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Abstract – In this paper we consider a strongly regular relation  on hypermodules so that the quotient is a 
module (with abelian group) over a fundamental commutative ring. Also, we state necessary and sufficient 
conditions so that the relation  is transitive, and finally we prove that  is transitive on hypermodules. 
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1. INTRODUCTION 

 
A hypergroupoid  ,H  is a non-empty set H equipped with a hyperoperation   defined on H, that is a 
mapping of HH   into the family of non-empty subsets of H [1]. If   HHyx , , its image under   is 
denoted by yx  . If A , B  are non-empty subsets of H, then BA  is given by  ByAxyxBA  ,| . 

Ax   is used for   Ax   and xA   for  xA . A hypergroupoid  ,H  is called a hypergroup in the sense 
of Marty if for all Hzyx ,,  the following two conditions hold: (i)     zyxzyx  , (ii) 

HxHHx  . The second condition is called the reproduction axiom, meaning that for any Hyx ,  
there exist Hvu ,  such that uxy   and xvy  . An exhaustive review updated to 1992 of hypergroup 
theory appears in [2] also see [3-6]. A recent book [7] contains a wealth of applications. 

If H is a hypergroup and HH   is an equivalence relation, then for all pairs  BA,  of non-empty 
subsets of H we set BA  if and only if ba  for all Aa  and Bb . The relation   is said to be strongly 
regular to the right if yx  implies ayax    for all   3,, Hayx  . Analogously, we can define strongly 
regular to the left. Moreover,   is called strongly regular if it is strongly regular to the right and to the 
left. Let H be a hypergroup and   an equivalence relation on H. Let  a  be the equivalence class of a 
with respect to   and let   HaaH  |/  . A hyperoperation   is defined on /H  by 
          baxxba   | . If   is strongly regular then it readily follows that 
      baxxba  | . It is well known for   strongly regular that  ,/ H  is a group (see 

Theorem 31 in [2]), that is      cba    for all bac  . 
A hyperring is a multi-valued system  ,,R  which satisfies the ring-like axioms in the following 

way: 
(i)  ,R  is a hypergroup in the sense of Marty, 
(ii)  ,R  is a semi-hypergroup,  
(iii) The multiplication is distributive with respect to the hyperoperation  . 

The fundamental relation was introduced on hypergroups by Koskas [8], and then studied by Corsini 
[2]. The fundamental relation on a hyperring was introduced by Vougiouklis at the fourth AHA congress 
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(1990) [9], and studied by many authors, for example see [10-14]. The fundamental relation on a 
hyperring is defined as the smallest equivalence relation so that the quotient would be the (fundamental) 
ring. Note that the commutativity with respect to both sum and product in the fundamental ring are not 
assumed. In [15], Davvaz and Vougiouklis introduced a new strongly regular equivalence relation on a 
hyperring such that the set of quotients is an ordinary commutative ring. We recall the following definition 
from [15]. 
 
Definition 1.1. Let R be a hyperring. We define the relation  as follows: 

 
  n

n

n SNkkNnyx   ,,,, 1   and     niSRxx
i

i

i ki

k

iki ,,1,,,1     
 

such that 
 

 
 











n

i

k

j
ij

i

xx
1 1

 and  



n

i
iAy

1
  

 

where  



i

i

k

j
jii xA

1
 . 

The relation  is reflexive and symmetric. Let *  be the transitive closure of , then we have: 

 
Theorem 1.2. [15]. *  is a strongly regular relation both on  ,R  and  ,R , and the quotient */R  is a 
commutative ring. 
 

2.  -RELATION ON HYPERMODULES 
 
Let  ,,R  be a hyperring and  ,M  be a hypergroup. According to [14], M is said to be a left 
hypermodule over a hyperring R if there exists 

 
 MMR *:   ;   mama ,  

 
such that for all ba, R and Mmmm ,, 21  we have 
 1)   2121 mamamma  , 
 2)      mbmamba  , 
 3)    mbamba  . 
 
Let R be a hyperring and M be a hypermodule over R. We define the relation  on M as follows: 
 





n

i
imyxyx

1

, ; ii mm   or  
 











i ijn

j
i

k

k
ijki zxm

1 1

, 

 
Mmi  , Rxijk  , Mzi  . 

 
The fundamental relation *  on M can be defined as the smallest equivalence relation on M such that 

the quotient */M  be a module over the corresponding fundamental ring such that */M  as a group is not 
abelian, see [14]. Moreover, the fundamental ring is not commutative with respect to both sum and 
product. Now, we would like the fundamental module to be an abelian group and the fundamental ring to 
be commutative with respect to both sum and product. 
 
