Iranian Journal of Science & Technology, Transaction A, Vol. 32, No. A2 Printed in the Islamic Republic of Iran, 2010 © Shiraz University

JOHNSON AMENABILITY FOR TOPOLOGICAL SEMIGROUPS*

M. MAYSAMI SADR^{1, 2} AND A. POURABBAS^{2**}

¹Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, I. R. of Iran Email: sadr@iasbs.ac.ir
² Faculty of Mathematics and Computer Science, Amirkabir University of

Technology, 424 Hafez Avenue, Tehran 15914, I. R. of Iran

Email: arpabbas@aut.ac.ir

Abstract –A notion of amenability for topological semigroups is introduced. A topological semigroup *S* is called Johnson amenable if for every Banach *S* -bimodule *E* , every bounded crossed homomorphism from *S* to E^* is principal. In this paper it is shown that a discrete semigroup *S* is Johnson amenable if and only if $\ell^1(S)$ is an amenable Banach algebra. Also, we show that if a topological semigroup S is Johnson amenable, then it is amenable, but the converse is not true.

Keywords – Amenability, crossed homomorphism, topological semigroup

1. INTRODUCTION

The Johnson's Theorem [1] asserts that a locally compact Hausdorff group *G* is amenable if and only if the Banach algebra $L^1(G)$ is amenable. This is not true for discrete semigroups.

Duncan and Nomioka [2] showed that if $\ell^1(S)$ is amenable, then *S* is amenable, and for a wide class of inverse semigroups *S*, they showed that $\ell^1(S)$ fails to be amenable if E_S (the set of idempotent elements of *S*) is infinite.

Amini [3] has recently introduced the nation of module amenability for Banach algebras and showed that, under some action for an inverse semigroup *S*, $\ell^1(S)$ is module amenable if and only if *S* is amenable.

In this paper we introduce the concept of Johnson amenability for topological semigroups. In particular we show that a discrete semigroup *S* is Johnson amenable if and only if $\ell^1(S)$ is an amenable Banach algebra.

2. PRELIMINARIES

Let *S* be a topological semigroup, that is, a semigroup which is a topological space and the semigroup multiplication is separately continuous. A Banach space *E* is called a Banach *S* -bimodule, if there exists a two sided linear transitive action of *S* on *E* such that,

i. $s \cdot (x \cdot t) = (s \cdot x) \cdot t$ for all $s, t \in S$, $x \in E$,

ii. if $s_i \to s$ in *S* and $x \in E$, then $s_i \cdot x \to s \cdot x$ and $x \cdot s_i \to x \cdot s$ in the norm topology, and iii. the action is bounded, that is, there is a $M > 0$ such that for every $x \in E$ and $s \in S$, we have

$$
||s \cdot x|| \le M ||x||, \quad ||x \cdot s|| \le M ||x||.
$$

 \overline{a}

Received by the editor September 16, 2009 and in final revised form September 19, 2010

Corresponding author

M. Maysami Sadr / A. Pourabbas

We say that the right (respectively, left) action of *S* on *E* is trivial, if $x \cdot s = x$ (respectively, $s \cdot x = x$) for $s \in S$ and $x \in E$; Also, the right (respectively, left) action is called zero, if $x \cdot s = 0$ (respectively, $s \cdot x = 0$).

If *E* is a Banach *S* -bimodule, then the topological dual E^* of *E* is also an *S* -bimodule, where the action is defined by

$$
\langle s \cdot f, x \rangle = \langle f, x \cdot s \rangle, \quad \langle f \cdot s, x \rangle = \langle f, s \cdot x \rangle \quad (s \in S, f \in E^*, x \in E).
$$

Note that if $s_i \to s$ in S, $f_i \to f$ in E^* in the weak*-topology and $\sup_i ||f_i|| < \infty$, then $s_i \cdot f_i \to s \cdot j$ and $f_i \cdot s_i \to f \cdot s$ in the weak*-topology and the dual action is also bounded.

Let $C(S)$ be the Banach algebra of complex valued continuous bounded functions on *S*. Then $C(S)$ is an *S* -bimodule via the following actions

$$
a \cdot s(t) = a(st), \quad s \cdot a(t) = a(ts) \quad (s, t \in S, a \in \mathbf{C}(S)).
$$

We call these actions the right and the left function module actions respectively.

