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Abstract – In this paper we consider a strongly regular relation  on hypermodules so that the quotient is a 
module (with abelian group) over a fundamental commutative ring. Also, we state necessary and sufficient 
conditions so that the relation  is transitive, and finally we prove that  is transitive on hypermodules. 
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1. INTRODUCTION 

 
A hypergroupoid  ,H  is a non-empty set H equipped with a hyperoperation   defined on H, that is a 
mapping of HH   into the family of non-empty subsets of H [1]. If   HHyx , , its image under   is 
denoted by yx  . If A , B  are non-empty subsets of H, then BA  is given by  ByAxyxBA  ,| . 

Ax   is used for   Ax   and xA   for  xA . A hypergroupoid  ,H  is called a hypergroup in the sense 
of Marty if for all Hzyx ,,  the following two conditions hold: (i)     zyxzyx  , (ii) 

HxHHx  . The second condition is called the reproduction axiom, meaning that for any Hyx ,  
there exist Hvu ,  such that uxy   and xvy  . An exhaustive review updated to 1992 of hypergroup 
theory appears in [2] also see [3-6]. A recent book [7] contains a wealth of applications. 

If H is a hypergroup and HH   is an equivalence relation, then for all pairs  BA,  of non-empty 
subsets of H we set BA  if and only if ba  for all Aa  and Bb . The relation   is said to be strongly 
regular to the right if yx  implies ayax    for all   3,, Hayx  . Analogously, we can define strongly 
regular to the left. Moreover,   is called strongly regular if it is strongly regular to the right and to the 
left. Let H be a hypergroup and   an equivalence relation on H. Let  a  be the equivalence class of a 
with respect to   and let   HaaH  |/  . A hyperoperation   is defined on /H  by 
          baxxba   | . If   is strongly regular then it readily follows that 
      baxxba  | . It is well known for   strongly regular that  ,/ H  is a group (see 

Theorem 31 in [2]), that is      cba    for all bac  . 
A hyperring is a multi-valued system  ,,R  which satisfies the ring-like axioms in the following 

way: 
(i)  ,R  is a hypergroup in the sense of Marty, 
(ii)  ,R  is a semi-hypergroup,  
(iii) The multiplication is distributive with respect to the hyperoperation  . 

The fundamental relation was introduced on hypergroups by Koskas [8], and then studied by Corsini 
[2]. The fundamental relation on a hyperring was introduced by Vougiouklis at the fourth AHA congress 
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(1990) [9], and studied by many authors, for example see [10-14]. The fundamental relation on a 
hyperring is defined as the smallest equivalence relation so that the quotient would be the (fundamental) 
ring. Note that the commutativity with respect to both sum and product in the fundamental ring are not 
assumed. In [15], Davvaz and Vougiouklis introduced a new strongly regular equivalence relation on a 
hyperring such that the set of quotients is an ordinary commutative ring. We recall the following definition 
from [15]. 
 
Definition 1.1. Let R be a hyperring. We define the relation  as follows: 

 
  n
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n SNkkNnyx   ,,,, 1   and     niSRxx
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i ki
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such that 
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The relation  is reflexive and symmetric. Let *  be the transitive closure of , then we have: 

 
Theorem 1.2. [15]. *  is a strongly regular relation both on  ,R  and  ,R , and the quotient */R  is a 
commutative ring. 
 

2.  -RELATION ON HYPERMODULES 
 
Let  ,,R  be a hyperring and  ,M  be a hypergroup. According to [14], M is said to be a left 
hypermodule over a hyperring R if there exists 

 
 MMR *:   ;   mama ,  

 
such that for all ba, R and Mmmm ,, 21  we have 
 1)   2121 mamamma  , 
 2)      mbmamba  , 
 3)    mbamba  . 
 
Let R be a hyperring and M be a hypermodule over R. We define the relation  on M as follows: 
 





n

i
imyxyx

1

, ; ii mm   or  
 











i ijn

j
i

k

k
ijki zxm

1 1

, 

 
Mmi  , Rxijk  , Mzi  . 

 
The fundamental relation *  on M can be defined as the smallest equivalence relation on M such that 

the quotient */M  be a module over the corresponding fundamental ring such that */M  as a group is not 
abelian, see [14]. Moreover, the fundamental ring is not commutative with respect to both sum and 
product. Now, we would like the fundamental module to be an abelian group and the fundamental ring to 
be commutative with respect to both sum and product. 
 
