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Abstract – In the present paper an operator-differential equation of second order in complex domain is 
considered when the coefficients have singularity of pole type at the point z=0. A theorem of existence of the 
solution of the equation is proved and the spectral property of the solution is separately investigated when the 
coefficients are spectral operators. 
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1. SOLVABILITY OF AN OPERATOR-DIFFERENTIAL EQUATION OF SECOND ORDER 
 

Let L H( )  be a Banach algebra of linear bounded operators, acting in H , where H  is a Hilbert space. 
Consider the equation 
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where z is complex variable, ,...)2,1,0()(,  kHLBA kk  and the series A zk
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absolutely convergent in the circles z  1  and z  2 , respectively. Let    min( , )1 2  and later we 

will consider the problem in the circle z   . 

We seek the solution of (1) in the form: 
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where the operators mU  and R  will be determined later 

Having calculated derivatives 
dU
dz

 and 
2

2

dz
Ud

, putting them in (1) and applying the abstract analogy 

of the Frobenius method, we can write out formulas for coefficients mU : 
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where 
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Let us choose U 0  bounded and such that U 0
1  exists and is bounded too. Let the operators A0 , B0  

and U 0  be commutative. If the operator B B I A0
2

0 02    is a spectral operator of scalar type, then from 
equation (4) for the desired operator R  we obtain 

 
                                                                R B I R A2
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and therefore 
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Let A Bk

0 0 , where k is some nonnegative integer numbers, then by theorem 3.1 from ([1], p.37) we 
obtain that for the solvability of equation (4) there must hold the next condition: 

 

                                   P m( , ) ( )        2 2 1  k m m m   ( )1 0                            (9) 
 

for  ( , )    ( ) ( )B R0  where )( 0B  and )(R  are spectrums of operators 0B  and R  respectively. Then the solution of equation (4) is determined by the formula 
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and B0

,R  are piece-smooth contours, surrounding the spectrums of operators B0  and R, respectively. 
If R is defined by (7) then we have 
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Putting (11) into (10) we obtain: 
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Therefore, the solution of equation (4) is defined by formula (12), and the condition (9) now looks so: 

 
                           P f f m f( , ( )) ( ) ( ) ( )      2 2 1    f m m mk( ) ( )    1 0                    (13) 

 
for arbitrary ( , ) ( ) ( )    B B0 0 . 

It is clear that P f O m( , ( )) ( )   2 . Using this we obtain: U
c

m
Fm m 2

. It is not difficult to prove 
that for any 1 ,  such that 0 1   , and for any m  0  
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U constm
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Then for any 2 :   1 2   we have: U U constn
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is convergent for     1 10: , whence follows the existence of solution (2) of equation (1). 

For the existence of solution (2) of equation (1) by the theorem 3.1 ([1], p.37), in the case of (8) 
the following condition must be satisfied. 

 
                               P g g m g( , ( )) ( ) ( ) ( )      2 2 1    g m m mk( ) ( )    1 0 .                (14) 

 
Let us point out that according to condition A Bk

0 0 , for the commutative property of operators 
A B0 0,  and U0  it suffices to require the commutative property of operators B0  and U0 . So we come to 

the theorem of existence. 
 

Theorem 1. Let the next conditions be satisfied: 

a) operator B B I A0
2

0 02    is an operator of scalar type; b) A Bk
0 0 , where k  is nonnegative integer; 

c) operators B0  and U0  are commutative and operator U0
1  exists and is bounded; d) for f ( ) , defined 

in (7), condition (13) holds (or for g( ) , defined in (8), condition (14) holds). Then there exists the 

solution of equation (1) in the form U z U z zn
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, where operator R  is defined by (7) (by (8)); at 

that series U zn
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 is absolutely convergent in the circle z   ,    min( , )1 2 . 

 
2. THE CASE OF SPECTRAL COEFFICIENTS 

 
Suppose that Ai , Bj , i j, , , ,... 0 1 2 , are mutually commutative spectral operators. 

The next relation is known for the resolvent of a spectral operator B0  ([2], XV.5.2): 
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where N  is a quasinilpotent part, E  is a resolution of the identity operator 0B . 

Let’s put (15) in (12): 
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Denoting P P f1( , ) ( , ( ))    , by Fubini’s theorem we obtain 
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Let’s denote the first factor of the product in (17) by V and consider separately its first addend: 
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Similar to work [3], we can prove that except for the first term in (18) the rest of the sum represents a 

quasinilpotent operator, and E d E d
PBB

( ) ( )

( , )( )( )

 
  100

  is an operator of scalar type.  

From the general formula (4) for Fm  it can be easily proved by induction that if U0  is spectral and 

commutative with Ai , Bj ,  i j, , ,.. 0 1 , then all the operators Fm  and consequently Um  are spectral. So, 

the following theorem is proved: 

 
Theorem 2. Let all the conditions of theorem 1 be satisfied. If operators A Bi j, , i j, , ,.. 0 1 , and U 0  are 
spectral and mutually commutative, then besides the statement of theorem 1, it is also true that operator 
coefficients U m , m  1 2, ,..,  in (2) are spectral too. 

 
3. ON A SPECTRAL SOLUTION 

 
Let’s consider the conditions under which an operator-differential equation (1) in Hilbert space has a 
solution being a spectral operator. 

Let  be a complete algebra in N. Danford sense ([2], XVII.1), generated by the family of 

commutative spectral operators  ={ 0U , ji BA , ,...1,0, j } and their resolutions of the identity operator, 

and closed in a uniform operator topology. It is clear that operators Um  and, therefore, the finite sums 
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. As in paragraph 1 the convergence of series U zm
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 in a uniform operator topology was 

proved. Then, taking into account the closedness of algebra  in a uniform operator topology, the sum of 

series U zm
m

m
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
0

 belongs to , too. Suppose that the Boolean algebra generated by the resolutions of the 

identity of the operators of family  ={ 0U , ji BA , , ,...1,0, ji } is bounded. Then by theorem XVII.2.14 

from [2] any operator from  is spectral and, therefore, so is the sum 


0m

m
m zU . 

Since R  is a spectral operator, then by the known theorem on an analytic function of spectral 

operator ([2], XV.5.6) the operator eR zln  is spectral, too. 

As a function of B0  operator zR  commutates with all U m , m  0 1, ,..,  and, therefore, with U zm
m

m




0

. 

The product of two commutative spectral operators in Hilbert space is a spectral operator, so 

U z U z zm
m

m

R( ) ( )





0

 is a spectral operator too. So we proved the following  

 
Theorem 3. If Boolean algebra, generated by the resolutions of the identity operator of spectral 
commutative operators of family  ={U 0 , A Bi j, , , , ,...j  0 1 } is bounded and the conditions of theorem 
1 are satisfied, then equation (1) has a solution being a spectral operator. 

It should be noted that the question of solvability of equation (1) was investigated in the partial case 
in the papers [3-6]. 
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