A function $f \in \mathbf{C}(S)$ is right uniformly continuous if $\lim_{k \to \infty} \|f \cdot s_{i} - f \cdot s\|_{\infty} = 0$ whenever $s_{i} \to s$. The Banach algebra of all right uniformly continuous functions on S is denoted by $\text{RUC}(S)$. Similarly the Banach algebra of all left uniformly continuous functions on S is denoted by $\text{LUC}(S)$.

Note that $\text{RUC}(S)$ (respectively, $\text{LUC}(S)$) is a Banach *S*-bimodule with the right (respectively, left) function module action and trivial left (respectively, right) action.

Let *E* be a linear subspace of $C(S)$ which contains the constant function 1_s . A mean on *E* is a functional *m* in E^* , such that $m(1_S) = ||m|| = 1$. Suppose that *E* is also closed under right function module action. Then the mean *m* is called left invariant if $s \cdot m = m$ for all $s \in S$. Right invariant means are defined similarly.

Definition 2.1. A semigroup *S* is called left (respectively, right) amenable if there exists a left (respectively, right) invariant mean on $\text{RUC}(S)$ (respectively, $\text{LUC}(S)$); *S* is called amenable if it is left and right amenable.

Recall that if *S* is left amenable with respect to some topology, then it is left amenable with respect to all topologies which are coarser than that. Thus a commutative topological semigroup is amenable, since it is amenable with discrete topology [4, page 16].

We now give the definition of amenability for Banach algebras. Recall that, for a Banach algebra *A* , a Banach space *E* is a Banach *A* -bimodule if *E* is an *A* -bimodule and there is a constant *M* such that $\|a \cdot x\| \le M \|a\| \|x\|$ and $\|x \cdot a\| \le M \|x\| \|a\|$ for each a in A and x in E.

If *E* is a Banach *A* -bimodule, then the dual space E^* is a Banach *A* -bimodule with the actions defined by $\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle$ and $\langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle$, for *a* in *A*, *x* in *E* and *f* in *E*^{*}. A derivation of *A* into an *A* -bimodule *E* is a linear map $D: A \to E$ such that $D(ab) = a \cdot D(b) + D(a) \cdot b$, for all a, b in *A* . For *x* in *E*, the map $a \mapsto ax - xa$ is a derivation. Such derivations are called inner.

Definition 2.2. A Banach algebra *A* is amenable if for any Banach *A* -bimodule *E*, every continuous derivation $D: A \rightarrow E^*$ is inner.

3. JOHNSON AMENABILITY

Let *S* be a topological semigroup and let *E* be a Banach *S* -bimodule. A bounded crossed homomorphism is a weak*-continuous map $D : S \to E^*$, such that $D(st) = s \cdot D(t) + D(s) \cdot t$ for every

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A2 Spring 2010

Johnson amenability for topological semigroups

 $s, t \in S$ and $\sup_{s \in S} ||D(s)|| < \infty$. If *f* is in E^* , then $d_f : S \to E^*$ defined by $ad_f(s) = s \cdot f - f \cdot s$ is a bounded crossed homomorphism. Such bounded crossed homomorphisms are called principal.

Definition 3.1. Let *S* be a topological semigroup. Then *S* is called Johnson amenable if for every Banach *S* -bimodule *E*, every bounded crossed homomorphism from *S* to E^* is principal.

Proposition 3.2. For a topological semigroup *S* the following are equivalent.

i. *S* is left amenable.

ii. For every Banach *S* -bimodule *E* with trivial left action, any bounded crossed homomorphism $D: S \to E^*$ is principal.

