POSITIVE LAGRANGE POLYNOMIALS*

S. M. M. ZEKAVAT** AND SH. KHOSHDEL

Department of Mathematics, School of Science, Shiraz University, Shiraz, I. R. of Iran Emails: zekavat@susc.ac.ir, khoshdel@shirazu.ac.ir

Abstract – In this paper we demonstrate the existence of a set of polynomials P_i , $1 \le i \le n$, which are positive semi-definite on an interval $[a, b]$ and satisfy, partially, the conditions of polynomials found in the Lagrange interpolation process. In other words, if $a = a_1 < \cdots < a_n = b$ is a given finite sequence of real numbers, then $P_i(a_i) = \delta_{ii}(\delta_{ii}$ is the Kronecker delta symbol); moreover, the sum of P_i 's is identically 1.

Keywords – Positive polynomials, Lagrange polynomials

1. INTRODUCTION

Archive of a may paper we demostrate the existence of a set of polynomials P_i , $1 \leq i$
 Archive on an interval $[a, b]$ and satisfy, partially, the conditions of polynomial-

interpolation process. In other words, if All polynomials referred to in this paper belong to $\mathbb{R}[x]$. Let *S* be a subset of \mathbb{R} and *P*, a nonidentically zero polynomial. *P* is said to be positive semi-definite (positive or "psd'' for short) on *S* if $P(x) \ge 0$ for all *x* in *S*. It is called positive definite ("pd" for short) on *S* if $P(x) > 0$ on *S*. Representations of psd and pd polynomials when *S* is an interval exist in literature, see for example [1-3]. However, as we are interested in this paper to consider positive polynomials on an interval $[a, b]$ from a different angle, there is no need for any such representations here. Suppose that the real numbers $a = a_1 < \cdots < a_n = b$ belong to the interval $[a, b]$. The polynomials

$$
P_i = \prod_{j \neq i} (x - a_j) / \prod_{j \neq i} (a_i - a_j),
$$

where $1 \le i \le n$ is an integer, used in the Lagrange interpolation formula [4], satisfying the following conditions

 (I) $P_i(a_j) = \delta_{ij}, \qquad 1 \le i, j \le n$

(II) P_i is of degree $n-1$ for each i .

Actually, the set of polynomials $\{P_i\}$ is uniquely determined by the conditions (*I*) and (*II*) above. If $n > 2$, then the polynomials P_i are not psd on [a, b]. Therefore, if we try to impose the condition of being psd on $[a, b]$, we have to somehow modify (*I*) and (*II*). As these conditions imply (*II'*) below, we replace (*II*) by

 $(H') \sum_{i=1}^{n} P_i = 1$.

Using the transformation $x \mapsto (b-a)x/2 + (b+a)/2$, we may just focus on [-1,1] instead of working on [a, b]. Denote by A the set of psd polynomials on $[-1,1]$. Suppose that $-1 = a_1 < a_2 < \cdots < a_n = 1$ and $\{P_i\}, P_i \in \mathcal{A}, 1 \le i \le n$ is a set of polynomials. Then we say $\{P_i\}$ is a set of positive Lagrange (PL for short) polynomials corresponding to $(a_1, a_2, ..., a_n)$ if $\{P_i\}$ satisfies (*I*) and (*II'*). For example,

 \overline{a}

Received by the editor April 16, 2007 and in final revised form July 7, 2008

Corresponding author

 $P_1 = x^2(1-x)/2$, $P_2 = 1-x^2$, and $P_3 = x^2(1+x)/2$ form a set of PL polynomials corresponding to $(-1, 0, 1)$.

2. EXISTENCE OF POSITIVE LAGRANGE POLYNOMIALS

As in section 1, let $-1 = a_1 < \cdots < a_n = 1$ be a finite sequence of real numbers. Our purpose is to prove the following:

Theorem 2.1. Corresponding to (a_1, \ldots, a_n) there exists at least one set of PL polynomials.

In order to prove the theorem we need two lemmas and some notation.

Lemma 2.1. Let $a, b \in [-1, 1]$, $a \neq b$. Then there exists a polynomial $g \in \mathcal{A}$ which attains a local maximum with value 1 at *a* and has a local minimum with value 0 at *b* .

