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Abstract — Polygroups are multivalued systems that satisfy group like axioms. In this paper the class of n-ary
polygroups is introduced. The concepts of n-ary normal subpolygroups and strong homomorphisms of n-ary
polygroups are adopted. With respect to these concepts the isomorphism theorems for n-ary polygroups are
stated and proved. Finally, we will consider the fundamental relation ,5 defined on an n-ary polygroup and
prove some results in this respect.
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1. INTRODUCTION

This paper deals with certain algebraic systems called n-ary polygroups. Marty [1] introduced the basic
concepts of hyperstructures and hypergroups, since then several authors have further studied this subject.
Applications of hypergroups have mainly appeared.in special subclasses. Polygroups, which are certain
subclasses of hypergroups, are studied in [2] by loulidis and are used to study color algebras [3, 4]. A
detailed discussion on the theory of polygroups can be found in [3-7].

The notion of an m-ary group which is a natural generalization of the notion of a group, was
introduced by Dornte [8] and.is the most natural way for further development and deeper understanding of
their fundamental properties. Since then many papers concerning various z-ary algebras have appeared in
the literature, for example [9, 10, 117.

Davvaz and Vougiouklis in 2006 defined and considered n-ary hypergroups [12]. Some
generalizations of hyperstructures to n-ary hyperstructures and n-ary H,- structures may be found in [13,
14].

In this paper, the n-ary polygroups, as a subclass of n-ary hypergroups and as a generalization of
polygroups are defined and considered. Finally, we consider the fundamental relation [ " defined on an n-
ary polygroup and prove some new results. Also, we adopt the concepts of n-ary normal subpolygroups
and strong homomorphisms of n-ary polygroups. With respect to these concepts, we shall state and prove
the isomorphism theorems for n-ary polygroups.

2. BASIC DEFINITIONS AND RESULTS

Let P be a non-empty set and P (P) be the set of all non-empty subsets of P and P" be the n-times
Cartesian product of P. In general, a mapping f : P” —P (P) is called an n-ary hyperoperation on P
and »n is called the arity of this hyperoperation. If for all (xl,---,xn)e P", the set f (xl,---,x ) is a

n
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singleton, then f'is called an n-ary operation. For an n-ary hyperoperation fon P and for subsets 4,,---, 4
of P, it is defined:

n

f(Ala"‘»An): Uf(xl,...’x”).

X;€ 4,
I<i<n
Also, we shall use the following abbreviated notations:

The sequence x,x,,,, -, x; will be denoted by x/. For j<i, x/ is the empty set. In this

i+1°

convention f(xl,---,xl.,ym,---,yj,zjﬂ,---,zn) will be written as f(xf,y;’;rl,z;7+l .
Ifm= k(n - 1) + 1, then the n-ary hyperoperation g defined by

g(xlk(n_l)H)Zf(f("'af(f(xln )’szl_l )J"')Jx(kk(fl_)&?l)ﬂ)

k

b

will be denoted by f(k). In certain situations, when the arity of g .does not play a crucial role, or when it
will differ (depending on additional assumptions), we write f(,), to mean f(k) for some k=12,---. Also
f(a]",x.) means f| a,,x, -+, x | for a,~--,a,x€ P and 1<i<n—1.
—
According to [4], a polygroup is a multivalued system <P, . ,e,71> where,
ee P, :P——P/-: PxP~——P'(P)

and the following axioms hold for all x,y,z€ P
) (x-y)-z = x-(y-z), (i) e-x=x=x-e,(iii) x& y-z implies y€ x-z " and z€ y_l -X.
According to [12], an n-ary hypergroup (P, f ) is a non-empty set P with an n-ary hyperoperation
f:P"—— P'(P) such that, if i{j € {I,%=yn} and a,,---,a,, ,,bE P, then:
(@) f(al'_l,f(a"”_l),azn_l): f(alj_l,f(a“j"l),az”'l), (if) there exists x; € P such that

i n+i J n+j

be f(af_l,xi,ai”ﬂ). (1)
In this definition if f'is an n-ary operation, then the relation (1) will be b = f (ali x,al, ), and (P, f ) is
an n-ary group.
Definition 2.1. An #s-ary polygroup is a multivalued system M =<P,f,e,_l>, where ec P, ' is an
unitary operation on P, f is an n-ary hyperoperation on P and the following axioms hold for all
i,je{l,---,n}, x,,x,, ,XEP:
O Ul L) = G b)),
(ii) e is an unique element such that f| e,---,e,x,e,---,e |=x, and e =e,

(iii) x€ f(xln) implies x, € f(x;_ll,m,xf],x,x;l,---,x;l).
It is clear that any 2-ary polygroup is a polygroup.