Proof: First, suppose that *S* is left amenable. Let *E* be a Banach *S*-bimodule and let $D : S \to E^*$ be a bounded crossed homomorphism. For every $x \in E$ we define $\omega_x : S \to \mathbb{C}$ by $\omega_x(s) = \langle D(s), x \rangle$. Then $\|\omega_x\|_{\infty} = \sup_{s \in S} |\omega_x(s)| \leq \sup_{s \in S} \|D(s)\| \|x\| \leq M \|x\|$, where $M > 0$ is a bound for *D*. Let $s_\lambda \to s$ in *S*. Then $D(s_\lambda) \to D(s)$ in the weak*-topology. Thus $\omega_x(s_\lambda) \to \omega_x(s)$, that is, ω_x is continuous. Let $t_\lambda \to t$ in *S* . Then

$$
\begin{array}{ll} \left\|\omega_x\cdot t_{\lambda}-\omega_x\cdot t\right\|_{\infty}&=\displaystyle\sup_{s\in S} \mid \omega_x(t_{\lambda}s)-\omega_x(ts)\mid\\ &=\displaystyle\sup_{s\in S} \mid \langle D(t_{\lambda}s),x\rangle -\langle D(ts),x\rangle\mid\\ &\leq \mid \langle D(t_{\lambda})-D(t),x\rangle \mid+\displaystyle\sup_{s\in S} \mid \langle D(s),x\cdot t_{\lambda}-x\cdot t\rangle\mid. \end{array}
$$

Since the net $D(t_1)$ is weak* convergent to $D(t)$, then $|\langle D(t_1) - D(t), x \rangle| \to 0$. Also, $\sup_{s \in S} |\langle D(s), x \cdot t_{\lambda} - x \cdot t \rangle| \leq M \|x \cdot t_{\lambda} - x \cdot t\|$. Therefore, $\sup_{s \in S} |\langle D(s), x \cdot t_{\lambda} - x \cdot t \rangle| \to 0$ since $x \cdot t_{\lambda} \to x \cdot t$ in norm and so $\|\omega_x \cdot t_\lambda - \omega_x \cdot t\|_{\infty} \to 0$, which implies that $\omega_x \in \text{RUC}(S)$. Now, let *m* be a left invariant mean on **RUC**(S). Define a linear functional f on E by $\langle f, x \rangle = m(\omega_x)$ for every $x \in E$. Then we have,

$$
\displaystyle \left\|f\right\|=\sup_{\|x\|\leq 1}|\left|=\sup_{\|x\|\leq 1}\|m(\omega_x)\leq \sup_{\|x\|\leq 1}\left\|\omega_x\right\|_{\infty}\leq M.
$$

Thus $f \in E^*$. For all $x \in E$ and $s, t \in S$, we have

$$
\omega_{x \cdot s}(t) = \langle D(t), x \cdot s \rangle \n= \langle s \cdot D(t), x \rangle \n= \langle D(st), x \rangle - \langle D(s), x \rangle \n= \omega_x(st) - \langle D(s), x \rangle 1_S(t).
$$

Therefore, $\omega_{x \cdot s} = \omega_x \cdot s - \langle D(s), x \rangle \cdot 1_S$. This implies that

$$
\langle f - s \cdot f, x \rangle = \langle f, x \rangle - \langle f, x \cdot s \rangle
$$

= $m(\omega_x - \omega_{x \cdot s})$
= $m(\omega_x - \omega_x \cdot s - \langle D(s), x \rangle) \cdot 1_S$
= $\langle D(s), x \rangle$,

for every $x \in E$ and $s \in S$. Thus $D(s) = f - s \cdot f$ for all $s \in S$, and *D* is principal.

Conversely, consider the Banach *S*-bimodule $E = RUC(S)$ with trivial left action. Let $F = E / \mathbb{C}1_{\mathcal{S}}$. Then *F* is a Banach *S*-bimodule and F^* is canonically isometrically isomorphic with the submodule $L = \{f \in E^* : \langle f, 1_g \rangle = 0\}$ of E^* . In particular, *L* is the dual of a Banach *S*-bimodule. Let

M. Maysami Sadr / A. Pourabbas

 $f \in E^* \setminus L$ be arbitrary (note that by the Hann-Banach theorem $E^* \setminus L \neq \emptyset$). Define $D : S \to L$ by $D(s) = s \cdot f - f$. Clearly *D* is a bounded crossed homomorphism. Thus *D* is principal and so for some $g \in L$ we have $D(s) = s \cdot q - q$. Thus for $h = q - f$, we have $h \neq 0$ and $s \cdot h = h$ for every $s \in S$. Since $\text{RUC}(S)$ is a commutative C*-algebra, there exists a compact Hausdorff space Δ with a canonical left action of *S*, such that $\mathbf{C}(\Delta)$ and $\mathbf{RUC}(S)$ are isometrically *-isomorphic C*-algebras and isomorphic *S*-modules. Thus one can consider *h* as a *S*-invariant complex Borel regular measure on Δ . Now, $|h|/|h| (\Delta)$ is an invariant mean for *S*, where $|h|$ denotes total variation measure of h.

