems. In these cases the various synchronization behaviors may 
depend on the eigenvalues of a difference system of two coupled systems. Using Pyragas’ terminology, 
we start by showing the occurrence of WS and SS in coupled Gaussian chaotic maps. Then, following 
Vieira and Lichtenberg [2], we will see that there can be no universal characterization of WS and SS. In 
section 4 we will demonstrate some interesting examples for synchronization of two chaotic continuous 
time dependent systems and describe how this synchronization may depend upon the eigenvalues of the 
difference system between two coupled chaotic systems. We conclude with final remarks and 
consequences in section 5. 
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2. SYNCHRONIZATION OF TWO CHAOTIC GAUSSIAN MAPS 
 

Consider the one dimensional Gaussian map 
 

                                                                 ])([
1

22 bxa
n

nex 
  .                                                            (1) 

 
Various dynamic behaviours of this map may be observed for different real values of a and b. For 0.1a , 

5.0b  and )1,0(0 x , this map has the stable fixed point 87125.0x . Fixing 5.0b  and varying 
a among 1.5, 2.1 and 3.5 with initial value )1,0(0 x , the map is periodic, periodic two or chaotic, 
respectively. In the case of chaos, for 5.3a  and 5.0b  with two different initial values 0x , we 
observed different chaotic behaviours. 

To review the synchronization of chaotic systems and related terminology, consider the three 
dimensional Gaussian map defined as follows:  

 
                                                                          )(1 nn xfx                                                                    (2) 

 
                                                         )()()(1 nnnn xfyfkyfy                                                   (3) 

 
                                                       )()()(1 nnnn xfzfkzfz  .                                                   (4) 

 
In this system  22 )()( bxa

n
nexf  , and the maps (2), (3) and (4) are the drive, response and 

auxiliary systems, respectively. All three of these maps are chaotic for parameter values 5.3a , 5.0b  
and 10  k  and for initial values between zero and one. Similar to the Pyragas terminology [1, 6], we 
can see the various synchronization behaviours of these three maps for different values of )1,0(k . For 
values 1662.0  k , the maps (2) and (3) have transversely stable invariant manifold yx  . In other 
words, for these values of k and with any initial values 0x  and 0y , the terms nx  and ny  are 
synchronized after some iterations. As defined elsewhere [1] this synchronization is called Identical 
Synchronization (IS) (Fig. 1-a). The same synchronization occurs between the maps (3) and (4). The 
manifold stabilities of yx  and zy  are called SS (Fig. 1-a and 1-b). In general, if there is a function 

RRh :  such that 0)(  nn yxh  as n , then there will be a General Synchronization (GS) 
between (2) and (3). Now if h is a smooth function, then the synchronization is called SS and if h is non-
smooth it is called WS. 

We can see the GS in the form of WS in the Gaussian map for 662.042.0  k  (Fig. 1-c and 1-d). 
In this case yx   is a transversely unstable invariant manifold but zy  is a stable one. Of course, there 
are some values of k )3.00(  k  for which there is no synchronization between the Gaussian maps (2), 
(3) and (4). In this case the phases spaces ),( yx  and ),( zy  are not stable (Fig. 1-e and 1-f). 
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Fig. 1. Synchronization of two coupled chaotic Gaussian maps for different values of k . (a) and (b) strong 
synchronization for 7.0k . (c) and (d) weak synchronization for 45.0k . (e) and (f) no  

synchronization between  yx,  and  zy,  occurs for 2.0k  
 

3. LYAPUNOV EXPONENTS AND SYNCHRONIZATION 
 

Pyragas [1, 6] used LEs to analyze the WS and SS criteria. He defines the Conditional LE as 
 

                                                     



N

n
n

N

R yf
N

k
1
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1
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and he used this exponent to study the stability of the phase space ),( zy . The Transverse LE is defined 
as 

 

                                                         
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1
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These LEs can be calculated numerically for higher dimensional spaces [8] and analytically in most one 
dimensional spaces.  

Using different parameter values for which both R  and I  are negative we have SS, but for 0R  
and 0I  we have WS [1]. Thus if we calculate R  and I  for the Gaussian map at the fixed point 

678082.0 yx  for different values 10  k , then the overall synchronization behaviors can be 
characterized as follows: 
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1. If 42.0k , 0R , and if 662.0k , 0I . Thus, WS occurs for those values of 
662.042.0  k  for which 0R  and 0I . 