Example 2.2. Let P = {e,x, y} be a set with 3-ary hyperoperation f'as follows:
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fleee)=e,

f(x,ee)= fle,x,e)= fle.e,x)=x

f(ee)=fley.e)=fleey)=y.

S(x.x.e)=f(x.e.x)= flexx)=1ey}

fy.ye)=f(v.ey)=fley.y)=fex}
flex.y)=fle.y.x)=f(x.e.y)= flx..e)= f(,x.€)= (v e,x) = {x.3}

5y
f(x,x,y)=f(x,y,X)=f(yxX) feey.y)=f(r.xy)=f(y.yx)="P.

It is easy to verify that for x, € P (i = 1,--',5), we have
SO G0 ) x4 x5) = (o, f (625, ) 65 ) = (3000 (o5 24,5 ),
1

this implies that f is associative. Suppose ~'=1: P— P is the identity function on P, then x™' =x,
1

y_1 =y,e =e.Also,

~
—
=
=
><
v
\
—
<
‘<
<
~
Il
E’?

te f(xl,xz,x3) implies x, € f(t,x;],x;), X, € f(xfl,t,x;), X, € f(x;,xfl,t).

Therefore, <P, f,e, 1> is a 3-ary polygroup.
Lemma 2.3. The following elementary facts about n-ary polygroups follow easily from the axioms,

(i) e€ f(e,---,e,x,e,--~,e,xl,e,m,eJ,where i,j€ {1,2,---,n}, i#]j,
— —

i-1 n—j
(i) (x_l)fl =X,
(i) f(xf,e.):f[xf_l,e,~--,e,xi,e.J, 0<k<n-i,
—
(iv) f(xl")_1 :f(x;l,---,xl_l), where A7 ={a71 lae A}.

Proof: (iv)

f .
So | Flt ) f(f(xl”)_l,e.): ) )

On the other hand,
ee f(f(xl ),f( - --,x(l),e.) implies f(xl”)gf(e,---,e,f(x;ly...,xl‘l)_l): f(xgly...,xl‘l)_l.

Then,
A e (e )= ). by i, ©
Therefore, by (2) and (3) f(xln )_1 :f(x;,...,xl_l).

Definition 2.4. A non-empty subset K of an n-ary polygroup P is said to be an n-ary subpolygroup of P if,
with the hyperoperation of P, K itself forms an n-ary polygroup.
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Lemma 2.5. A non-empty subset K of the polygroup <P, f ,e,_1> is an n-ary subpolygroup if and only if,
(i) ee K, (ii) a,,-+,a, € K implies fla",a',a’,,)Cc K .

i 27+l
Proof: It is obtained exactly from definition 2.1.
Lemma 2.6. Let K be an n-ary subpolygroup of P and a,,--+,a, € K , then f(K,a; ): K.

Proof: It is clear that f(K,a;')g K . Suppose k€ K so

k:f(k,e.)e f(z)(k,a;l,az,e.)

-1 -1
g]’(3)(k,a2 ,a, ,a3,a2,e.)

gﬁ,)(k,agl,---,a,j],ag,e.)
= /e a) ag)
c f(K.a3).

Therefore, K = f (K ,as )

Theorem 2.7. Let K,,---,K, be n-ary subpolgroups. of P such that for every O€S,,
f(KJ(l),---,KU(n)): f(KI”) . Then f(KI”) is an n-ary subpolygroup of P.

Proof: It is clear that e=f(e,---,e)e f(K{’). If ¢,-,t € f(Kl”), then for some x;€ K, and
1<i,j<n wehave t, = f(x/),---,t, = flx,]). Thus |
)= rlrlet) = Gon)

c (ks e 1K)
= f(z)(Kuf(K;,Kl ),---,f(K;,K1 ),K;), by associatively of /

= f(z)[Kpf(Kl,K;),“',f(Kl,K;),Kfj, by hypothesis

n-1

= fo{Kl,Kl,f(K;,Kl),--~,f(K;,K1),K;,K;}

n-2

:f(n+1)(K15'”’K15K;""’K;)
= fun (Ko K ) f (K e ) KD KD K )
:f(Kl’f(Kz,K;,e),---,f(Kz,K;,e))

=f(K1,K2,'-',Kn).