With the same argument of Proposition 3.2 one can prove that, *S* is right amenable, if and only if for every Banach *S* -bimodule *E* , with trivial right action, every bounded crossed homomorphism from *S* to E^* is principal. Thus we have,

Theorem 3.3. Let *S* be a topological semigroup. If *S* is Johnson amenable, *S* is amenable.

Lemma 3.4. Let *S* be a topological semigroup with a unit element *e* and let *E* be a Banach *S* -bimodule with either zero right action or zero left action. Then any bounded crossed homomorphism from *S* to E^* is principal.

Proof: Suppose that the right action is zero. Then the left action of *S* on E^* is zero. If $D: S \to E^*$ is a bounded crossed homomorphism, then for every $s \in S$ we have, $D(s) = D(es) = e \cdot D(s) + D(e) \cdot s = D(e) \cdot s = D(e) \cdot s - s \cdot D(e) = ad_{-D(e)}(s)$. Proof for the other case is similar.

Let *S* be a topological semigroup with a unit element *e*. A Banach *S*-bimodule *E* is called leftunital (respectively, right-unital) if $e \cdot x = x$ (respectively, $x \cdot e = x$) for all $x \in E$. Also, *E* is called unital if it is both left and right-unital.

Lemma 3.5. Let *S* be a topological semigroup with a unit element *e* and let *E* be a Banach *S* -bimodule. Let $F = \{e \cdot x : x \in E\}$ (respectively, $G = \{x \cdot e : x \in E\}$). Then *F* (respectively, *G*) is a left-unital (respectively, right-unital) closed submodule of *E* . Also, if every bounded crossed homomorphism from *S* to F^* (respectively, G^*) is principal, then every bounded crossed homomorphism from *S* to E^* is principal.

Proof: We prove the Lemma for *F* , the other case is similar. Note that *F* is a left unital submodule of *E* . Let $x \in E$ be an accumulation point of *F*. Then there exists a net $(e \cdot x_i)$ in *F* such that $e \cdot x_i \to x$ in norm. Thus $e \cdot x_i = e \cdot (e \cdot x_i) \rightarrow e \cdot x$ in norm. This implies $x = e \cdot x \in F$, thus *F* is closed. Now, suppose every bounded crossed homomorphism from *S* to F^* is principal. Let $D: S \to E^*$ be a bounded crossed homomorphism and let $\pi : E^* \to F^*$ be the restriction map. Then π is a bimodule homomorphism and thus $\pi \circ D$ is a bounded crossed homomorphism from *S* to F^* . Thus there exists $f \in F^*$ such that $\pi \circ D = ad_t$. Let $\overline{f} \in E^*$ be such that $\pi(\overline{f}) = f$ and let $\tilde{D} = D - ad_t$. Then for every $s \in S$, the functional $\tilde{D}(s)$ vanishes on *F*. By identification $\{f \in E^* : f\vert_F = 0\} \cong (E/F)^*$, we can suppose that \tilde{D} is a bounded crossed homomorphism from *S* to $(E/F)^*$. On the other hand, the left action of *S* on E/F is zero. Thus by Lemma 3.4, $\tilde{D} = ad_a$ for some $g \in E^*$. Therefore we have $D = ad_{f_{\pm g}}.$

Proposition 3.6. Let *S* be a topological semigroup with a unit element *e*. Then the following are equivalent.

i. *S* is Johnson amenable.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A2 Spring 2010

155

ii. For every unital Banach S -bimodule E , any bounded crossed homomorphism from S to E^* is principal.