Definition 2.1. Let R be a hyperring and M be a hypermodule over R. We define the relation  as follows: 
 

    ,,,,,,,, 211
n

nn NkkkmmNnyx    

www.SID.ir



Arc
hi

ve
 o

f S
ID

Transitivity of  -relation on hypermodules 
 

Summer 2008                                                           Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A3 

199

 
  ,,,,,,, 21 iji

i

i kijni

k

ikiin SSRxxxS     
 

such that 
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j
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1
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ij

ij

k

k
kijij xA

1
 . 

 
The relation  is reflexive and symmetric. Let *  be the transitive closure of . Then *  is a strongly 

regular relation both on the group  ,M  and M as an R - hypermodule. Also, the (abelian group) */M  is 
an */R - module, where */R  is a commutative ring and the relation *  is the smallest equivalence 
relation such that the (abelian) quotient */M  is an */R - module [16]. 

If M is an R-hypermodule, then we set 
 

  Mmmm  |,0  
 

and for every integer 1n , n  is the relation defined as follows: 
 





n

i
in mxyx

1

 ,    



n

i
imy

1
 ,   nS . 

 
Obviously, for every 1n  the relation n  is symmetric, and the relation nn  0   is reflexive and 
symmetric. If M is a hypermodule over a hyperring R and 1n  then 1 nn   [16]. 
 

3. TRANSITIVITY CONDITION OF  
 
In the following im  is the notation that has been defined in Definition 2.1. 
 
Definition 3.1. Let M be an R-hypermodule and H be a non-empty subset of M. We say that H is a -part 
of M if for every Nn , for every nS  and for every  nmm  ,,1   
 

  HmHm
n

i
i

n

i
i  

 11
 , 

 
H is said to be a complete part of M if  is identity. 

We consider the following notations: 
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   uPuP nn  

 
For every Mu ,    vuMvuP  | . 
 
Theorem 3.2. [16]. Let M be an R-hypermodule, then the following conditions are equivalent: 
1)  is transitive, 
2) for every Mu ,    uPu  * , 
3) for every Mu ,  uP  is -part of M. 
 
Definition 3.3. Let M be an R-hypermodule. Then for every   2, Mba   and for every pair  BA, of non-
empty subsets of M, we set: 
 

 nxmMxnm  |/ ,    xmnMxnm  |\  
 

nmBA
BnAm

//
, 

  ,   nmBA
BnAm

\\
, 

   

 
Moreover, let DDD ,, 21  denote the sets 
 

 
   xyyxD

Myx



/

2,
1  , 

 
   xyyxD

Myx



\

2,
2  , 21 DDD   

 
Let M be an R-hypermodule and B be a non empty subset of M. We say B is invariant if for every 

Mx , xBBx  . Also, B is said to be invertible to the left if for every   2, Myx  , the implication 
xBy   implies yBx  . 

 
Lemma 3.4. Let M be an R-hypermodule and the derived R-hypermodule  MD  be the intersection of all 
subhypermodules of M that are complete parts and contain D. Then 
1)  MD  is a complete part of M 
2)  MD  is an invariant subset of M. 
 
Proof: 1) It is clear. 
2) Since  MD  is an invariant subset of M as a hypergroup [5], and  MD  is a hypermodule, then  MD  
is an invariant subset of M as a hypermodule.  

Let M and N be R-hypermodules. A function NMf :  is called an R-homomorphism, if for every  
  2, Myx   and Rr  
 

     yfxfyxf   and    xfrxrf , . 
 

If H is an R-module and HMf :  is an R-homomorphism, we let   HmfMmf 0|ker  . If 
*/: MMM   is the canonical R-homomorphism, then Mker  is called the heart of M and it will be 

denoted by M . 
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Lemma 3.5. Let M be an R-hypermodule and H be a complete part of M. Then H is an invertible subset of 
M. 
 
Proof: We know  HM  is a submodule of */H . For every   2, Myx  , if xHy   there exists Ha  
such that xay  , then 
 

            yaxxay HMMMMM  1  
 

       xHyHx MMMM   
 

Also, yH   is a complete part of M. Therefore   yax MM  1  and H is invertible.  
 
Lemma 3.6. Let CD  2  be the intersection of all R-subhypermodules of M that are complete parts and 
contain 2D . Then   CDMD  2 . 
 