Therefore, f is an n-ary hyperoperation on f° (KI" ) If xe f (KI" ), then x€ f (xI" ), for some x, € K,
i=1,---,n. Thus

x'e (f(xl"))_1 = f(xgl,---,xl_l), by Lemma 2.3
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cf(K,,.K,) =f( 1"),by hypothesis.

This concludes that 1K ( ) is an n-ary subpolygroup of P.

3. QUOTIENT N-ARY POLYGROUPS
Definition 3.1. The n-ary subpolygroup N of P is said to be normal in P if for every a€ P
f(a_l,N,a,e.)g N.
Lemma 3.2. Let N be an n-ary normal subpolygroup of P, then
@) f(a_l,N,a,e.)z N , forevery a€ P,
(@) f(a N e)—f(N a e) for every a€ P,
(iif) f(az,N a;ﬂrl)—f(az,N am) for i, j€ {l,--,n},
(iv) f(N,a,e.) = f(N,b,e.) for every be f(N,a,e.),
() if b€ f(N,a,e.), for i=2,---,n then be f(N,a,e.),
o) £(rWap) fVas))= fo(Waadian.ak)= £V agea)s).

Proof: (i) N = f(e,N,e.)

(f(a_1 ,a,e.), N,f(a_1 ,a,e.), e.)
(a_l,a,N,a_l,a,e.)
(a_l,f(a,N,a_l,e.),a,e.)

- (a_l,N,a,e.), since f(a,N,a_l,e.)g N.

Therefore, f (a N,a ' e.
(ii) From f(a,N,a ) N we have f(a,f(a_l,N,a,e.), e.): f(a,N,e.) , and so

f(N a e) (e N,a,e.)gf(2)(a,a_1,N,a,e.)=f(a,N,e.).
Similarly, f(a,N,e.)C f(N,a,e.)and so f(a,N,e.)= f(N,a,e.).

(iii) It is concluded from.(ii).
(iv) be f(N,a,e.) implies f(N,b,e. - f(N,f(N,a,e.), e.) = f(N,a,e.) . On the other hand,
be f(N,a,e.) = ac f(N_l,b,e. = f(N,b,e.). Therefore, f(N,a,e.)= f(N,b,e.).
)

Fve)= £(F(N - N)BY)
fiy(N,N,by,N,by,---,N,b,), since N is normal
Jo) (N, f(N,e.).b,, f(N,e.).b,,--, f(N,e.),b,), since e€ N
SN, f(N.by,e). f(N.b,.e))
f(N, f(N,ay,e.),-, f(N,a,,e.)), by hypothesis and (iv)

= f\N,a, ), by a similar argument.

(vi) Since N is normal it is clear.

Lemma 3.3. Let K and N be n-ary subpolygroups of a polygroup P, where N is normal in P. Then
(i) NN K is an n-ary normal subpolygroup of K,
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(@) f(N, K,e.) = f(K, N, e.) is an n-ary subpolygroup of P,
(iif) N is a normal subpolygroup of f(N,K,e.).

Proof: It is straightforward.

Suppose K is an n-ary subpolygroup of P, we define the relation =, on plr) by
(x;)EK (y;’) if and only if f(K,xg): f(K,y;), for (x;7 ), (y; )E pl-1)

It is clear that the relation =, is an equivalence relation on P The class of (x,,+,x, )€ P s

denoted by K[X;]z {(y;)‘ f(Kay;): f(K’x;)ayza""yn € P}‘

And the set of all these classes is denoted by P/ K = {K [x;]\ Xyttt X, € P}.
Also, we define the relation £ on P as follows:

xéy if and only if there exist a,,---,a, € P such that x, y € f(K,a;), for x,y€e P.

Lemma 3.4. For sequences a,, by in P,
0 f(K.a)N f(K.b)# ¢ implies f(K.a2)= f(K.b}), and"Klal]= Kla2].

(i) if xe f(K,a;') then f(K,x,e.):f(K,a;’),and K| x,e, e =K[a;’].

n—2

Proof: (i) Suppose x€ f(K,a;)ﬂ f(K,b;), then x € f(K,a;): f(K,f(e,a;’ ),e.). So by Definition
2.2.

gf(K,f(K,b;),e.), since x € f(K,b;)
= 7K. b).