Proof: (i) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (i) Let *E* be a Banach *S* -bimodule and $F_1 = \{x \cdot e : x \in E\}$. By Lemma 3.5, F_1 is a closed rightunital submodule of *E*. Also, let $F_2 = \{e \cdot x \cdot e : x \in E\}$. By Lemma 3.5, F_2 is a closed (two sided) unital submodule of F_1 and hence any bounded crossed homomorphism from *S* to F_2^* is principal, thus by Lemma 3.5, any bounded crossed homomorphism from *S* to F_1^* is principal. Again by Lemma 3.5, any bounded crossed homomorphism from S to E^* is principal. This completes the proof.

Recall that for a topological group *G*, the map $(q, h) \mapsto q h^{-1}$ from $G \times G$ to *G* is jointly continuous.

Theorem 3.7. Let *G* be a topological group. Then the following are equivalent.

i. *G* is amenable.

ii. *G* is Johnson amenable.

Proof: (ii) \Rightarrow (i) Follows from Theorem 3.3.

Suppose that *G* is amenable. By Proposition 3.6, it is enough to prove that if *E* is a unital Banach *G*-bimodule and $D: G \to E^*$ is a bounded crossed homomorphism, then *D* is principal. Let E_{μ} be a Banach *G* -bimodule with underlying space *E* and trivial left action, and the right action defined by $x * g := g^{-1} \cdot x \cdot g$ for $x \in E$ and $g \in G$. Then the dual action of *G* on $E_{\#}^*$ becomes, $g * f = g \cdot f \cdot g^{-1}$ and $f * g = f$ for $f \in E^*$. Define $D_{\#}: G \to E_{\#}^*$ by $D_{\#}(g) = D(g) \cdot g^{-1}$ ($g \in G$). Then for any $g, h \in G$, we have

$$
D_{\#}(gh) = D(gh) \cdot (gh)^{-1}
$$

= $D(g) \cdot (hh^{-1}g^{-1}) + g \cdot D(h) \cdot (h^{-1}g^{-1})$
= $D_{\#}(g) + g * D_{\#}(h)$
= $D_{\#}(g) * h + g * D_{\#}(h)$.

Thus $D_{\#}$ is a bounded crossed homomorphism and by Proposition 3.2, $D_{\#}$ is principal. Thus for some $f \in E^*$ and every $g \in G$, we have $D(g) \cdot g^{-1} = D_{\#}(g) = g * f - f = g \cdot f \cdot g^{-1} - f$, that implies $D(g) = g \cdot f - f \cdot g$. Thus *D* is principal.

Theorem 3.8. Let *G* be a locally compact Hausdorff group. Then the following are equivalent.

i. *G* is amenable.

ii. *G* is Johnson amenable.

iii. $L^1(G)$ is an amenable Banach algebra.

Proof: (i) and (iii) are equivalent by Johnson's Theorem [1]. (i) and (ii) are equivalent by Theorem 3.7.

Theorem 3.9. Let *S* be a discrete semigroup. Then *S* is Johnson amenable if and only if $\ell^1(S)$ is an amenable Banach algebra.

Proof: Suppose that $\ell^1(S)$ is amenable. Let *E* be a Banach *S*-bimodule and let $D: S \to E^*$ be a bounded crossed homomorphism. Then *E* by the actions

$$
a \cdot x = \sum_{s \in S} a(s)(s \cdot x), \quad x \cdot a = \sum_{s \in S} a(s)(x \cdot s) \quad (a \in \ell^1(S), x \in E)
$$

Spring 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A2 <www.SID.ir>

156

M. Maysami Sadr / A. Pourabbas

is a Banach $\ell^1(S)$ -bimodule and *D* can be canonically extended to a bounded derivation $\overline{D} : \ell^1(S) \to E^*$, defined by $\overline{D}(\delta_s) = D(s)$. Thus there is $f \in E^*$ such that $\overline{D}(a) = a \cdot f - f \cdot a$ for all $a \in \ell^1(S)$. Thus $D = ad_f$ and *S* is Johnson amenable.