Proof: Every complete part of M is invertible by Lemma 3.5 and also, for every invertible submodule H of 
M we have HD 1  if and only if HD 2 . Since D, CD  2  and CD  1  are R-hypermodules, we have 
  CDMD  2 .  

 
Lemma 3.7. Let H be an R-subhypermodule of M and HD  . Then the following relation 
 

  HhhxyyxRMyx H  ,,, 2  
 

is a strongly regular equivalence relation on M and    HDxxRH  . 
 
Proof: Straightforward.  
 
Theorem 3.8. Let */: MMM   be the canonical projection. Then for every R -hypermodule M we 
have    */

1 0 MMMD  . 
 
Proof: If 2Da , then by definition a pair   2, Myx   exists such that    xyyxa  \ . So there exist 

yxu   and xyv   such that vua \ . Now, vua \  implies auv  , therefore      auv ***   . 
Moreover, yxu   and xyv   imply vu 2 , thus    vu **    and   */

* 0 
M

a  . Hence we have 
 */

1 0 MMa   and  */

1

2 0 MMD  . 
Moreover, since *  is strongly regular [16],  */

1 0 MM

  is a complete part subhypermodule of M 
whence  */

1

2 0 MMCD  . 
Conversely,  MDM /  is an R-subhypermodule of M (with commutative hypergroup [5]) and  MD  

is an invariant R-hypermodule and complete part of M. Hence     MDMMDxMRM M ///   by 
Lemma 3.7 and Theorem 2.4 of [16], so we have MR* . 

Finally, let  MD , then for every  */

1 0 MMx   we have    xMMM  */
0  , since 

   */

1 0 
MMMD  . So we obtain  *x , whence MxR  and      MDMDRx M   . Thus 

   MD
MM 

*/

1 0  .  
 
Lemma 3.9. Let M be an R-hypermodule,  MB *  and */: MMM   be a canonical projection. Then 
 

  BBB MMMM  1 . 
 

Proof: Let        bxBbMxB MMMM  ,|1 . Then for every   Bx MM  1  there exists 
Bb such that    bx MM  . Since M is an R-hypermodule, there exists Mu such that ubx  . Now 

www.SID.ir



Arc
hi

ve
 o

f S
ID

S. M. Anvariyeh / et al. 
 

Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A3                                                           Summer 2008 

202

          MMMMMM uububxb  . Hence MBx  , and therefore    MMM BB 1 . 
Conversely, if MBz  , then    Bz MM   and   BB MMM  1 . Therefore 

  BB MMM  1 .  
Lemma 3.10. For every non empty subset H of an R-hypermodule M we have 
1)       MDHHMDHM 1 . 
2) If H is a -part of M, then    HHMM 1 . 
 
Proof: 1) For every   HMDx  there exists a pair     HMDba , such that bax  , 
so          bbbax MMMMMM  */

0  .Therefore      Hbx MMMM   11 . 
Conversely, for every   Hx MM  1 , an element Hb  exists such that    bx MM  . By 

reproducibility Ma  exists such that bax  , so        baxb MMMM  , hence   */
0 MM a   

and    MDa
MM  

*/

1 0  . Therefore   HMDbax  . This proves that      HMDMMM 1 . In the 
same way, it is possible to prove that     MDHMMM 1 . 

2) It is obvious that   HH MM  1 . Moreover, if   Hx MM  1 , then there exists an 
element Hb such that    bx MM  . Hence     Hbxx  **   and    HHMM 1 .  

 
Lemma 3.11. Let M be an R-hypermodule. Then M  is the intersection of all R- subhypermodules of M 
that are complete parts. 
 
Proof: By Lemma 3.9 we have MMM    as a hypermodule. Let iMA  , where every iM  is a 
complete part subhypermodule of M. Then AA M  . Also, by Lemma 3.5, A is an invertible 
subhypermodule of M, hence  
 

  AaAxxAaxbaAbAxa M  :,,  . 

 

Therefore AM  .  
 

For every element M of an R-hypermodule M we set: 
 

     






  



n

i
in mAmmNnAmMAmP

1
1

* ,,,,,|  ; 

 
    AmM mPA * . 

 
In the following, for an R-hypermodule M let MmR   for all Mm  and for all Rr , rmmr  . 

 
Lemma 3.12. For every Mu ,  uM *  is a complete part of R-hypermodule M. 
 