Thus, £(K.a} )= f(K. flea} ).e) & f(K, fle.b? ).e) c £(K.B7). Atso £(K .52 )< f(K . a2 ) and
K.a3)=rlK.02).
(i) If xe f(K,ag’), {x}= f(e,x,e.) - f(K,x,e.). Thus by (i)

f(K,x,e.):f(K,a;’) and K{x,e,---,e]=K[a§].

n-2

Theorem 3.5. (i) The relation £ isan equivalent relation in P,
(i) If k[x] is the = class of x and P/K is the set of all = classes, then there exists a one-one

correspondence between P/ K and PUV/K.

Proof: (i) It is clear that £ is reflexive and symmetric. Suppose x= y and ygz, then there exist
sequences a,, by in P such that x,ye f(K,ag’), and y,z€ f(K,b;). By Lemma 3.4,
f(&.al)= £(K.b!). Thus x,z€ f(K,al) and x£z.

(ii) We define ¢):P/K—>P('H)/K by ¢(K[x]):K[x,e,--~,e], for xe P. If K[x],K[y] are in
e P"V/K , then e
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K[x]:K[y] & X, Y€ f(k,a;),forsome a,,---,a,€ P
= f(K,x,e.):f(K,ag’):f(K,y,e.),for some a,, *+,a, € P,by Lemma 3.4

< Klx, ] K[y,e,---,e], by Lemma 3.4.
n-2
Suppose K[a;’]e pi- l)/K, then by (ii) of Lemma 3.4, (p(K[a]) =Kla,e, -, e]= K[a;] for every
ae f(K,a;). Therefore, @ is onto.
We can show K[x,e,---,e] by K[x, e.] and so by Theorem 3.5 P K ={K[x,e.]| XE€E P}, where
%/_/

K[x,e]= {{x;“ }e P("_lﬁzf(K,x;' ) = f(K,x, e.)}.

Lemma 3.6. Let gP, f ,e,_1> be an n-ary polygroup and N be an n-ary normal subpolygroup of P. Then
-1 py N s pl) /N, N[a,e.] — N[a_l,e.] is a function and Na,e] ' = N[a_l,e.].

-1

Proof: Because ' is a function on P and by (ii) of Lemma 2.3 (x )_1 = x, then for 4,B C P, we have

A=B & A'=B".Sofor Nla,e], Na,e]e P"V /N
Nla,e]=Nlpe] = f(N,a,e)=(N,b,e)
& f(N,ae. ) f(N,b,e)!
& ( ,e ) ( - .), by (iv) of Lemma 2.3 and since N is normal

:A:N[,l

Theorem 3.7. If N is an n-ary normal subpolygroup of <P, f ,e,_l>, and for N [al, ], ,N [an, ] in
PN, F(N[al,e.],---,N[an,e.]):{N[t,e.]|te f(al”)}, then <P("_l)/N,F N,” > is an n-ary
polygroup.

=

Proof: Suppose Nla,e.l,---,Nla,,el;N|b.el,---,N[b,.e]e P"V/N and N[ai,e.]zN[bi,e.], for
i=1,---,n. Thus

f(N,a,e.)= f(N,b,e.), for i=1,-
(o) 1N, e))= (N b ﬂN@x»
1. rlat)e)= 1. 1o )
Wbeuef@ﬂ:{renef@%

Therefore, F' (N [al,e.], ,N [an,e ]) (N [bl,e.],--~,N [bn,e.]) and F is well defined.

The associativity of f implies that F is also associative. Also, for every n€ N we have

N[n,e.]:{(u;’)|f(N,u§) f(N,ne)=N = f(n, e.)}:N[e.],
F(N[a,e.],N[e.]) NLf(a e) ] [a e]

So  Nle] is the neutral element of P"V/N  and (Nle] " = Nle.].  Suppose
Nla,,el,---,Nla,,e], Nla,e]e P"V/N and Nla,e]e F(Na,el,---,Nla,,e.]). Then

F(N.a.e)c f(N. f(a,N).e)
f(a1 9f(N az’e) z+1)
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FN.ae) < (0 S (Ve )
:f(N,f(a;_ll,~--,a1 ,a,a;’, -~,a:1,e.)),

Na,ele F(Vla2 el Nl e] Mo e) vl e vl ).

