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1. INTRODUCTION 
 

In the domain { }0 1 0 1( , ); ,D x y x x x y y y= < < < < , we consider the equation  
 

                                        feuducubuauuuL yxxyxxxxy                                       (1) 
 

where 
 

 ,,,,,, 21 DCfedcba   
 

The special cases of the equation (1) are encountered during the investigation of processes of moisture 
absorption by plants [1], where the class lkC   means the existence and continuity for all derivatives  
 

srsr yx  /        lskr ,...,0;,...0  . 
 

We will call the solution of the class a regular. 
The solution of the Goursat problem for the equation (1), with the help of the Riemann function 

),;,( yxR , introduced as a solution of the following integral equation 
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     (2) 

 
was obtained in [2] and [3] (see also, [4-5]). 

Also, ),( yxV  remains the solution of the following equation adjoint to the equation (1) 
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                                   .0)()()()()(*  eVdVcVbVaVVVL yxxyxxxxy                                   (3) 

 
In this paper, some cases of constructing the above function in quadratures are considered, which 

provides for the solution of the original problem explicitly.  
 

2. MAIN RESULTS 
 

10) Let 0 edcb  and 0a . Then the solution (2) will obviously be the following function:  
 

.),(exp);,( 


dxayxRV
y

  

 
20) A similar variant appears when 0b  and 0 edca . Here 
 

.),(exp);,( dtytbyxRV
y




  

 
30) The following case is analogous to the previous two ( 0 xdbeca  and 0d ). Hence, 
the equation (2) takes the form: 
 

.1),(),(),(   dtytVytdxyxV
x


 

 
Put 
 

,),(),(),( dtytVytdyx
x




  

 
then, by differentiating it with respect to x we get: 
 

).,(),(),(),( yxdyxdyxxyxx    
 

With the additional condition 0),( y . Solving this linear equation, we have  
 

,),(exp),(),(),(exp dtdsysdsytdyxdtytdt
t

xx



























  

 
or 
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t
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As a result, with the help of the formula 
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it is clear that: 
 

,),(exp),(1);,( dtdsysdsytdxyxRV
t

x

x









 



  

 
Let us consider some less obvious cases. 
40) 0 edba , and ).()( ynxmc   
Here the result of the paper [6] may be used and we can prove that 
 

                                                 },])()([2{),;,( 2

1
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dndttmJyxR
yx

                                       )4(  

 
where 0J  is the Bessel function of the first kind and order zero 
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50) 0 ecba , and .0)(),( 2  yyxd   
It is obvious that: 
 

 
  ).0(,))((cosh

);0(,))((cos




dyxR

dyxR




 

 
60) 0 dcba , and .0)(),(  yeyxe  
Using the standard method of finding the solution of the integral equation (2) in the form of the 
Neumann’s series, the following equation can be obtained 
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70) 0 dcba , and ).()(),(),( ynxmyxxeyxc   
Using the notation 
 

,),(),(),( dtdtVtetyx
yx



  

 
The equation (2) can be written in the following form 
 
                                          .0),,()()( 

 


yxxy yxxeynxm                                      )5(  

 
The Riemann function *R  for the equation (5) coincides with the right part (4). 
Using ([7]; p. 448), we have the following: 
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Using the notation for   and (5), it is clear that  1V , because 
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80) .0 ed  

In this case, the equation (2) transforms into the equation of Riemann function, which responds with 
the following 
 

.0 cubuauu yxxy  
 
if 
 

,0 cabax  
 
or 
 

,0 cabby  
 
respectively (see [8]): 
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1 1a a ( y ) x , b b ( x ) y , c ab m( x ) n( y ), const ,          
 

then (see again, [8] and [9]) 
 

,)()()(exp)()(2),;,( 11
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90) .0 xecxdb  

Put the new unknown function 
 

,xWV   
 
Then the equation (2) takes the form  
 

,
1

),(),(

),(),(),(),(),(
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dtytWyttddxWxayxW
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which is equivalent to the Goursat problem (taken into consideration that: ** , yx   ): 

