POSITIVE LAGRANGE POLYNOMIALS*

S. M. M. ZEKAVAT** AND SH. KHOSHDEL

Department of Mathematics, School of Science, Shiraz University, Shiraz, I. R. of Iran Emails: zekavat@susc.ac.ir, khoshdel@shirazu.ac.ir

Abstract – In this paper we demonstrate the existence of a set of polynomials P_i , $1 \le i \le n$, which are positive semi-definite on an interval [a,b] and satisfy, partially, the conditions of polynomials found in the Lagrange interpolation process. In other words, if $a = a_1 < \cdots < a_n = b$ is a given finite sequence of real numbers, then $P_i(a_i) = \delta_{ij}(\delta_{ij})$ is the Kronecker delta symbol); moreover, the sum of P_i 's is identically 1.

Keywords - Positive polynomials, Lagrange polynomials

1. INTRODUCTION

All polynomials referred to in this paper belong to $\mathbb{R}[x]$. Let S be a subset of \mathbb{R} and P, a non-identically zero polynomial. P is said to be positive semi-definite (positive or "psd" for short) on S if $P(x) \ge 0$ for all x in S. It is called positive definite ("pd" for short) on S if P(x) > 0 on S. Representations of psd and pd polynomials when S is an interval exist in literature, see for example [1-3]. However, as we are interested in this paper to consider positive polynomials on an interval [a, b] from a different angle, there is no need for any such representations here. Suppose that the real numbers $a = a_1 < \cdots < a_n = b$ belong to the interval [a, b]. The polynomials

$$P_i = \prod_{j \neq i} (x - a_j) / \prod_{j \neq i} (a_i - a_j),$$

where $1 \le i \le n$ is an integer, used in the Lagrange interpolation formula [4], satisfying the following conditions

$$(I) P_i(a_j) = \delta_{ij}, \qquad 1 \le i, j \le n,$$

(II) P_i is of degree n-1 for each i.

Actually, the set of polynomials $\{P_i\}$ is uniquely determined by the conditions (I) and (II) above. If n > 2, then the polynomials P_i are not psd on [a,b]. Therefore, if we try to impose the condition of being psd on [a,b], we have to somehow modify (I) and (II). As these conditions imply (II') below, we replace (II) by

$$(II')\sum_{i=1}^n P_i=1.$$

Using the transformation $x \mapsto (b-a)x/2 + (b+a)/2$, we may just focus on [-1,1] instead of working on [a,b]. Denote by \mathbb{A} the set of psd polynomials on [-1,1]. Suppose that $-1 = a_1 < a_2 < \cdots < a_n = 1$ and $\{P_i\}$, $P_i \in \mathbb{A}$, $1 \le i \le n$ is a set of polynomials. Then we say $\{P_i\}$ is a set of positive Lagrange (PL for short) polynomials corresponding to (a_1,a_2,\ldots,a_n) if $\{P_i\}$ satisfies (I) and (II'). For example,

^{*}Received by the editor April 16, 2007 and in final revised form July 7, 2008

^{**}Corresponding author

 $P_1 = x^2(1-x)/2$, $P_2 = 1-x^2$, and $P_3 = x^2(1+x)/2$ form a set of PL polynomials corresponding to (-1, 0, 1).

2. EXISTENCE OF POSITIVE LAGRANGE POLYNOMIALS

As in section 1, let $-1 = a_1 < \cdots < a_n = 1$ be a finite sequence of real numbers. Our purpose is to prove the following:

Theorem 2.1. Corresponding to $(a_1, ..., a_n)$ there exists at least one set of PL polynomials.

In order to prove the theorem we need two lemmas and some notation.

Lemma 2.1. Let $a,b \in [-1,1]$, $a \ne b$. Then there exists a polynomial $g \in A$ which attains a local maximum with value 1 at a and has a local minimum with value 0 at b.