Definition 3.8. Let <R,f,el,_1> and <Pz,g,ez,_1> be n-ary polygroups. A mapping ¢ from B, to P, is
said to be strong homomorphism if for every a,,---,a, € F,

ole)=e, and o(f (a7 ))= g(0(a,). . 0(a, ).

A strong homomorphism ¢ is said to be an isomorphism if f is one to one and onto. Two n-ary
polygroups B, P, are said to be isomorphic if there exists an isomorphism from F onto P, . In this case,
we write £} = P,. Moreover, if ¢ is a strong homomorphism from £, to P then the kernel of ¢ is the

set kerp={xe B|¢p(x)=e,}.

Lemma 3.9. Let @ be a strong homomorphism from <R,f,e1,_l> to <P2,g,ez,_1> . Then

0] (p(a)_1 = (o(afl) forevery a€ B,
(ii) @ is injective if and only if kerg={e, },

(iif) Q’(f ( (n o ))= g(k)((ﬂ(al)""7¢)(ak(n—1)+1 )) forall k€ N and Ay, Ay © A.
Proof: (i) we know that ¢, € f(a,a”e,.), then
e, =gple)e plfla.a” e.)= glolahgla?). ole))= glola). pla')e..).
ola” e glpla) " e,)=pla) "

Therefore, q)(a)_l = (p(a_l).
(ii) suppose kerp = {el} and w(y) = ¢(z) for y,ze B. Then

¢(el): €€ g((p(y),(o(y)_l,ez.) = g((”(z)’w(y_l )’62') = g(f(z,y_l,el,)),
So there exists x€ f (Z, yil,el.) suchithat ¢(x)= (e, ). But kerg={e, } implies x = ¢, and

€ e f(Z’yil»er)s ze f(el’y’el'):{y}’ z=Yy.

If @ is injective and x € ker ¢, then QJ(x) =e, = ¢(el) and x=e¢,. So ker¢ = {el}.

(iii) The proof is straightforward by induction on k.
It is easy to verify that ker ¢ is an n-ary subpolygroup of P, but in general it is not normal in B,.
We are now in a position to state and review the fundamental isomorphism theorems in n-ary

polygroups.

Theorem 3.10. (First isomorphism theorem). Let ¢ be a strong homomorphism from <P1 f ,el,_1> to
<Pz,g,ez,_1> with K = ker ¢ such that K is an n-ary normal subpolygroup of B, then Pl(”_]) /K =Img

Proof: We define l//:Pl("_l)/K—%Im(/) by l,u(K[a,e]) ¢( ) Klb,e]e P" V/K then

If K
K[a,e.]:K[b,e.] = f(K a, e)= ( )
= ¢( (K a, e)) ( K,b,e.))
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g(p(K).pla).e,)= g(p(K).p(b).e,.)
g(pla).e,.) = gl@lb).e,.). since p(K) = e,
pla)=p(b)

y(Kla.el)=w(K(b.e]).
If,K[a,e],-,K[a,,e]e P"™/K then

l//(F(K[al,e.],---,K[an,e.])) = l//({K[t,e.] |te f(al" )})
={ol)1re sla)}

=
=4
=
=

We know w(K[el.]): ¢)(el): e,. Also, if w(K[a,e.]): e,, then (p(a)z e,; and ac€ kerp=K. So
K [a,el.] =K [e1 ] and by Lemma 3.9, is injective.
Theorem 3.11. (Second isomorphism theorem). Suppose J,,*==,J,

polygroup <P, f ,e,71> such that J, is normal and f (Jg(ﬂ“): f (Jl") for every o€ S, then
fUrtea ) e )ng, = 1)/ g,

are n-ary subpolygroups of an n-ary

Proof: We define ¢ : f(Jli_l,e,Jf’ )—) f(J]” )/ J, by ¢(x) =J, [x,e.]. It is clear that ¢ is well defined.

i+l

If x,-x, € f(Jien, ) then f(x)c £l e, 2, ) and

i+l

olr ()=l )el={nlelice k= FU el sl el) = Flolx ) olx,).

