Iranian Journal of Science & Technology, Transaction A, Vol. 32, No. A3
Printed in the Islamic Republic of Iran, 2008
© Shiraz University

TRANSITIVITY OF 6-RELATION ON HYPERMODULES*

S. M. ANVARIYEH"", S. MIRVAKILI?> AND B. DAVVAZ'

1Depeu’tment of Mathematics, Yazd University, Yazd, I. R. of Iran
2Department of Mathematics, Payame-Noor University, Yazd, I. R. of Iran
Emails: anvariyeh@yazduni.ac.ir, saced_mirvakili@yahoo.com & davvaz@yazduni.ac.ir

Abstract — In this paper we consider a strongly regular relation & on hypermodules so that the quotient is a
module (with abelian group) over a fundamental commutative ring. Also, we state necessary and sufficient
conditions so that the relation &is transitive, and finally we prove that @is transitive on hypermodules.
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1. INTRODUCTION

A hypergroupoid (H,+) is a non-empty set H equipped with a hyperoperation + defined on H, that is a
mapping of HxH into the family of non-empty subsets of H [1]. If (x,y)e HxH , its image under + is
denoted by x+y.If 4,B are non-empty subsets of #, then. A+ B is givenby 4+ B=U{x+y|xe 4,y€ B}.
x+ A4 is used for {x}+4 and 4+x for 4+{x}. A hypergroupoid (H,+) is called a hypergroup in the sense
of Marty if for all x,y,ze H the following two conditions hold: (i) x+(y+z)=(x+y)+z, (ii)
x+H =H+x=H . The second condition is called the reproduction axiom, meaning that for any x,ye H
there exist u,ve H such that ye x+u and ye v+x. An exhaustive review updated to 1992 of hypergroup
theory appears in [2] also see [3-6]. A recent:book [7] contains a wealth of applications.

If H is a hypergroup and p c H xH.is an equivalence relation, then for all pairs (4,B) of non-empty
subsets of H we set 4pB if and only if aob for all ae 4 and be B. The relation p is said to be strongly
regular to the right if xpy implies.x+a p y+a for all (x,y,a)e H’. Analogously, we can define strongly
regular to the left. Moreover, p is called strongly regular if it is strongly regular to the right and to the
left. Let H be a hypergroup and-» an equivalence relation on H. Let p(a) be the equivalence class of a
with respect to_ p and. let H/p={p(a)lac H}. A hyperoperation ® is defined on H/p by
p(a)® p(b)={p(x)| xe pla)+ p(0)}. If p is strongly regular then it readily follows that
0(a)® p(b)={p(x)|x€ a+b}. 1t is well known for p strongly regular that < H/p,®> is a group (see
Theorem 31 in [2]), that is p(a)® p(b)= p(c) for all ce a+b.

A hyperring is a multi-valued system (R,+,) which satisfies the ring-like axioms in the following
way:

(i) (R,+) is a hypergroup in the sense of Marty,
(i) (R.,) is a semi-hypergroup,
(ii1) The multiplication is distributive with respect to the hyperoperation + .

The fundamental relation was introduced on hypergroups by Koskas [8], and then studied by Corsini
[2]. The fundamental relation on a hyperring was introduced by Vougiouklis at the fourth AHA congress
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(1990) [9], and studied by many authors, for example see [10-14]. The fundamental relation on a
hyperring is defined as the smallest equivalence relation so that the quotient would be the (fundamental)
ring. Note that the commutativity with respect to both sum and product in the fundamental ring are not
assumed. In [15], Davvaz and Vougiouklis introduced a new strongly regular equivalence relation on a
hyperring such that the set of quotients is an ordinary commutative ring. We recall the following definition
from [15].