Conversely, suppose that *S* is Johnson amenable. Let *E* be a Banach $\ell^1(S)$ -bimodule and let $D: \ell^1(S) \to E^*$ be a bounded derivation. Then *E* is a Banach *S*-bimodule by the actions

$$
s \cdot x = \delta_s \cdot x, \quad x \cdot s = x \cdot \delta_s \quad (s \in S, x \in E).
$$

Also, $\tilde{D}: S \to E^*$ defined by $\tilde{D}(s) = D(\delta_s)$ is a bounded crossed homomorphism. Thus there is $f \in E^*$ such that for all $s \in S$, $\tilde{D}(s) = s \cdot x - x \cdot s$. This implies that $D(a) = a \cdot f - f \cdot a$ for all $a \in \ell^1(S)$, and thus *D* is an inner derivation.

4. HEREDITARY PROPERTIES

Proposition 4.1. Let *S* and *T* be topological semigroups and let $\phi : T \to S$ be a continuous semigroup homomorphism with dense range. If *T* is Johnson amenable, then so is *S* .

Proof: Suppose that *T* is Johnson amenable. Let *E* be a Banach *S*-bimodule and $D: S \to E^*$ be a bounded crossed homomorphism. Then *E* is a Banach *T* -bimodule by the action,

$$
t \cdot x = \phi(t) \cdot x, \quad x \cdot t = x \cdot \phi(t) \quad (t \in T, x \in E).
$$

Also, $D \circ \phi : T \to E^*$ is a bounded crossed homomorphism. Thus there exists $f \in E^*$ such that for all $t \in T$, $D(\phi(t)) = t \cdot f - f \cdot t$. Since $\phi(T)$ is dense in *S* and *D* is continuous, we have $D(s) = s \cdot f - f \cdot s$ for all $s \in S$.

Corollary 4.2. Let *S* be a topological semigroup and *T* be a dense topological subsemigroup of *S* . Then, if *T* is Johnson amenable, then so is *S* .

Proof: Apply Proposition 4.1 with the identity continuous homomorphism $id : T \rightarrow S$.

Let *G* be a locally compact Hausdorff non compact group, and $S = G \cup \{\infty\}$ be its one point compactification. Extend the semigroup operation of *G* to *S* by putting $q\infty = \infty q = \infty \infty = \infty$ $(g \in G)$. Then *S* becomes a compact Hausdorff topological semigroup which is not a group and has *G* as a dense subsemigroup. Thus by Theorem 3.7 and Corollary 4.2, if *G* is an amenable group, then *S* is Johnson amenable.

Corollary 4.3. Let *S* be a semigroup and let τ and τ' be two topologies on *S* for which *S* is a topological semigroup, such that $\tau \subset \tau'$. If *S* is Johnson amenable with topology τ' , then *S* is Johnson amenable with τ .

Proof: Apply Proposition 4.1 with the identity continuous homomorphism id : $(S, \tau') \rightarrow (S, \tau)$.

Corollary 4.4. Let $\{S_i\}_{i \in I}$ be a class of topological semigroups. Consider the topological semigroup $\prod_{i \in I} S_i$, with product topology. If $\prod_{i \in I} S_i$ is Johnson amenable, then so is S_i for every $i \in I$.

Proof: For every $j \in I$, consider the canonical projection $\prod_{i \in I} S_i \to S_j$ and apply Proposition 4.1.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A2 Spring 2010 *Spring 2010*

Johnson amenability for topological semigroups

Proposition 4.5. Let *S* be a topological semigroup and let (I, \leq) be a directed set. Suppose that for any $i \in I$, S_i is a topological subsemigroup of *S* such that

i. if $i < j$, then $S_i \subset S_j$,

ii. $S_0 = \bigcup_{i \in I} S_i$ is dense in *S*, and

iii. there exists a $K > 0$ such that for every $i \in I$, for every Banach S_i -bimodule *E* and for each bounded crossed homomorphism $D : S_i \to E^*$, there exists $f \in E^*$ with $D(s) = s \cdot f - f \cdot s$ ($s \in S_i$) and $\|f\| \leq K \sup_{s \in S_i} \|D(s)\|$. Then *S* is Johnson amenable.