2. If 662.0k , then R  and I  are both negative, SS occurs. 
3. For a value of k  less than 0.42, both R  and I  are positive and in this case there is no 

synchronization between (2), (3) and (4).  
These results are consistent with those of Fig. 1 in the previous section. Nevertheless, Vieira and 

Lichtenberg have shown [2] that the above criteria for WS and SS in terms of LEs cannot be used for all 
chaotic systems described by (2-4). Following their studies, we are able to find the LEs of the system (2-4) 
analytically. That is, the LEs corresponding to the valuables x, y and z are 
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In calculating these LEs we first note that for the initial values of y  and z  in the area that 

nn zy  , we will have 32   , because the parameters of the maps are the same. Second, 2 R  and 
this equality occurs even when ny  and nz  are not synchronized. On the other hand, I  is not an LE of the 
global system, particularly in the region where x and y are not weakly synchronized. However, I  and 1  
are related by 1)1ln(   kI . Finally, it is obvious that in the region of SS 2  RI . 

As they have showed in the tent map the WS does not necessarily imply SS. Since the tent map 
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has period one for 10  a , with fixed point 0* x and for 21  a  the map is chaotic [9]. If 2a , 

then the generic orbit of this map diverges. Since axf n  )( , it follows from equations (7)-(9) that the 

LEs of this system are aln1   and ak ln)1ln(32   . For fixed )2,0(a , 2  decreases 

monotonically as k increases from zero to one. Thus there is no region of WS for this map. In fact, 

synchronization between x, y and z occurs simultaneously in this map, and we have only SS, which occurs 

whenever 02  , so 
a

k
1

1 . 

 
4. SOME INTERESTING SYNCHRONIZATION 

 
Other criteria for the synchronization of two coupled chaotic continuous time dependent systems have 
been described by Guemez et al. [10] and Pecora and Carroll [11]. Following their criteria, suppose 

s)f(x,x   and s)f(y,y   are two chaotic drive and response systems that are coupled by some vector-
valued function of time h(x)s  . Synchronization of this pair of (identical) systems occurs if the 
dynamical system describing the evolution of the difference, 

 
s)f(x,s)e,f(xs)f(x,s)f(y,ex,ye   
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has a stable fixed point at 0e  . Note that here we assume that x and y are drive and response systems, 
respectively. This stability can be checked analytically by using the linearized system 

 
                                                                       s).e(x,Dfe x                                                               (11) 

 
for some small value e . Because analytical stability is impossible in some cases, the stability can also be 
checked numerically by computing the LEs of this linearized system [8]. If all LEs are negative or have 
negative real parts, then synchronization occurs between the two coupled chaotic systems. But what 
happens if there are some zero LEs for this linearized system? Is there any synchronization between these 
two chaotic systems? Recently, Shuaiet et al. [7] have observed that synchronization can be achieved even 
with positive LEs, and we will show that synchronization may occur with zero LEs too. To this end, 
consider the following examples. 
 
Example 1. It is well known that both of the following coupled Lorenz systems [12] are chaotic for the 
parameter values 10 , 3/8b  and 28r . 

 

1111

11111

111

bzyxz

yrxzxy

yxx




 
                     

2222

22122

222

bzyxz

yrxzxy

yxx




 
 

 
In computing the LEs of the corresponding system (11) by Wolf’s method [8] we find LEs of -2.67, -11.0, 
and 0. Thus the above-mentioned criteria cannot detect synchronization. However, we have determined 
that these two systems are synchronized in that region where the eigenvalue s)(x,Dfx  in the linearized 
deference system (11) vanishes. Hence, consider the Jacobian matrix from system (11):  

 






















bxy

zr

22

1 01

0
. 

 

The characteristic equation of this yields the eigenvalues b  and })1()([4)1()1({2/1 1
2  rtz . 

Obviously, in the case in which 1z  becomes equal to the constant 1r , we will have a vanishing 

eigenvalue. In Fig. 2 we display the time series of the trajectories in both the ),( 1 tx  and ),( 2 tx  planes 

together. As we can see in this figure, the response follows a trajectory which is an amplification of the 

driven attractor by a factor of approximately 10. This factor may change by varying the initial conditions. 
 