Definition 1.1. Let R be a hyperring. We define the relation « as follows:

xay & 3ne N, Ak,-k )e N, Joe S, and [x,,--x, Je R*, Jo,€ S, (i=1,--n)]

such that
X€ Z(ﬁxjj and ye iAﬂ(i)
=] i=l

ki
where 4, = me(/) .
Jj=1

The relation ¢ is reflexive and symmetric. Let o be the transitive closure of ¢, then we have:

Theorem 1.2. [15]. &' is a strongly regular relation both on (R,+) and (R.,), and the quotient R/’ is a
commutative ring.

2. 6-RELATION ON HYPERMODULES

Let (R+,) be a hyperring and (M,+) be a hypergroup. According to [14], M is said to be a left
hypermodule over a hyperring R if there exists

“RXM=p (M) ; (a,m)>a-m

such that for all a,b€ R and m;,m,,me M we have
D) a-(m+m)=a-m+a-my,
2) (@a+b)-m=(a-m)+(b-m),
3) (a-b)-m=a-(b-m):

Let R be a hyperring and.M be a hypermodule over R. We define the relation € on M as follows:

n ", Ky
xX& © x, Y€ Zm', m, =m, or m;:Z(Hxlﬂ,Jzi ,
i=1 k=1

T\
meM, x, ER, zeM.

The fundamental relation £ on M can be defined as the smallest equivalence relation on M such that
the quotient M /&" be a module over the corresponding fundamental ring such that M /" as a group is not
abelian, see [14]. Moreover, the fundamental ring is not commutative with respect to both sum and
product. Now, we would like the fundamental module to be an abelian group and the fundamental ring to
be commutative with respect to both sum and product.

Definition 2.1. Let R be a hyperring and M be a hypermodule over R. We define the relation £ as follows:

x0y & Ine N, I(m|,,m.), Ik, ,k,, - ,k,)e N",
Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A3 Summer 2008



Transitivity of 0-relation on hypermodules 199

3oeS,, Ax,xmox, Je RE, Fo€S,, o, €5, ,
such that
n n ky
x€ Zm', m’ =m, or m'=Z(ijkjm
i=l Jj=1 \ k=1
and
ye D my,
i=1
where
my=my, if ml=m,
n, k;
’
My =B, ym,, if m =Z(H Xy Jm 5
=R
with
ki
_N A. = X..
B =2 4,0, i L jjoy (k) -
= =1

The relation @ is reflexive and symmetric. Let 6° be the transitive closure of &. Then 6" is a strongly
regular relation both on the group (M,+) and M as an.R - hypermodule. Also, the (abelian group) M /8" is
an R/a’ - module, where R/a" is a commutative'ring and the relation 6" is the smallest equivalence
relation such that the (abelian) quotient‘M /6" is an R/¢ - module [16].

If M is an R-hypermodule, then we set

6, ={(m,m)|me M}

and for every integer n>1, @, is the relation defined as follows:
x0y & xe Zm', ye Zm;(i), c€eS,.
i=1 i=1

Obviously, for every n>1 the relation 8, is symmetric, and the relation 6=U 6, is reflexive and
symmetric. If M is a hypermodule over a hyperring R and n>1 then 6, 9, [16].

3. TRANSITIVITY CONDITION OF @
In the following m/ is the notation that has been defined in Definition 2.1.

Definition 3.1. Let M be an R-hypermodule and H be a non-empty subset of M. We say that H is a G-part
of M if for every ne N, for every o€ S, and for every (m/,---,m’)

meﬂH¢¢:Zm;([)gH,

H is said to be a complete part of M if ois identity.
We consider the following notations:
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[x,z] ’,Zlk ={(xl.l,---,xl.k), (Z],"',Zn)|xl.j €ER,z,eM, (i =1,---,n)}

'7,

n k’/
T(u)={(ml’,,m')|ue Zm’, m =m, or m:=Z(HxMle}

i=1 Jj=1 \_ k=l

R(u):Un{Zn:m;(l) | (mll’”.’m/:)e Zy(u)’o-e Sn}

P,(u)=U,P,(u)

For every ue M, P(u)={ve M |utv}.

