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Abstract — In the present paper an operator-differential equation of second order in complex domain is
considered when the coefficients have singularity of pole type at.the point z=0. A theorem of existence of the
solution of the equation is proved and the spectral property of the solution is separately investigated when the
coefficients are spectral operators.
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1. SOLVABILITY OF AN OPERATOR-DIFFERENTIAL EQUATION OF SECOND ORDER

Let L(H) be a Banach algebra of linear bounded operators, acting in H, where H is a Hilbert space.
Consider the equation

d’U 1(°° kde 1 (“’ k]
-~ e e B} 1
— gy kzzoBkz ot ;Akz U (1)
where z is complex variable, 4, ,.B, € L(H) (k=0,1,2,...) and the series ZAka and ZBka are
k=0 | k=0
absolutely convergent in the-circles |Z| < p, and |Z| < p,, respectively. Let 0 = min(0,,0,) and later we

will consider the problem in the circle |Z| <p.
We seek the solution of (1) in the form:

Uz =S U, 22" 2)

m=0

where the operators U, and R will be determirzled later

Having calculated derivatives —— and
z

of the Frobenius method, we can write out formulas for coefficients U, :

-, putting them in (1) and applying the abstract analogy
z

U,(R* = R) - BU,R ~ A4,U, = 0. 3)

U,[R* +2mR + m(m—1)I| -mBU, — mB,U, —B,U,R— AU, =F,, m=12,..., (4)
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where
Y(p+DBU, + Y BUR+ D AU, (5)
k+p=m-1 k+p=m k+p=m
p#Em—1 pEmM pEmM

Let us choose U, bounded and such that U " exists and is bounded too. Let the operators 4,, B,
and U, be commutative. If the operator B, + 2B, + I + A, is a spectral operator of scalar type, then from
equation (4) for the desired operator R we obtain

R*—(B,+I)R-4,=0, ©
and therefore
1
sz(BO):BO+I+(B§ +2230+1+A0)2’ o
!
OrR=g(Bo)=B°+1_(Bé+223°+”A0)2, (®)

Let 4, = B}, where k is some nonnegative integer numbers, then by theorem 3.1 from ([1], p.37) we
obtain that for the solvability of equation (4) there must hold the next condition:

PA ) = 1> +Cm—-Du~Au— A" —mA+(m-1)m#0 )
for V(A,u) e o(B,)*x o(R)where 0(B,) and o(R) are spectrums of operators B, and R respectively.

Then the solution of equation (4) is determined by the formula

R L N ALST (10)

U
7[2 Fpy Tx P(ﬁ,ﬂ)

m

and I’ 5, ,I'y are piece-smooth contours, surrounding the spectrums of operators B, and R, respectively.
If R is defined by (7) then we have

1 f (B, — vI)’ldv‘

v KD =SB ) ) 11
(Reud)” =(f(By)~ ) 22 (f(V)=w) (11)
Putting (11) into (10) we obtain:
(8,~1) £ (R-pa)” 1 ¢ (By—AD'F,(B,—vI)"
U, = 47’ P(A,u) dudA = ar’ II POL S (V) dvdA . (12)

Therefore, the solution of equation (4) is defined by formula (12), and the condition (9) now looks so:
PAf(V) = f(W+Qm=-1)f(V)= A (v)-A —mA+(m-1)m#0 (13)

for arbitrary (A,v) € 6(B,) X o(B,).
It is clear that P(A, f(v)) = O(m"). Using this we obtain: HU H < —H F H It is not difficult to prove
that for any p,, such that 0 < p, < p, and forany m =0
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U

m

o < const .

Then for any p0,: p < p,

(f}l) <const2(plj < - Hence ZU,O]

n= y2 n=1
is convergent for V,:0 < p, < p, whence follows the existence of solution (2) of equation (1).

For the existence of solution (2) of equation (1) by the theorem 3.1 ([1], p.37), in the case of (8)
the following condition must be satisfied.

P(A,g(v)) = g(v)" + 2m—1)g(v)— Ag(v)— A" —mA+(m—-1)m#0. (14)

Let us point out that according to condition 4, = Bg , for the commutative property of operators
A,, B, and U, it suffices to require the commutative property of operators B, and U,. So we come to
the theorem of existence.