Definition 2.1. Let R be a hyperring and M be a hypermodule over R. We define the relation  as follows: 
 

    ,,,,,,,, 211
n

nn NkkkmmNnyx    
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  ,,,,,,, 21 iji

i

i kijni

k

ikiin SSRxxxS     
 

such that 
 

ii

n

i
i mmmx 



;
1

 or  
 











i ijn

j
i

k

k
ijki mxm

1 1

 

 
and 
 

 



n

i
imy

1
  

 
where  

 
   ii mm      if   ii mm  , 

 

     iii mBm      if    
 











i ijn

j
i

k

k
ijki mxm

1 1

, 

 
with 

 

 



i

i

n

j
jii AB

1
 ,    




ij

ij

k

k
kijij xA

1
 . 

 
The relation  is reflexive and symmetric. Let *  be the transitive closure of . Then *  is a strongly 

regular relation both on the group  ,M  and M as an R - hypermodule. Also, the (abelian group) */M  is 
an */R - module, where */R  is a commutative ring and the relation *  is the smallest equivalence 
relation such that the (abelian) quotient */M  is an */R - module [16]. 

If M is an R-hypermodule, then we set 
 

  Mmmm  |,0  
 

and for every integer 1n , n  is the relation defined as follows: 
 





n

i
in mxyx

1

 ,    



n

i
imy

1
 ,   nS . 

 
Obviously, for every 1n  the relation n  is symmetric, and the relation nn  0   is reflexive and 
symmetric. If M is a hypermodule over a hyperring R and 1n  then 1 nn   [16]. 
 

3. TRANSITIVITY CONDITION OF  
 
In the following im  is the notation that has been defined in Definition 2.1. 
 
Definition 3.1. Let M be an R-hypermodule and H be a non-empty subset of M. We say that H is a -part 
of M if for every Nn , for every nS  and for every  nmm  ,,1   
 

  HmHm
n

i
i

n

i
i  

 11
 , 

 
H is said to be a complete part of M if  is identity. 

We consider the following notations: 
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        
1 , , 1 1,  , , , , , | , , 1, ,

n

n
k k i ik n ij ix z x x z z x R z M i n        

 

   




















  

 
i

n

j

k

k
ijkiii

n

i
inn zxmormmmummuT

i ij

1 11
1 ,|,,  

 

       






  


nnn

n

i
inn SuTmmmuP  ,,,| 1

1

  

 
   uPuP nn  

 
For every Mu ,    vuMvuP  | . 
 
Theorem 3.2. [16]. Let M be an R-hypermodule, then the following conditions are equivalent: 
1)  is transitive, 
2) for every Mu ,    uPu  * , 
3) for every Mu ,  uP  is -part of M. 
 
Definition 3.3. Let M be an R-hypermodule. Then for every   2, Mba   and for every pair  BA, of non-
empty subsets of M, we set: 
 

 nxmMxnm  |/ ,    xmnMxnm  |\  
 

nmBA
BnAm

//
, 

  ,   nmBA
BnAm

\\
, 

   

 
Moreover, let DDD ,, 21  denote the sets 
 

 
   xyyxD

Myx



/

2,
1  , 

 
   xyyxD

Myx



\

2,
2  , 21 DDD   

 
Let M be an R-hypermodule and B be a non empty subset of M. We say B is invariant if for every 

Mx , xBBx  . Also, B is said to be invertible to the left if for every   2, Myx  , the implication 
xBy   implies yBx  . 

 
Lemma 3.4. Let M be an R-hypermodule and the derived R-hypermodule  MD  be the intersection of all 
subhypermodules of M that are complete parts and contain D. Then 
1)  MD  is a complete part of M 
2)  MD  is an invariant subset of M. 
 
Proof: 1) It is clear. 
2) Since  MD  is an invariant subset of M as a hypergroup [5], and  MD  is a hypermodule, then  MD  
is an invariant subset of M as a hypermodule.  

Let M and N be R-hypermodules. A function NMf :  is called an R-homomorphism, if for every  
  2, Myx   and Rr  
 

     yfxfyxf   and    xfrxrf , . 
 

If H is an R-module and HMf :  is an R-homomorphism, we let   HmfMmf 0|ker  . If 
*/: MMM   is the canonical R-homomorphism, then Mker  is called the heart of M and it will be 

denoted by M . 
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Lemma 3.5. Let M be an R-hypermodule and H be a complete part of M. Then H is an invertible subset of 
M. 
 
Proof: We know  HM  is a submodule of */H . For every   2, Myx  , if xHy   there exists Ha  
such that xay  , then 
 

            yaxxay HMMMMM  1  
 

       xHyHx MMMM   
 

Also, yH   is a complete part of M. Therefore   yax MM  1  and H is invertible.  
 