Archive of the diagonal g ϵA which there exists a polynomial $g \in A$ which value 1 at *a* and has a local minimum with value 0 at *b*.

and the of the form $g(x) = (x-b)^2 g_1(x)$, where $g_1 \in A$ is a non-constant po find c **Proof:** *g* must be of the form $g(x) = (x - b)^2 g_1(x)$, where $g_1 \in \mathcal{A}$ is a non-constant polynomial. Now it is possible to find constants *c* and *d* such that $g(x) = c(x - b)^2 (x - d)^2$ satisfies the desired properties. A direct calculation shows that $c = (a - b)^{-4}$ and $d = 2a - b$, that is,

$$
g(x) = ((x-a)^{2} - (b-a)^{2})^{2}/(b-a)^{4}.
$$

Remark 2.1. In the above lemma the obtained polynomial was of degree 4. In some cases we can find a polynomial *g* such that it has the stated properties and deg(*g*) equals 3. In fact, if deg(*g*) = 3 then we write *g* as:

$$
g(x) = (x - b)^{2} [m(1 - x) + n(1 + x)].
$$

As $g \in \mathcal{A}$, we have $g(1) \ge 0$ and $g(-1) \ge 0$. So $g \in \mathcal{A}$ iff $m, n \ge 0$. Imposing the conditions at *a*, we obtain:

$$
m = \frac{3a - b + 2}{2(a - b)^3},
$$

$$
n = \frac{3a - b - 2}{2(a - b)^3}.
$$

Therefore, $m \ge 0$ and $n \ge 0$ iff in Fig. 1 the point (a, b) lies on the shaded area.

Fig. 1. Acceptable values of (m, n) lie on the shaded area

Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A3 Summer 2008

Lemma 2.2. For each $i, 1 \le i \le n$, there exists $p_i \in \mathcal{A}$ having a local maximum $p_i(a_i) = 1$ and a local minimum with value 0 at each a_j , $1 \le j \le n$, $j \ne i$.

Proof: For each *i* and *j*, $1 \le i, j \le n$, $j \ne i$, let $g_{ij} \in \mathcal{A}$ be a polynomial such that g_{ij} has a local maximum with value 1 at a_i and a local minimum with value 0 at a_i . Define:

$$
p_i = \prod_{\substack{j=1 \ j \neq i}}^n g_{ij}.
$$

Then p_i has the required properties.

Archive 1.1 Let $a = \frac{1}{2}$, $b = \frac{1}{2}$, then $g(x) = (16x^2 - 8x)^2$ which attains the following proof of the theorem 2.1, we will multiply each p_i by a suit h_i as defined below.
 A_r as defined below.
 A_r as de **Remark 2.2.** Note that the polynomials g and p_i 's in the lemma 2.1 and the lemma 2.2 might be quite large on $[-1, 1]$. For example, if $a = \frac{1}{4}$, $b = \frac{1}{2}$, then $g(x) = (16x^2 - 8x)^2$ which attains the value 576 at -1. Therefore, in the following proof of the theorem 2.1, we will multiply each p_i by a suitable power of the polynomial h_i as defined below.

For each $i, 1 \le i \le n$, let $h_i = 1 - A_i(x - a_i)^2$, where $A_i = (1 + |a_i|)^{-2}$. Note that h_i has a maximum value of 1 at a_i and $0 \le h_i(x) < 1$ for any $x \in [-1, 1]$, $x \ne a_i$.

The proof of Theorem 2.1. If $n = 2$ then $P_1 = (1 - x)/2$, $P_2 = (1 + x)/2$ have the required properties. So assume $n > 2$. For each non-negative integer *k* and each integer *i*, $1 \le i < n$, let $p_{i,k} = p_i h_i^k$, where p_i is as given in the lemma 2.2 and h_i as defined just before proof of the theorem. Define the polynomial q_k by

$$
q_k=\sum_{i=1}^{n-1}p_{i,k}.
$$

Note that $q_k(a_j) = 1$ for each integer *j*, $1 \le j < n$.

Claim. If $k = k_0$ is sufficiently large, then q_{k_0} has a relative maximum with value 1 at each a_j .

Proof of the claim: We have $p'_i(a_j) = 0$, $p_i(a_j) = \delta_{ij}$ for all $1 \le i, j \le n$, and $h'_i(a_i) = 0$, for all $1 \le i \le n$. Therefore, $q'_{k}(a_{j}) = 0$ for each $1 \leq j \leq n$. Calculating $q''_{k}(a_{j})$, we obtain

$$
q''_k(a_j) = \sum_{i=1}^{n-1} p''_i(a_j) h_i^k(a_j) + k h''_j(a_j).
$$

But $0 \le h_i(a_j) \le 1$ and $h''_j(a_j) < 0$ for each $1 \le i, j \le n$. So if $k = k_0$ is sufficiently large, then $q''_k(a_j) < 0$ for each $1 \le j \le n$. Thus the claim is proved.

Therefore, for each integer *j*, $1 \le j < n$, there exist real numbers u_j , v_j with $u_j < a_j < v_j$ such that $q_{k_0}(a_j) = 1$ is the maximum of $q_{k_0}|_{(u_j, v_j)}$.