Theorem 1. Let the next conditions be satisfied:

a) operator Bg + 2B, + 1 + A, is an operator of scalar type; b) A;= B(]; , where k is nonnegative integer;
c) operators B, and U, are commutative and operator U ! lexists‘and is bounded; d) for f(v), defined
in (7), condition (13) holds (or for g(v), diﬁned in«(8), condition (14) holds). Then there exists the
solution of ewquation (1) in the form U(z) = (Z U,z )z®, where operator R is defined by (7) (by (8)); at

that series Z -4 <p, p=min(g,p0,) .

n=0

2. THE CASE OESPECTRAL COEFFICIENTS

Suppose that 4, B;, i,j = 0,1,2,..., are mutually commutative spectral operators.
The next relatlon is known for. the resolvent of a spectral operator B, ([2], XV.5.2):

E(d6)

—, (15)
,(A=6)

(&—ﬂﬁ=iN”J

=0 o(B,

where N is a quasinilpotent part, £ is a resolution of the identity operator B, .
Let’s put (15) in (12):

S A 1 E(dO) E(dn)
U, = N dAdVF,. (16)
nl+zr12::0 F'!n rj;o P(ﬂ,f(l/)) 0-(-1[0) (/1 - H)”ﬁrl O-(Jf;u) (V_ ”)HZH

Denoting P,(A4,Vv) = P(A, f(v)), by Fubini’s theorem we obtain

n1+n2 an1+n2 1
U, = | j —— E(d®)E(d) |F, - (17)
n1+n2 =0 nl 7’l2 (By) 6(By) 00 lan 2 PI(G,T])

Let’s denote the first factor of the product in (17) by ¥ and consider separately its first addend:

oo n1+n2 ny+n,
J‘ I E(dH)E(dﬂ)+ J‘ J‘ an _ ( 1 jE(d@)E(dﬂ) (18)
otsyotsy D1(0:10) n+n2—1 nln,! 6(By) 6(By) d0™on™ A (6,n)
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Similar to work [3], we can prove that except for the first term in (18) the rest of the sum represents a
E(dO)E(dn)

F(6,n)
o(By)o(By) 11
From the general formula (4) for F, it can be easily proved by induction that if U, is spectral and

quasinilpotent operator, and is an operator of scalar type.

commutative with 4, B;, 7,j = 0,1,.., then all the operators F, and consequently U, are spectral. So,

the following theorem is proved:

Theorem 2. Let all the conditions of theorem 1 be satisfied. If operators 4,, B,, i,j = 0,l,..,and U, are
spectral and mutually commutative, then besides the statement of theorem 1, it is also true that operator
coefficients U, , m=1,2,.., in (2) are spectral too.

3. ON A SPECTRAL SOLUTION

Let’s consider the conditions under which an operator-differential equation (1) in Hilbert space has a
solution being a spectral operator.

Let 2 be a complete algebra in N. Danford sense ([2], XVIIL.1), generated by the family of

commutative spectral operators 7={U, 4,,B iaJ = 0,1,..+ } and their resolutions of the identity operator,

and closed in a uniform operator topology. It is clear that operators U, € £ and, therefore, the finite sums

n
Z U,z" €. As in paragraph 1 the convergence of series Z U,z" in a uniform operator topology was

m=0 m=0
proved. Then, taking into account the closedness of algebra £2 in a uniform operator topology, the sum of

series ZUmzm belongs to £2, too. Suppose that the Boolean algebra generated by the resolutions of the

m=0

identity of the operators of family . ={U, 4,8, i, j = 0,1,... } is bounded. Then by theorem XVII.2.14

j 2

from [2] any operator from £2is spectral and, therefore, so is the sum Z Uu,z".
m=0

Since R is a spectral operator, then by the known theorem on an analytic function of spectral

operator ([2], XV.5.6) the operator.e®"™* is spectral, too.
As a function of B, operator z® commutates with all U »» m=0,1,.., and, therefore, with Zymzm .
The product of two commutative spectral operators in Hilbert space is a spectral operma:toor, SO

U(z) = (z U,z")z" is a'spectral operator too. So we proved the following
m=0
Theorem 3. If Boolean algebra, generated by the resolutions of the identity operator of spectral
commutative operators of family 7={U , 4,, Bj , »J =0,1,...} is bounded and the conditions of theorem
1 are satisfied, then equation (1) has a solution being a spectral operator.
It should be noted that the question of solvability of equation (1) was investigated in the partial case

in the papers [3-6].
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