Therefore, ¢ is a homomorphism. It is clear that ¢ is onto. Now suppose xe f (af'l,e,a;’+l) and
X € ker ¢ too, then

plx)=J[xe]=Jlel,
f(Ji’x’e'):f(Ji’e')z‘]i’
xe [ J,e)=J,.

So ker (0gf(J{_l,e,J77 )ﬂ J,.

i+l

Conversely, if x& f(J]i"l,e,Jf’ )ﬂJl. then f(Jl.,x,e.)zJ. and so w(x):Jl.[x,e.]:Ji[e.]. So

i+l i

X€ ker@ and ker p = f (J e J, )ﬂ J, . Therefore, by first isomorphism theorem
FU e ) U e N = £ ),

Theorem 3.12. (Third isomorphism theorem) Suppose K and N are n-ary normal subpolygroups of
P, f,e, 71> polygroup such that N C K . Then <K/N,F,N,7l> is an n-ary normal subpolygroup of
PV /N,FN,Y and (P /N) /(K /N)= PU /K

Proof: It can be easily verified that K =) /N is an n-ary subpolygroup of P /N . If for every
Nlx.e]e P /N we show F(N[x",e]. K"/ N, N[x,e] ,N[e.ﬁ; K"/ N, then K"/ N is
an n-ary normal subgroup of PN, Suppose N [x, e.]e K"V/N , then
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F(N[x_l,e.],N[K,e.] ,N[x,e] ,N[e.l): {N[t,e.]| te f(x_l,K,x,e.)}g K /N,

because K is normal in P and f (x*1 K, x, e.)g K.
Let @:P"V/N——P" /K and ¢@(N[xe])=K[x.e]. 1f N[xe],N[y,ele P*/N and
N[x, e.] = N[y, e.] , then

(Nxe):f(N y,e.)
[(K f(N.x.e)e)=f(K f(N,ye)e)
S(f(K.N.e)xe)=f(f(K.N.e).y.e)
f(K,x,e)= ( ,e.),since NC K

).
K[x, e.] K[y, ]
o(Klx.e))=p(Kly.c)).

Therefore, @is well defined. Now suppose N|x,,e ], ,Nx ,e. ]e PU /N | then

)={o(VlieDlee 1(x)}
{Kte]|te f(x1 )}

( [x1’ ]a [x e])
=F(p(Nlx.e. ), o(Nlx,.e]).

¢(F(N[xl’ 5° N[x

It is clear that @ is onto and KU"V/N C ker .
If Nlaelekerg, then @(Nla,e])=Kle], f(K,ae)=K and acK, Nla,e]e K" /N.
Therefore, ker ¢ = K"V/N and by Theorem3.10 (P("_l) /N)/(K(”_l) /N)E P /K

Definition and Theorem 3.13. Let <Pl,f1,el,_l> to <Pz,f2,ez,_[> be two n-ary polygroups, so on B X P,
we can defined an n-ary hyperproduct f,Xf5 and a unitary function o by

fix fillapal) (@)@ dae filar).a'e fla))and (@) = (@)),
where a,a,€ B,d’,a € P, for i =1,:--,n. Then
(@) <R X P, f, X f5, (el,ez), (_1,_1 )> , is an n-ary polygroup,
(i) (fl Xfz)(k)((aval/)""9(ak(,171)+1>ak(,1 1)+1)) {(u V) |lue (f1 )(k)(ak("_ll)”),ve (fz )(k)(a”‘(”l‘l)“)}
_ (fl )(k)(ak(n—ll)H)X (f2 )(k)(a/k(nl—l)ﬂ).

Proof: It is straightforward.

Corollary 3.14. If N|, N, are n-ary normal subpolygroups of F, P, respectively, then N, X N, is an n-
ary normal subploygroup of £ X P, and

(Bx P /(N xNy)= (R / N < (B"/ N, )

Proof: It is straightforward.
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4. THE FUNDAMENTAL N-ARY GROUPS OF N-ARY POLYGROUPS

Let <P, f, e,_l> be an n-ary polygroup. We define the relation [ " as the smallest equivalence relation on
P such that <P 1B, f18,B (e),™) is an n-ary group, where P/ /3 is the set of all equivalence classes
of B, and when B (a,),--,8 (a,)e P/ B’

f/ﬁ*(ﬂ*(al),---,ﬂ*(an))= ,B*(a), for every a € f(ﬁ*(al),---,ﬂ*(an)).