Theorem 3.2. [16]. Let M be an R-hypermodule, then the following conditions are equivalent:
1) @is transitive,

2) for every ue M , 6 (u)=P,(u),

3) for every ue M , P,(u) is &-part of M.

Definition 3.3. Let M be an R-hypermodule. Then for every (a,h)e M? and for every pair (4,B)of non-
empty subsets of M, we set:

m/nz{xEM|m€ x+n}, m\n={xeM|ne m+x}

A/B= U m/n, A\B= U m\n

me A,neB meA.neB
Moreover, let D,,D,, D denote the sets

D= U (+y)ly+x), D= U (e+y)\(v+x), D=DUD,

Let M be an R-hypermodule.and B be a non empty subset of M. We say B is invariant if for every
xe M, x+B=B+x. Also, B is said to.be invertible to the left if for every (x,y)e M?, the implication
y€ B+x implies xe B+ y.

Lemma 3.4. Let M be.an R-hypermodule and the derived R-hypermodule D(M) be the intersection of all
subhypermodules.of M thatare complete parts and contain D. Then

1) D(M) is a complete part-of M

2) D(M) is an invariant subset of M.

Proof: 1) It is clear.
2) Since D(M) is an invariant subset of M as a hypergroup [5], and D(M) is a hypermodule, then D(M)
is an invariant subset of M as a hypermodule.

Let M and N be R-hypermodules. A function f:M — N is called an R-homomorphism, if for every
(x,y)e M* and re R

Sl y)= 1)+ £(v) and flr.x)=rf(x).

If H is an R-module and f:M — H is an R-homomorphism, we let ker f ={me M| f(m)=0,}. If
®,:M—>M/6 is the canonical R-homomorphism, then ker®, is called the heart of M and it will be
denoted by w,, .
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Lemma 3.5. Let M be an R-hypermodule and H be a complete part of M. Then H is an invertible subset of
M.

Proof: We know @, (H) is a submodule of H/6" . For every (x,y)e M?, if ye H+x there exists ae H
such that ye a+x, then

e, (v)=2,(@)e,x)=o,[)=(@,(6) e®,0)

=0, (e, (H)©, ()=, (H +x)

Also, H +y is a complete part of M. Therefore xe ®;'(®,,(a+y)) and H is invertible.

Lemma 3.6. Let <D, >_ be the intersection of all R-subhypermodules of M that are complete parts and
contain D, . Then D(M)=<D, >,.

Proof: Every complete part of M is invertible by Lemma 3.5 and also, for every invertible submodule H of
M we have D, c H if and only if D, c H. Since D, <D, >. and <D;>. are R-hypermodules, we have
D(M)=<D, >,.

Lemma 3.7. Let H be an R-subhypermodule of M and D ¢ H . Then the following relation

V(x,y)e M*, xR,y <ye x+h, he H

is a strongly regular equivalence relation on M and R, (x)=x+D(H).
Proof: Straightforward.

Theorem 3.8. Let ®, :M — M /6" be theeanonical projection. Then for every R -hypermodule M we
have D(M)=®;(0,, ).

Proof: Ifac D,, then by definition a pair (x,y)e M’ exists such that ae (x+y)\(y+x). So there exist
ue x+y and ve y+x such that aeu\v. Now, acu\v implies ve u+a, therefore 6'(v)=6"(u)®6 (a).
Moreover, uex+y and vep+x imply ufy, thus 6(u)=6(v) and €'(«)=0,,. Hence we have
ac®,(0,,) and D, c®H0, ,)-

Moreover, since @ ..is strongly regular [16], ®

-1
M

(0,,) is a complete part subhypermodule of M
whence <D, >.C CD;,‘(OM/U. )

Conversely, M/D(M) is an R-subhypermodule of M (with commutative hypergroup [5]) and D(M)
is an invariant R-hypermodule and complete part of M. Hence M /R, =M /(x+D(M))=M /D(M) by
Lemma 3.7 and Theorem 2.4 of [16], so we have 68" C R, .