For each $x \in [-1, 1]$ with $x \neq a_j$, $1 \leq j < n$, the sequence $\{q_k(x)\}\$ decreasingly converges to 0. On the other hand, the set

$$
A=[-1,1]\setminus\bigcup_{j=1}^{n-1}(u_j,v_j)
$$

is compact. Therefore, the sequence $\{q_k\}$ of polynomials converges uniformly to 0 on *A* ([5]). This means that there exists an integer $k_1 \ge k_0$ such that q_{k_1} is bounded above by 1 on *A* and hence on $[-1,1]$.

Now, for each *i*, $1 \le i < n$, let $P_i = p_{i,k}$. Then $P_i(a_i) = \delta_{ii}$ for each *i*, *j* with $1 \le i < n$ and $1 \leq j \leq n$. Define P_n by:

$$
P_n = 1 - q_{k_1} = 1 - \sum_{i=1}^{n-1} P_i.
$$

Thus ${P_i}_{1 \leq i \leq n}$ is a required set of polynomials.

Example 2.1. Let $n = 3$, $a_1 = -1$, $a_2 = 1/2$, and $a_3 = 1$. Then we find the polynomials $p_1 = g_{12}g_{13}$, $p_3 = g_{31}g_{32}$ which satisfy the properties stated in the lemma 2.2. Moreover, we can use the remark 2.1 so that each of g_{12}, g_{13}, g_{31} , and g_{32} has degree 3. In other words,

$$
p_1 = g_{12}g_{13} = \frac{1}{27}(2x-1)^2(7+4x).\frac{1}{4}(x-1)^2(2+x),
$$

$$
p_3 = g_{31}g_{32} = \frac{1}{4}(x+1)^2(2-x).(2x-1)^2(5-4x).
$$

Furthermore,

$$
h_1 = 1 - \frac{1}{4} (x + 1)^2
$$

$$
h_3 = 1 - \frac{1}{4} (x - 1)^2
$$

Then the least non-negative integer *k* for which we have $p_1 h_1^k + p_3 h_3^k \le 1$ on $[-1, 1]$ is 4 (see Figs. 2 and 3).

Fig. 3. The graph of $p_1 h_1^4 + p_3 h_3^4$ $3^{\prime\prime}3$ $p_1 h_1^4 + p_3 h$

Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A3 Summer 2008

Positive lagrange polynomials

Therefore, if we let $P_1 = p_1 h_1^4$, $P_3 = p_3 h_3^4$, and $P_2 = 1 - P_1 - P_3$, then $\{P_1, P_2, P_3\}$ is a set of PL polynomials corresponding to $(-1, 1/2, 1)$.

Note that corresponding to some given $(a_1 = -1, a_2, \dots, a_n = 1)$, it might be possible to find a set of PL polynomials with degrees less than those of the polynomials found in the theorem 2.1. For example, corresponding to $(-1, 0, 1)$ we had a set of PL polynomials in section 1 with the degrees 2 and 3. However, if we try by using the theorem 2.1 to find a set $\{P_i\}$ of PL polynomials, then the degrees of these polynomials would be at least 6.

Archives and the example in the state in the state set (11) [1/1/26]
 Archive of the authors as how to make a unique choice of such a set of PL poly
 Archive of SID Archives and useful comments.
 Archives and usef Remark 2.3. The proof of theorem 2.1 implies that there are infinitely many sets of PL polynomials corresponding to a given (a_1, \ldots, a_n) . It is possible to find a kind of minimal set: we choose the least nonnegative integer *d* so that we have $deg(P_i) = d$, for all *i*, $1 \le i \le n$. However, as the polynomials p_i and h_i , for example, are not unique, there exist more than one such set ${P_i}_{i \in \{r\}}$ of polynomials. It is an open problem to the authors as how to make a unique choice of such a set of PL polynomials in some reasonable way.

*Acknowledgements***-**The authors would like to thank Prof. B. Yousefi for his suggestions and the referees for corrections and useful comments.

REFERENCES

- 1. Polya, G. & Szego, G. (1976). *Problems and Theorems in Analysis II.* New York, Springer Verlag.
- 2. Powers, V. & Reznick, B. (2000). Polynomials that are positive on an interval. *Trans. Amer. Math. Soc*., *352*(10), 4677-4692.
- 3. Schmudgen, K. (1991). The K-moment problem for compact semi-algebraic sets. *Math. Ann*. *289*, 203-206.
- 4. Hoffman, K. & Kunze, R. (1961). *Linear Algebra*, Prentice-Hall, Inc., Englewood Cliffs, N. J.
- 5. Rudin, W. (1976). *Principles of Mathematical Analysis*. 3rd. edition, McGraw Hill Inc.

195