Lemma 3.6. Let CD  2  be the intersection of all R-subhypermodules of M that are complete parts and 
contain 2D . Then   CDMD  2 . 
 
Proof: Every complete part of M is invertible by Lemma 3.5 and also, for every invertible submodule H of 
M we have HD 1  if and only if HD 2 . Since D, CD  2  and CD  1  are R-hypermodules, we have 
  CDMD  2 .  

 
Lemma 3.7. Let H be an R-subhypermodule of M and HD  . Then the following relation 
 

  HhhxyyxRMyx H  ,,, 2  
 

is a strongly regular equivalence relation on M and    HDxxRH  . 
 
Proof: Straightforward.  
 
Theorem 3.8. Let */: MMM   be the canonical projection. Then for every R -hypermodule M we 
have    */

1 0 MMMD  . 
 
Proof: If 2Da , then by definition a pair   2, Myx   exists such that    xyyxa  \ . So there exist 

yxu   and xyv   such that vua \ . Now, vua \  implies auv  , therefore      auv ***   . 
Moreover, yxu   and xyv   imply vu 2 , thus    vu **    and   */

* 0 
M

a  . Hence we have 
 */

1 0 MMa   and  */

1

2 0 MMD  . 
Moreover, since *  is strongly regular [16],  */

1 0 MM

  is a complete part subhypermodule of M 
whence  */

1

2 0 MMCD  . 
Conversely,  MDM /  is an R-subhypermodule of M (with commutative hypergroup [5]) and  MD  

is an invariant R-hypermodule and complete part of M. Hence     MDMMDxMRM M ///   by 
Lemma 3.7 and Theorem 2.4 of [16], so we have MR* . 

Finally, let  MD , then for every  */

1 0 MMx   we have    xMMM  */
0  , since 

   */

1 0 
MMMD  . So we obtain  *x , whence MxR  and      MDMDRx M   . Thus 

   MD
MM 

*/

1 0  .  
 
Lemma 3.9. Let M be an R-hypermodule,  MB *  and */: MMM   be a canonical projection. Then 
 

  BBB MMMM  1 . 
 

Proof: Let        bxBbMxB MMMM  ,|1 . Then for every   Bx MM  1  there exists 
Bb such that    bx MM  . Since M is an R-hypermodule, there exists Mu such that ubx  . Now 
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          MMMMMM uububxb  . Hence MBx  , and therefore    MMM BB 1 . 
Conversely, if MBz  , then    Bz MM   and   BB MMM  1 . Therefore 

  BB MMM  1 .  
Lemma 3.10. For every non empty subset H of an R-hypermodule M we have 
1)       MDHHMDHM 1 . 
2) If H is a -part of M, then    HHMM 1 . 
 
Proof: 1) For every   HMDx  there exists a pair     HMDba , such that bax  , 
so          bbbax MMMMMM  */

0  .Therefore      Hbx MMMM   11 . 
Conversely, for every   Hx MM  1 , an element Hb  exists such that    bx MM  . By 

reproducibility Ma  exists such that bax  , so        baxb MMMM  , hence   */
0 MM a   

and    MDa
MM  

*/

1 0  . Therefore   HMDbax  . This proves that      HMDMMM 1 . In the 
same way, it is possible to prove that     MDHMMM 1 . 

2) It is obvious that   HH MM  1 . Moreover, if   Hx MM  1 , then there exists an 
element Hb such that    bx MM  . Hence     Hbxx  **   and    HHMM 1 .  

 
Lemma 3.11. Let M be an R-hypermodule. Then M  is the intersection of all R- subhypermodules of M 
that are complete parts. 
 
Proof: By Lemma 3.9 we have MMM    as a hypermodule. Let iMA  , where every iM  is a 
complete part subhypermodule of M. Then AA M  . Also, by Lemma 3.5, A is an invertible 
subhypermodule of M, hence  
 

  AaAxxAaxbaAbAxa M  :,,  . 

 

Therefore AM  .  
 

For every element M of an R-hypermodule M we set: 
 

     






  



n

i
in mAmmNnAmMAmP

1
1

* ,,,,,|  ; 

 
    AmM mPA * . 

 
In the following, for an R-hypermodule M let MmR   for all Mm  and for all Rr , rmmr  . 

 
Lemma 3.12. For every Mu ,  uM *  is a complete part of R-hypermodule M. 
 
Proof: Let  nmm  ,,1   and   



uMm
n

i
i

*

1

 . Then 
 

    AmauPAuMma
n

i
i

n

i
i  




1

*

1

: . 