Finally, let £e D(M), then for every xe®; (OW.) we have ®@,(¢)=0, , =®,(x), since

M6 A
e DM)c®;(0,,). So we obtain x@'e, whence xR, and xeR,(e)=e+D(M)=D(M). Thus
q); (OM/a' )g D(M)

Lemma 3.9. Let M be an R-hypermodule, Be ¢’ (M) and ®,,:M — M /6" be a canonical projection. Then

o, +B=B+w,=0,(®,(B)).

M

Proof: Let @ (®,(B))={xe M|3be B,®,(x)=d, (b)}. Then for every xe®d;(d,(B)) there exists
be Bsuch that @, (x)=®, (»). Since M is an R-hypermodule, there exists u€ M such that xe b+u . Now
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®,(b)=d,(x)=®,(b+u)=d,(h)+®,(u)=uc w,. Hence xe B+w, , and therefore @;'(®,,(B))c B+w, .
Conversely, if ze B+a,, , then @, (z)e @, (B) and B+w, c @, (®, (B)). Therefore

B+o, =9,(®,(B)).

Lemma 3.10. For every non empty subset H of an R-hypermodule M we have

)@, (®(H))=DM)+H=H+D(M).

2) If H is a @-part of M, then @,/(®,, (H))=H .

Proof: 1) For every xe D(M)+Hthere exists a pair (a,b)e D(M)xH such that xea+b,
s0®,(x)=®,(a)®D,(b)=0, @D, (b)=,(b). Therefore xe (@, (b)) c ©,(P,(H)).

Conversely, for every xe ®;(®,(H)), an element he H exists such that ®,(x)=®,(b). By
reproducibility ae M exists such that xea+b, so @, (b)=®,(x)=®,(a)®®,,(h), hence @, (a)=0

— YMmre

and ae ®;'(0, )= D(M). Therefore xe a+bc D(M)+ H . This proves that-@;.(®,, (M))= D(M )+ H . In the
same way, it is possible to prove that ®.}(®,,(M))= H +D(M).

2) It is obvious that H c®;(®,(H)). Moreover, if xe®;(®,(H)), then there exists an
clementbe H such that®,, (x)=®, (b). Hence xe 8 (x)=6'(h)c H and @, (d (H))c H .

Lemma 3.11. Let M be an R-hypermodule. Then @, is the intersection of all R- subhypermodules of M
that are complete parts.

Proof: By Lemma 3.9 we have w, +w, =, as a hypermodule. Let 4 cM,, where every M, is a
complete part subhypermodule of M. Then A+w, =A4. Also, by Lemma 3.5, 4 is an invertible
subhypermodule of M, hence

V(a,x)e Axw,,Ibeid:a€b+x=ac A+x=xe A+a=A.

Therefore w, c 4.

For every element M of an R-hypermodule M we set:

P {489 (01) me 4 30 N, Ao 4= T}
M*(m): UAeP(m)A .

In the following, for an R-hypermodule M let R-m =M forall me M and forall re R, r-m=m-r.
Lemma 3.12. For every ue M , M"(u) is a complete part of R-hypermodule M.
Proof: Let (m/,---,m’) and im:ﬂM*(u)¢¢' Then

Jae Zm’ﬂM(u): J4e P(u):ae Zm’ﬂA

For every m € M , there exists » € R such that m, e r-u. On the other hand, ue r-a=a-r where reR.
Hence

=1 \_j=l k=1 =l \_j=1 k=l

203031 BN TS V) )y N O
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gi[iﬁxﬂ},.(r.a)g z[zn]() 4

i=1 \_j=l k=1 =l \_j=1 k=l

and

=1 \_j=l k=l

vera=arc($ar) rcz(znx,k} y

S53bol N SO 3 o)y Y

i=1 \_j=1 k=1 i=l \_Jj=l k=l

Z(anw] )- 4€ P(u) and Zm C M (u). Therefore M'(u) is a complete part of M.