Proof: By Corollary 4.2, it is enough to prove that S_0 is Johnson amenable. Let *E* be a Banach S_0 bimodule and $D: S_0 \to E^*$ be a bounded crossed homomorphism. For every $i \in I$, let f_i be in E^* such \int_{S_i} $B(s) = s \cdot f_i - f_i \cdot s$ $(s \in S_i)$ and $||f||_i \leq K \sup_{s \in S_i} ||D(s)|| \leq K \sup_{s \in S_0} ||D(s)||$. Then $(f_i)_{i \in I}$ is a bounded net in E^* , and thus has a weak*-accumulation point f. By passing to a subnet we may assume $f_i w^* \to f$. Now, if $s \in S_0$, then for some i_0 , we have $s \in S_i$ for all $i \ge i_0$, and thus for every $x \in E$,

$$
\langle D(s), x \rangle = \langle s \cdot f_i - f_i \cdot s, x \rangle
$$

= $\langle f_i, x \cdot s - s \cdot x \rangle$
 $\rightarrow \langle f, x \cdot s - s \cdot x \rangle$
= $\langle s \cdot f - f \cdot s, x \rangle$.

Thus for every $s \in S_0$, $D(s) = s \cdot f - f \cdot s$ and *D* is principal. This completes the proof.

Theorem 4.6. Let *S* and *T* be topological semigroups with unit elements. If *S* and *T* are Johnson amenable, then so is $S \times T$.

Proof: Let *e* and *e*^{\prime} denote the units of *S* and *T*, respectively. Consider topological subsemigroups $\hat{S} = S \times \{e'\}$ and $\hat{T} = \{e\} \times T$ of $S \times T$. Clearly, \hat{S} and \hat{T} are Johnson amenable. Let *E* be a Banach $S \times T$ -bimodule and $D: S \times T \to E^*$ be a bounded crossed homomorphism. Then *E* is canonically a Banach *S*ˆ -bimodule and a Banach *T*ˆ -bimodule.

Consider the bounded crossed homomorphism $D |_{\hat{\delta}}: \hat{S} \to E^*$. By Johnson amenability of \hat{S} , there is some $f_0 \in E^*$, such that for all $s \in S$,

$$
D(s, e') = (s, e') \cdot f_0 - f_0 \cdot (s, e')
$$
 (1)

Now, consider bounded crossed homomorphism $\tilde{D} := D - ad_{f_0}$ from $S \times T$ to E^* . Then $\tilde{D} \mid_{\hat{S}} = 0$ and for all $(s,t) \in S \times T$ we have,

$$
\tilde{D}(s,t) = \tilde{D}((s,e')(e,t))
$$

= $\tilde{D}(s,e') \cdot (e,t) + (s,e') \cdot \tilde{D}(e,t)$
= $(s,e') \cdot \tilde{D}(e,t)$.

Similarly, $\tilde{D}(s,t) = \tilde{D}(e,t) \cdot (s,e')$. Thus if $F = \{f \in E^* : (s,e') \cdot f = f \cdot (s,e') \text{ for all } s \in S\}$, then the range of \tilde{D} is in F . On the other hand if L is the closed linear span of $\{(s, e') \cdot x - x \cdot (s, e') : s \in S, x \in E\}$, then *L* is a Banach \hat{T} -submodule of *E*. Thus *F* is the dual of a Banach \hat{T} -bimodule, since F is identical with $(E/L)^*$. Therefore, $\tilde{D}|_{\hat{T}}\colon \hat{T} \to F$ is a bounded crossed homomorphism and thus for some $f_1 \in F \subset E^*$, we have $\tilde{D} \mid_{\hat{T}} = ad_{f_1} \mid_{\hat{T}}$, or equivalently, for all $t \in T$,

$$
\tilde{D}(e,t) = (e,t) \cdot f_1 - f_1 \cdot (e,t), \tag{2}
$$

and for all $s \in S$,

Spring 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A2 <www.SID.ir>

M. Maysami Sadr / A. Pourabbas

$$
(s, e') \cdot f_1 = f_1 \cdot (s, e'). \tag{3}
$$

Now from (1), (2) and (3) we have for all $(s,t) \in S \times T$,

$$
D(s,t) = D((s,e')(e,t))
$$

= $D(s,e') \cdot (e,t) + (s,e') \cdot D(e,t)$
= $((s,e') \cdot f_0 - f_0 \cdot (s,e')) \cdot (e,t)$
+ $(s,e') \cdot ((e,t) \cdot f_1 - f_1 \cdot (e,t) + (e,t) \cdot f_0 - f_0 \cdot (e,t))$
= $(s,t) \cdot f_1 - f_1 \cdot (s,t) + (s,t) \cdot f_0 - f_0 \cdot (s,t)$
= $ad_{f_0+f_1}(s,t)$.