Proof: Let  nmm  ,,1   and   



uMm
n

i
i

*

1

 . Then 
 

    AmauPAuMma
n

i
i

n

i
i  




1

*

1

: . 

 
For every Mmi  , there exists Rri   such that urm ii  . On the other hand, raaru   where Rr . 
Hence 
 

   
    




















n

i
i

n

j

k

k
ijk

n

i
i

n

j

k

k
ijk

n

i
i urxmxm

i iji ij

1 1 11 1 11
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. 

 
So     

  








n

i
i

n

j

k

k
ijk uPArrx

i ij

1 1 1

 and  uMm
n

i
i

*

1




. Therefore  uM *  is a complete part of M.  
 

Let A be a non empty subset of R-hypermodule M. The intersection of all complete parts of M which 
contain A is called the complete closure of A and it will be denoted by  AC . 
 
Corollary 3.13. If Mu  , then   MuM * . 
 
Proof: We know,    uMuCM

* . Also, M  is a complete part, so   MuM * . Therefore   MuM * .  
 
Lemma 3.14. For every element u in the heart M , we have    uPMD  . 
 

Proof: Let   0
1




uPz
n

i
i  , where  

 










i ijm

j
i

k

k
ijki zxz

1 1

, Ryijk   and Mzi  . If   uPzx
n

i
i 




1

, we have 

ux . Thus there exist Nn   nmm  ,,1   and nS such that 



n

i
imu

1

 and  



n

i
imx

1
 . Also, there exist 

Rrri ,  such that xru   and urz ii  . Then 
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m
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k
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m

i
i

m

j
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k
ijk ruryrzyrxxru

i iji ij
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i
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k
ijk

m

i
i

m

j

k

k
ijk mmrryurry

i iji ij

11 11 11 1 1

, 

 
whence    uTmm nn  ,,1  . 

Moreover, for every nS , we have 
 

               



m

i
ii

n

i
ii

m

i
ii

n

i
i xrrBurBzBz

1111
  

 

             



n

i
i

n

i
i

m

i
ii

m

i
ii mmrrBxrrB

1111
 , 

 
where 
 

 



i

i

m

j
jii AB

1
 ,  




ij
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k

k
kijij yA

1
  

 
with 
 

ini S  and 
ijkij S . 
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Since    uPm n

n

i
i 

1
 , it follows that    uPz

m

i
i  

1

 and  uP  is a -part of M. 

Finally, we have      uPMDuPu M     and      uPMDu  * , since  MD  and  uP  are 

-parts of M. By Theorem 3.8, if  MDx , then    ux MMM  */
0  . Therefore      uPuxx   ** , 

whence    uPMD  . 

Conversely, if  uPx  , we have ux , hence    MDux  * , that is    MDuP  .  
 
Lemma 3.15. The relation  is transitive. 
 
Proof: Let M be an R-hypermodule and */: MMM   be a canonical projection and yx * . If yx , then 
there exists  nmm  ,,1   such that 
 





n

i
imyx

1

, ; ii mm   or i

n

j

k

k
ijki zxm

i ij

 
 











1 1

; 

 
Mmi  , Rxijk  , Mzi  . 

 
We know    xx MMM  1 . On the other hand,    yx MM  . Then   Mxyx ,  and so there exists 
  2, Mwv   such that wxx  , vxy  . Also,  uM *  is a complete part of M and by Corollary 3.13, we 
have   MwM * , hence there exist  wPA , Nk  and  kmm  ,,1   such that Av , 




k

i
imA

1

. Therefore 
  




k

i
imwv

1

, , hence wv  and wxvx   . Therefore yx  and *  .  
 
Theorem 3.16.  is a transitive relation on hypermodules. 
 

Proof: By Lemma 3.10 and Lemma 3.14, if yx *  then       uPyMDyyx MM  1 . Thus there 

exist Nn ,  nmm  ,,1   and nS  such that 



n

i
imu

1

 and  



n

i
imyx

1
 . Now by reproducibility of M 

and M , there are Mv  and Mw   such that uvy   and uwu  . Moreover, since   Mwv ,  and  
is a transitive relation, there exists  kmm  ,,1   such that   




k

i
imwv

1

, . It follows that 
 





n

i
i

k

i
i mmwvuwwvuwvuvy

11

 

 
and 
 

     


n

i
i

n

i
i muvmyx

11
      




n

i
i

k

i
i

n

i
i mmwvmuwv

111
 . 

 
Therefore xy  and *  .  
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