Also, P/ ,3* is called the n-ary fundamental group of P. This relation is studied by Corsini [15]
concerning hypergroups, and by Davvaz and Vougiouklis [12] concerning n-ary hypergroups. Since n-ary
polygroups are a certain subclass of n-ary hypergroups, we have the definition of ,B* for n-ary polygroups
as [3° for n-ary hypergroups, as follows. Let for k€ N, [, = {( y)|x,ye S (al, Ay, 1)+1)s for
SOME @y, Ay (1)1 € P},ﬂo = x x)| xe P} p= Uﬁk Then, xfy if and only if xf,y for some
k=>0.By Theorem 4.1 of [12], ,3* is the transitive cléstre of the relation . Also, if for n-ary polygroups
<P,f,e, 7l> define

Sl 2{{a}|a€ P}’ S ={f(k)(a1>"'a (n- 1+1)’a1a 5l (nm1) € P} , U= Uf[k]v

keN,

then xfy if and only if {x, y}e U, for some yc U
The kernel of the canonical map @: P——P/ /3 is called the core of P and is denoted by @, .
Here we also denote by @, the neutral element of P/ ,5* »It is easy to prove that:

W, = ,B*(e) and B"(x) = ﬂ*(x‘l), forall xe P
Theorem 4.1. (See Theorem 4.3 of [12]) Let ,31* , ﬁ; and ,3* be the fundamental equivalence relations
on n-ary polygroups £, P, and B X P,, respectively, then
(RxP)/ B-=R/B xP/B,.

Corollary 4.2. If N,, N, are n-ary normal subpolygroups of £, P, respectively, and 5, ,31* and ﬁ; are
the fundamental equivalence /elationon (P ><P )("_1)/ N, XN, : P(”_] /N,, and Pz(”_l) /Ny,
respectively, then ((P1 ><Pz)(n‘l)/Nl X N, )/,3* ( 1) /N, )/ﬂ1 ( /N, )/,52

Proof: It is concluded from Corollary 3.12 and Theorem 4.1.

Lemma 4.3. Let @ <Pl,f1,el,_l>%<Pz,f2,ez,_1> be a strong homomorphism of n-ary polygroups,
and S, [ be the fundamental relation of P, P, respectively, then

ker ¢ = { " (x)|xe P, B (p(x)=o } is an n-ary normal subgroup of B/ /3, .

Proof: Assume £ (x,),---, B (x,)e ker¢ . Then B ((p(x1 )) == ((o(xn )) = w, and
fl/ﬁl( 1(x1)> A (xn))
= ﬂl*(fl(ﬂl (xl)"”’ﬂl (xn )))= since f(ﬂl xl) ~ B (xn ))g f( l*(xl)"”’ﬁl*(xn ))
= A (et ). sinee £ ) (8] (5 )oeee, B (5,)
=B (z), for some z€ f(xl")

So

¢7(Z)€ ¢7( 1(x1n )): /> (¢’(x1 )7"'7¢7(xn ))
B (p(2) = B, (fo(o(x),--, 0(x,)))
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= ! BB (o). 5 (0 (,)
=/, /,5;((0,,2.)= Wy,
Therefore, f, /ﬂl*( " (x, ), B (x, ))e kerg.

Let ﬁl*(bl)a“':ﬂl*(bf—l)aﬁ;(bm)a“'nﬁl*( ) IB*(“)E kerg,then b,--+,b,_,,b,,,,--+,b,,a€ F and
there exists x€ B, such that a€ f;(b"],x,b] > Thus,

ﬂl*(a):ﬂl*(fl( T blr-ll-l)) f/ﬂl( 1( ) ﬂl (bz 1)’:31( ’:31(

). (b )
Also, ¢7(a)€¢7(ﬁ(”xb,”+1)) L@lb), . p(b,).p(x). 0B, ).+, 0(8,)). and
r, = B ((a))= B (1 ((b Dol ) o). 0l ) 0(0,)
= L1 B(B5(00). . B (0(b,). B (0)). B (b)) B 0(6,))
=f2/,3;(a)p2,""a)p2,,52( ( ))7sz’“"a)P2)—ﬁ2( ( ))

i-1

B(B,))-

Therefore, /3, (x)€ ker ¢ . Let B (a)e P/ and B (x)e ker@ , then
12 /ﬁl*(,31*(a),ﬂl*(x),ﬂ]*(a)_l,a),)1 .)= ,Bl*(f(z)), for some z € fl(a,x,a_l,el.).
On the other hand,

B (0(2) = B (ol flaxia™ c.))
_ 2 (Aleta)ols).0la)" <)
;m@@wwuu<» :(p(@)”,,.)
<1, LB B (0(a) o, B 0l 0, )= @,

Therefore, ker ¢ is an n-ary normal subgroup.