 
,0)(  WxeaxdxdWaWW xyyxxy  
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To justify the conducted operations it is required that 0* x , i.e. the domain D  should be strictly 

found either to the right or to the left from the Y-axis. 
The equation (6) has the same form as in 80). From the addition to 90) of any identity, we have 
 

,0)(,0  eadxaeadd xy  
 
or the representations: 
 

,),()(2

,)(,)( 11

constynxmeadxd

yxbxdxyaa

y 




 

 
leads to the possibility of constructing ),;,( ** yxyxW explicitly, after which 
 

).,;,(),;,(  yxxWyxR   
 

Let us also consider cases when the problem of finding the Riemann function is solved in quadratures 
through the direct integration of the adjoint differential equation (3). 
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Therefore, the operation in its left part is split, for example 
100)  
 

.0))()(( 
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So,  
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Then to find V , it is necessary to find 2V  and 1V . Since 
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Therefore 
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and hence, 
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Then,  
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In order to find 2C , we put xy   ,0  and then 0xx   in (2). This leads to the equation 

 

.1),(),(),( 000
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   dxVxayxV
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Because 
 

                                                              .),(exp),( 00
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By virtue of (9), ).,()( 02 yxVyC   Now, it is possible to find )(1 xC . From (8) it follows that 
)(),( 101 xCyxV  . We suppose that in (2) 0, xy   , and then 0yy  , the following 

equation may appear 
 

                                         .1),(),()(),(),( 0000

0

  dtytVytdtxytbyxV
x

x

                                   (11) 

 
Therefore, three cases of solvability in quadratures: 

 

i) ,),(exp),(,0),( 00
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ii) 
 

,0),(),(  yxxdyxb  
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iii) ,),(),( yxdyxbx   

then from (11), the solution of the Cauchy problem: 
 

,0),(),(),( 000  yxVyxbyxV xxx  
 

),,(),(,1),( 000000 yxbyxVyxV x   
 

provided by the following formula 
 

.),(exp),(1),( 0000
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dtdybyxbyxV
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Any of the above-mentioned cases enables us to define )(1 xC . Now, it is only required to define 
)(yC . Since 

 

),(),( 02 yCyxV   
 

then using the equation 
 

  ,0),(),(),(),(),()(),( 000000   yxVyxbdxVxcxaVyxV x

y
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obtained from (2) through the differentiation with respect to x , when 0xx  , the following function 
may be calculated 
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  .),(),(),(),(),()( 000001

0

 dxVxcxayxVyxby x
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This enables to calculate )(yC  from the equation 

 

.)( 2VVVVV xyxy    
 

Now, let us define the condition that is imposed on the coefficients of the equation (1) that provide 
the representation (3) in the following forms: 
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Having completed the operations in the left side 1) from the equation (13), we have: 
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If the equation (3) is written in the form 
 

                                         
.0)(
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And comparing (14) with (15), the following conditions may be obtained for the coefficients in the 

form  
 

.0;0

;02,2
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Similarly, we find the conditions that provide the other variants of splits (13), i.e. take the equation 3) 

from (13). We write all of them under the same numbers. 
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Now, in order to obtain the groups of conditions of the explicit Riemann function, it is necessary to 
compare the identities i), ii) and iii) with each set 1) to 6). 
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Obviously it reduces to the supplement i), ii) or iii) into the corresponding set. Here, the sets may be 
simplified, sometimes coinciding with the previously obtained ones or being their special cases. Having 
performed the above comparison and rejected the repeating sets, we come to the following groups of the 
conditions: 
A) With general assumptions .0 db  
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B) With assumptions 0d  and ).(),( ybyxb   
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C) In supposition 0d . 
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D) During the identity performance dbx  . 
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E) Under the conditions 0)(  yxdxb  . 
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Consequently the above-mentioned considerations enables us to formulate the following result: 
 
Theorem: The Goursat problem for the equation (1) is solved explicitly in all the above-mentioned cases. 
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