 
 

Fig. 2. Time series solutions 1x  and 2x  of coupled Lorenz chaotic systems. The response follows a  

trajectory which is an amplification of the driven attractor by a factor of approximately 10 
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Example 2. As another case with zero LEs, consider the following coupled Sprott-C systems [13]. These 
two systems are coupled using the Pecora-Carroll method [11]. 

 

2
11

111

111

1 xz

yxy

zyx





                        

.1 2
12

212

xz

yxy


   

 
Here again we have a zero LE and a vanishing eigenvalue for the corresponding Jacobian matrix in the 
system (11), and two other eigenvalues are 1. In this case, as we can see in Fig. 3, the drive and response 
systems in the ),( 1 ty  and ),( 2 ty planes eventually behave similarly and synchronize. 
 

  
 

Fig. 3. (a) time series solutions 1y  and 2y  of coupled chaotic Sprott-C systems.  

(b) difference between 1y  and 2y , which shows eventual synchronization 

 

Example 3. An interesting situation of zero LEs occurs whenever the Jacobian matrix has complex 
conjugate eigenvalues with vanishing real part. Consider, for example, the following pair of Sprott-L 
systems coupled by the second method of Pecora and Carroll. 
 

11

1
2
11

111

1

9.0

9.3

xz

yxy

zyx



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22

212

1
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xz

zyx


  

 
The eigenvalues of the Jacobian matrix are 9.3i . Fig. 4 shows the time series solutions for 1x  and 2x . 
In this figure, the differences between drive and response change in an oscillatory fashion are shown. The 
frequency of this oscillation depends on the imaginary part of the eigenvalues, with constant amplitude, 
which is related to the difference at the moment at which the connection starts. This behaviour is called 
marginal oscillatory synchronization [10, 14]. 
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Fig. 4. (a) time series solutions 1Z  and 2z  of coupled chaotic Sprott-L. (b) shows the  

differences between drive and response change in an oscillatory fashion 

 
Example 4. For our final example, we examine a case in which the Jacobian matrix has conjugate 
eigenvalues with the positive real parts. Consider the following two coupled chaotic Rossler systems 
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with 2.0a , 2.0b  and 6.4c . It is easy to see that the eigenvalues of the corresponding Jacobian 

matrix are c  and ]4[2/1 2  aa . In this case, the oscillatory difference between drive and response 

starts with a small amplitude and increases exponentially with time. Time series solutions for 1x , 2x  and 

the difference between them are shown in Figs. 5-a and 5-b, respectively. 
 

     
 

Fig. 5. (a) time series solutions 1x  and 2x  for coupled chaotic Rossler systems. (b) oscillatory difference  

between 1x  and 2x  start with small amplitude and increases exponentially with time  

 
5. CONCLUSIONS 

 
We have used the Pyragas’ terminologies for WS and SS in chaotic Gaussian map. On the other hand, the 
Tent map is an example by Vieira and Lichtenberg in which WS does not imply SS. Other attempts have 
been made to determine WS and SS according to Pyragas’ terminologies, but there is still no general 
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theorem to describe such synchronization behavior. He and Vaidya [15] tried to find a necessary and 
sufficient condition for chaotic synchronization of two coupled systems, but their attempt was very 
specific and left many unanswered questions. In this article we have attempted to classify the types of 
synchronization which occur with zero LEs in continuous time dependent chaotic systems. In these cases, 
the sign of other non-zero LEs does not determine the synchronization behavior of two coupled chaotic 
systems. If there is synchronization, then we analyzed the difference behaviors between the coupled 
systems, which are related to the eigenvalues of s)(x,Dfx  in system (11). Of the many possible cases, 
depending on the different types of these eigenvalues, the most interesting are those with zero and positive 
real parts and in which synchronization between two coupled chaotic systems occurs with oscillatory 
differences between the drive and response systems.  

There are many remaining cases to be classified in terms of the Jacobian matrix eigenvalues in 
system (11), and there is still no general theorem to characterize the synchronization of coupled chaotic 
systems with zero LEs in both discrete and continuous time dependent chaotic systems.  
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