Theorem 4.4. Let <P, f, e,_1> be an n-ary polygroup and M, N two n-ary normal subpolygroups of P with
N c M , then

) f(N,x;')= f(N,y;') implies f(M,x;'): f(M,y;), so if in P"V/N, N|x,e]=N[y,e] then
M[x,e.] = M[y,e.] in P/ M,

@i £V, x3) @ fi AW 1 ) £ (Nte ) then
f(M,xQ)g f(k)(f(MJé) . f(M Lk (a2 ))

so if Nlx,e]e F(k)(N[tl,e.] N[t (n-1)s1>€ ]) for some k€ N,, t,€ P, 1<s<k(n—1)+1, then
Mlx,e]e F(k)(M[tl,e.],---,M[tk(”_1)+1,e.]).

(iii) if @ P /M ——P"V /N is canonical map and [3,,, B, are the fundamental equivalence
relations of P/ M , PN , respectively, then we have

(P"/N)/ B,) kerp= (P /M) B,
Proof: (i)

SN x)=rvys) = ) £ (N,y7)
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= f(N,x;’)g f(M y2) since N M
= f(N,x;’)_1 gf(M,y;’) =f(M,yn ,---,yz‘l),byLemma&S
= M gf(f N, x, )_l,y;’),by Definition 2.1 and Lemma 2.3

= bt (N 5))

Similarly, we can get f (M , X5 ) cf (M Yy ) Therefore, f (M X, ) =f (M vy )

Gy 1t V) SV ) AVt ) = NG £t ). Then,
f(N,x;)=f(N,t1" N ) for some 1€ fi)|¢ (m, byys sty 1)+12) So by (i),

f(M,x2)=f(M,t12, ) for 1€ f (ma 22’“.’tk(n—1)+12n)'

Therefore, f(M,xZ)g f(M’tfz_laf(-)(tln’tzga L=t )) f(k (f(M’tlg) ) f(M Li(n- 1)+12 ))
(iii) We define the map y - (P"™) /N )/ i, ——(P"™) / M)/ B by

I//(ﬂ; (N[X,e.]))= By, (M [x, e.]) ,for all N[x, e.]e P I/N.

Suppose N[x e] N[y,e.]e P /N and By (N[x,e.]) =By (N[y,e.]) , then there exist

N[x], J,e N[x ,ele PN, uy, - u, €U, ., such that
Nlx.e]= Nlx,e ] N[y 1= Nlx,.el. “
{N[xi’e']’N[ Xig1>€ ]}Cu fOI'l—l (5)

We know foreach i =1,---,m
u,.=F(k)(N[tl,e.],---,N[tk(n i€ ]) for some ke N,,t € P, l<S<k(n l) 1.

Corresponding to every u;, i=1,-=:,m, we set v, = F(k)(M[tl,e.] M[t (n-1)+1>€ ])El/l

Hence, by (i7), equation (5) implies "
{M[xl.,e.],M[le,e.]}g v,fori=1---m. (6)
By (i) and (4) we have Mlx,e.|= M[x,.e], M[y,e]=M]x, . ,e]. 7)

Therefore, by (6) and (7), ,3:4 (M[x e. ]) B, (M[y ])
Now, we show that i is a homomorphism of n-ary groups:
w(F 188, (Nxe)). . By (NI, e )
~ B (F(Vs e M, e)
Wlg (T eD)iee ()
=18, (Mee))ee rx )}
=By (FM[x,e], - M]x,.e]))
= F 18,8y Mx,e)). . 8, (M]x,.e]))
= F/ B,y (B (Nx.e)w (B (Nx,. ).
also, y(o, )= wlBi (Ve )= By (Mle)= o, And
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14.
15.

M. Ghadiri/ B. N. Waphare

kery = {IB;\(/ (N[x,e.])| I//(ﬂz*v (N[x,e.]))= wP("")/M}
(B, (ke B oV ed) = 0,00, }
=ker¢.
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