Proof: g must be of the form $g(x) = (x-b)^2 g_1(x)$, where $g_1 \in \mathcal{A}$ is a non-constant polynomial. Now it is possible to find constants c and d such that $g(x) = c(x-b)^2 (x-d)^2$ satisfies the desired properties. A direct calculation shows that $c = (a-b)^{-4}$ and d = 2a-b, that is,

$$g(x) = ((x-a)^2 - (b-a)^2)^2 / (b-a)^4$$

Remark 2.1. In the above lemma the obtained polynomial was of degree 4. In some cases we can find a polynomial g such that it has the stated properties and deg(g) equals 3. In fact, if deg(g) = 3 then we write g as:

$$g(x) = (x-b)^{2} [m(1-x) + n(1+x)].$$

As $g \in \mathcal{A}$, we have $g(1) \ge 0$ and $g(-1) \ge 0$. So $g \in \mathcal{A}$ iff $m, n \ge 0$. Imposing the conditions at a, we obtain:

$$m = \frac{3a - b + 2}{2(a - b)^3},$$
$$n = \frac{3a - b - 2}{2(a - b)^3}.$$

Therefore, $m \ge 0$ and $n \ge 0$ iff in Fig. 1 the point (a, b) lies on the shaded area.

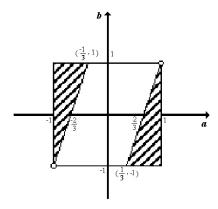


Fig. 1. Acceptable values of (m, n) lie on the shaded area

Lemma 2.2. For each $i, 1 \le i \le n$, there exists $p_i \in A$ having a local maximum $p_i(a_i) = 1$ and a local minimum with value 0 at each a_j , $1 \le j \le n$, $j \ne i$.

Proof: For each i and j, $1 \le i, j \le n$, $j \ne i$, let $g_{ij} \in A$ be a polynomial such that g_{ij} has a local maximum with value 1 at a_i and a local minimum with value 0 at a_i . Define:

$$p_i = \prod_{\substack{j=1\\j\neq i}}^n g_{ij}.$$

Then p_i has the required properties.

Remark 2.2. Note that the polynomials g and p_i 's in the lemma 2.1 and the lemma 2.2 might be quite large on [-1,1]. For example, if $a=\frac{1}{4}$, $b=\frac{1}{2}$, then $g(x)=(16x^2-8x)^2$ which attains the value 576 at -1. Therefore, in the following proof of the theorem 2.1, we will multiply each p_i by a suitable power of the polynomial h_i as defined below.

For each $i, 1 \le i \le n$, let $h_i = 1 - A_i(x - a_i)^2$, where $A_i = (1 + |a_i|)^{-2}$. Note that h_i has a maximum value of 1 at a_i and $0 \le h_i(x) < 1$ for any $x \in [-1, 1]$, $x \ne a_i$.

The proof of Theorem 2.1. If n=2 then $P_1=(1-x)/2$, $P_2=(1+x)/2$ have the required properties. So assume n > 2. For each non-negative integer k and each integer i, $1 \le i < n$, let $p_{i,k} = p_i h_i^k$, where p_i is as given in the lemma 2.2 and h_i as defined just before proof of the theorem. Define the polynomial q_k by

$$q_k = \sum_{i=1}^{n-1} p_{i,k}.$$

Note that $q_k(a_j) = 1$ for each integer j, $1 \le j < n$.

Claim. If $k = k_0$ is sufficiently large, then q_{k_0} has a relative maximum with value 1 at each a_j .

Proof of the claim: We have $p_i'(a_j) = 0$, $p_i(a_j) = \delta_{ij}$ for all $1 \le i, j \le n$, and $h_i'(a_i) = 0$, for all $1 \le i \le n$. Therefore, $q'_k(a_i) = 0$ for each $1 \le j \le n$. Calculating $q''_k(a_j)$, we obtain

$$q''_k(a_j) = \sum_{i=1}^{n-1} p''_i(a_j) h_i^k(a_j) + k h''_j(a_j).$$

But $0 \le h_i(a_j) \le 1$ and $h_j''(a_j) < 0$ for each $1 \le i, j \le n$. So if $k = k_0$ is sufficiently large, then $q_k''(a_j) < 0$ for each $1 \le j \le n$. Thus the claim is proved.

Therefore, for each integer j, $1 \le j < n$, there exist real numbers u_j , v_j with $u_j < a_j < v_j$ such that

 $q_{k_0}(a_j) = 1$ is the maximum of $q_{k_0}|_{(u_j,v_j)}$. For each $x \in [-1,1]$ with $x \neq a_j$, $1 \leq j < n$, the sequence $\{q_k(x)\}$ decreasingly converges to 0. On the other hand, the set

$$A = [-1, 1] \setminus \bigcup_{i=1}^{n-1} (u_i, v_j)$$

is compact. Therefore, the sequence $\{q_k\}$ of polynomials converges uniformly to 0 on A ([5]). This means that there exists an integer $k_1 \ge k_0$ such that q_{k_1} is bounded above by 1 on A and hence on [-1,1].