 
For every Mmi  , there exists Rri   such that urm ii  . On the other hand, raaru   where Rr . 
Hence 
 

   
    




















n

i
i

n

j

k

k
ijk

n

i
i

n

j

k

k
ijk

n

i
i urxmxm

i iji ij

1 1 11 1 11
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     
    




















n

i
i

n

j

k

k
ijk

n

i
i

n

j

k

k
ijk Arrxarrx

i iji ij

1 1 11 1 1

 

 
and 
 

  rurxrmraaru
n

i
i

n

j

k

k
ijk

n

i
i

i ij

















   
   1 1 11

 

 

     
    




















n

i
i

n

j

k

k
ijk

n

i
i

n

j

k

k
ijk Arrxurrx

i iji ij

1 1 11 1 1

. 

 
So     

  








n

i
i

n

j

k

k
ijk uPArrx

i ij

1 1 1

 and  uMm
n

i
i

*

1




. Therefore  uM *  is a complete part of M.  
 

Let A be a non empty subset of R-hypermodule M. The intersection of all complete parts of M which 
contain A is called the complete closure of A and it will be denoted by  AC . 
 
Corollary 3.13. If Mu  , then   MuM * . 
 
Proof: We know,    uMuCM

* . Also, M  is a complete part, so   MuM * . Therefore   MuM * .  
 
Lemma 3.14. For every element u in the heart M , we have    uPMD  . 
 

Proof: Let   0
1




uPz
n

i
i  , where  

 










i ijm

j
i

k

k
ijki zxz

1 1

, Ryijk   and Mzi  . If   uPzx
n

i
i 




1

, we have 

ux . Thus there exist Nn   nmm  ,,1   and nS such that 



n

i
imu

1

 and  



n

i
imx

1
 . Also, there exist 

Rrri ,  such that xru   and urz ii  . Then 
 

   
    




















m

i
i

m

j

k

k
ijk

m

i
i

m

j

k

k
ijk ruryrzyrxxru

i iji ij

1 1 11 1 1

 

 

      
    




















n

i
i

m

i

n

i
ii

m

j

k

k
ijk

m

i
i

m

j

k

k
ijk mmrryurry

i iji ij

11 11 11 1 1

, 

 
whence    uTmm nn  ,,1  . 

Moreover, for every nS , we have 
 

               



m

i
ii

n

i
ii

m

i
ii

n

i
i xrrBurBzBz

1111
  

 

             



n

i
i

n

i
i

m

i
ii

m

i
ii mmrrBxrrB

1111
 , 

 
where 
 

 



i

i

m

j
jii AB

1
 ,  




ij

ij

k

k
kijij yA

1
  

 
with 
 

ini S  and 
ijkij S . 
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Since    uPm n

n

i
i 

1
 , it follows that    uPz

m

i
i  

1

 and  uP  is a -part of M. 

Finally, we have      uPMDuPu M     and      uPMDu  * , since  MD  and  uP  are 

-parts of M. By Theorem 3.8, if  MDx , then    ux MMM  */
0  . Therefore      uPuxx   ** , 

whence    uPMD  . 

Conversely, if  uPx  , we have ux , hence    MDux  * , that is    MDuP  .  
 
Lemma 3.15. The relation  is transitive. 
 
Proof: Let M be an R-hypermodule and */: MMM   be a canonical projection and yx * . If yx , then 
there exists  nmm  ,,1   such that 
 





n

i
imyx

1

, ; ii mm   or i

n

j

k

k
ijki zxm

i ij

 
 











1 1

; 

 
Mmi  , Rxijk  , Mzi  . 

 
We know    xx MMM  1 . On the other hand,    yx MM  . Then   Mxyx ,  and so there exists 
  2, Mwv   such that wxx  , vxy  . Also,  uM *  is a complete part of M and by Corollary 3.13, we 
have   MwM * , hence there exist  wPA , Nk  and  kmm  ,,1   such that Av , 




k

i
imA

1

. Therefore 
  




k

i
imwv

1

, , hence wv  and wxvx   . Therefore yx  and *  .  
 
Theorem 3.16.  is a transitive relation on hypermodules. 
 

Proof: By Lemma 3.10 and Lemma 3.14, if yx *  then       uPyMDyyx MM  1 . Thus there 

exist Nn ,  nmm  ,,1   and nS  such that 



n

i
imu

1

 and  



n

i
imyx

1
 . Now by reproducibility of M 

and M , there are Mv  and Mw   such that uvy   and uwu  . Moreover, since   Mwv ,  and  
is a transitive relation, there exists  kmm  ,,1   such that   




k

i
imwv

1

, . It follows that 
 





n

i
i

k

i
i mmwvuwwvuwvuvy

11

 

 
and 
 

     


n

i
i

n

i
i muvmyx

11
      




n

i
i

k

i
i

n

i
i mmwvmuwv

111
 . 

 
Therefore xy  and *  .  
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