=1 \_Jj=l k=l

Let A be a non empty subset of R-hypermodule M. The intersection of all complete parts of M which
contain A4 is called the complete closure of A and it will be denoted by €(4).

Corollary 3.13. If ue w, , then M (u)=w, .
Proof: We know, w, = C(u)c M (u). Also, w, is a complete part, so M (u)C w,, . Therefore M (u)=w, .

Lemma 3.14. For every element u in the heart w,, , we have. D(M )= P, (u).

Proof: Let izi’ﬂPﬂ(u);tO, where Z:_i(nxﬂj Jww€R and zeM . If xe iz’ﬂPH(u), we have

Jj=1 \ k=1 n

i=1
x6u . Thus there exist ne N (m(,---,m’) and/ceS, such that ue Zm and xe Z . Also, there exist

r,r€ R such that uer-x and z,€r,-u . Then

werx=xr gz[znngz[zny}) .

=1\ j=l k=l i=l \_j=l k=l

DD N TR 3 y E D ¥R 728

i=1 Jj=l k=1 =1 j=l k=l

whence (m,---,m”)e T (u).
Moreover, for everyce S, , we have

iz;(i)=zm:Ba CZB chB
i=l i=1
QZ::BG(,.)( ) xCZB (rr )Zm Z;:m:(i) s

where

m, k;
B=) 4,4, 4, :Hyf/a,,(k)
k=1

j=1
with

oeS, and 0,€S, .
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Since Zn:m;’(i, € P(u), it follows that iz;m c P,(u) and P, () is a @-part of M.
Figally, we have ue w, ﬂR,(u)éD(M)ﬂ P,(u) and 6 (u)c D(M)NP,(u), since D(M) and P,(u) are
@-parts of M. By Theorem 3.8, if xe D(M), then @, (x)=0, , =®, (u). Therefore xe & (x)= ( ) P (u),

whence D(M)c P, (u).
Conversely, if xe P,(u), we have x6u, hence xe & (u)c D(M), thatis P,(u)c D(M).

Lemma 3.15. The relation &£1is transitive.

Proof: Let M be an R-hypermodule and®,, : M — M /¢" be a canonical projection and xe'y . If xey, then
there exists (m/,---,m’) such that

e Sl i=m or z(nx jz

Jj=1 k=1

meM, x, €R, z,€ M.
i ;

We know x+a, =®; (®,, ({x})). On the other hand, ®,, (x)=®,,(»). Then {x,y}c x+®, and so there exists
(v,w)e @’ such that xe x+w, yex+v. Also, M'(u) is a complete part of M and by Corollary 3.13, we
have M’(w)=w, , hence there exist A P(w), ke N and {m],---,m{) such that ve 4, 4= Zm Therefore

{v, w}ch hence ve w and x+v & x+w. Therefore xey and e=¢.

i=1

Theorem 3.16. f1is a transitive relation on hypermodules:

Proof: By Lemma 3.10 and Lemma 3.14, if x@ y then xe @ (®, (v))=y+D(M)=y+P, (u). Thus there

exist ne N, (m/,---,m’) and oe Sy suchithat ue Y m” and xe y+» m’ . Now by reproducibility of M
i=1 i=1

and o, , there are ve M and we @, such that yev+u and ue w+u . Moreover, since {v,w}cw, and &

k
is a transitive relation, there exists (m,+:,m, ) such that {v,w}c Zm’ It follows that

k n
YEVHUCVFWHUCVFWHWHUC YWY m+ Y m]

i=1 i=1

and

n n n k n
XEYPH D ml Cvru+ Y ml CvEwut Y ml Cvtwt Y ml+ D ml
i=l i=1 i=1 i=1 i=1
Therefore y& and 6=6".
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