Now, for each i, $1 \le i < n$, let $P_i = p_{i,k_1}$. Then $P_i(a_j) = \delta_{ij}$ for each i, j with $1 \le i < n$ and $1 \le j \le n$. Define P_n by:

$$P_n = 1 - q_{k_1} = 1 - \sum_{i=1}^{n-1} P_i.$$

Thus $\{P_i\}_{1 \le i \le n}$ is a required set of polynomials.

Example 2.1. Let n = 3, $a_1 = -1$, $a_2 = 1/2$, and $a_3 = 1$. Then we find the polynomials $p_1 = g_{12}g_{13}$, $p_3 = g_{31}g_{32}$ which satisfy the properties stated in the lemma 2.2. Moreover, we can use the remark 2.1 so that each of g_{12} , g_{13} , g_{31} , and g_{32} has degree 3. In other words,

$$p_1 = g_{12}g_{13} = \frac{1}{27}(2x-1)^2(7+4x) \cdot \frac{1}{4}(x-1)^2(2+x),$$

$$p_3 = g_{31}g_{32} = \frac{1}{4}(x+1)^2(2-x) \cdot (2x-1)^2(5-4x).$$

Furthermore,

$$h_1 = 1 - \frac{1}{4}(x+1)^2$$
,
 $h_3 = 1 - \frac{1}{4}(x-1)^2$.

Then the least non-negative integer k for which we have $p_1h_1^k + p_3h_3^k \le 1$ on [-1,1] is 4 (see Figs. 2 and 3).

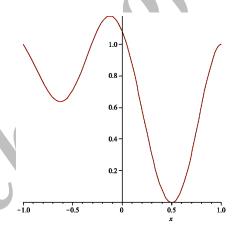


Fig. 2. The graph of $p_1 h_1^3 + p_3 h_3^3$

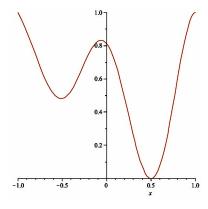


Fig. 3. The graph of $p_1 h_1^4 + p_3 h_3^4$

Positive lagrange polynomials Therefore, if we let $P_1 = p_1 h_1^4$, $P_3 = p_3 h_3^4$, and $P_2 = 1 - P_1 - P_3$, then $\{P_1, P_2, P_3\}$ is a set of PL polynomials corresponding to (-1, 1/2, 1).

Note that corresponding to some given $(a_1 = -1, a_2, ..., a_n = 1)$, it might be possible to find a set of PL polynomials with degrees less than those of the polynomials found in the theorem 2.1. For example, corresponding to (-1,0,1) we had a set of PL polynomials in section 1 with the degrees 2 and 3. However, if we try by using the theorem 2.1 to find a set $\{P_i\}$ of PL polynomials, then the degrees of these polynomials would be at least 6.

Remark 2.3. The proof of theorem 2.1 implies that there are infinitely many sets of PL polynomials corresponding to a given (a_1, \dots, a_n) . It is possible to find a kind of minimal set: we choose the least nonnegative integer d so that we have $\deg(P_i) = d$, for all i, $1 \le i \le n$. However, as the polynomials p_i and h_i , for example, are not unique, there exist more than one such set $\{P_i\}_{1 \leq i \leq n}$ of polynomials. It is an open problem to the authors as how to make a unique choice of such a set of PL polynomials in some reasonable way.

Acknowledgements-The authors would like to thank Prof. B. Yousefi for his suggestions and the referees for corrections and useful comments.

REFERENCES

- 1. Polya, G. & Szego, G. (1976). Problems and Theorems in Analysis II. New York, Springer Verlag.
- 2. Powers, V. & Reznick, B. (2000). Polynomials that are positive on an interval. Trans. Amer. Math. Soc., *352*(10), 4677-4692.
- 3. Schmudgen, K. (1991). The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203-206.
- 4. Hoffman, K. & Kunze, R. (1961). Linear Algebra, Prentice-Hall, Inc., Englewood Cliffs, N. J.
- 5. Rudin, W. (1976). Principles of Mathematical Analysis. 3rd. edition, McGraw Hill Inc.