This completes the proof.

5. SOME EXAMPLES AND APPLICATIONS

Let *A* be a Banach algebra. By a *structural semigroup* of *A* , we mean a subset *S* of *A* , such that i. *S* is closed under multiplication,

ii. the linear span of S is norm dense in A , and

iii. $\sup_{s \in S}$ $\|s\| < \infty$.

We consider *S* as a topological semigroup with topology induced by the norm of *A* .

Theorem 5.1. Let *A* be a Banach algebra and let *S* be a structural semigroup of *A* . If *S* is Johnson amenable, then *A* is amenable.

Proof: Let *E* be a Banach *A*-bimodule and let $D: A \to E^*$ be a bounded derivation. Then it is easily checked that *E* is a Banach *S*-bimodule with the same action as *A*, and the map $D|_S : S \to E^*$ is a crossed homomorphism. Since *D* is a bounded derivation and $\sup_{s \in S} ||s|| < \infty$, then $\sup_{s \in S} \|D\|_{S}$ (s) $\| < \infty$. Also, $D\|_{S}$ is continuous in the weak*-topology of E^* , since it is continuous in the norm topology of E^* . Therefore, $D|_S$ is a bounded crossed homomorphism. Since *S* is Johnson amenable, then there is $f \in E^*$ such that $D(s) = s \cdot f - f \cdot s$ for all $s \in S$. Since *A* is the closed linear span of *S*, we have $D(a) = a \cdot f - f \cdot a$ for all $a \in A$, and the proof is complete.

Let *A* be a non-amenable commutative Banach algebra. Let *S* be a structural semigroup of *A* defined by,

$$
S = \{ a \in A : \|a\| < 1 \}.
$$

Then *S* is an amenable topological semigroup since *S* is commutative. But by Theorem 5.1, *S* is not Johnson amenable.

Let *B* be a unital commutative C*-algebra and *G* be the unitary group of *B*. Then *G* is a structural semigroup of *B* . On the other hand, *G* is abelian and thus an amenable group. Then by Theorem 3.7, *G* is Johnson amenable. Thus by Theorem 5.1, *B* is an amenable Banach algebra.

A Banach algebra *A* is called *dual*, if there exits a closed submodule A_* of A^* such that $A = (A_*)^*$, see [5, Section 4.4]. Let *A* be a dual Banach algebra. In what follows, we shall therefore suppose that *A* always comes with a fixed A_* . It is easily checked that the multiplication of A is separately weak^{*}continuous. Let *E* be a Banach *A* -bimodule. We call *E* pre normal *A* -bimodule if for each $x \in E$, the maps $a \mapsto a \cdot x$ and $a \mapsto x \cdot a$ from A to E^* are weak*-continuous.

Johnson amenability for topological semigroups

The dual Banach algebra *A* is called *Connes-amenable*, if for every pre normal Banach *A* -bimodule *E*, every weak*-continuous derivation $D: A \to E^*$ is inner. For more details on Connes-amenability, we refer the reader to [5-8].

For the dual Banach algebra *A* , we call a subset *S* of *A* , *dual structural semigroup* of *A* , if it satisfies (i) and (iii) of the definition of structural semigroup and also satisfies

ii'. the linear span of *S* is weak*-dense in *A* .

We always consider the dual structural semigroup *S* as a topological semigroup with induced weak*topology of the dual Banach algebra *A* .

The proof of the following is similar to the proof of Theorem 5.1.

Theorem 5.2. Let *A* be a dual Banach algebra and *S* be a dual structural semigroup of *A* . If *S* is Johnson amenable, then *A* is Connes-amenable.

In [8] it was shown that for any locally compact group G , the measure algebra $M(G)$ is Connesamenable if and only if *G* is amenable. Now, we can prove the "if" part of this result by our method.

Theorem 5.3. Let *G* be an amenable locally compact group. Then $M(G)$ is Connes-amenable.

Proof: Let δ : $G \to M(G)$ be the usual pointmass measure map. Then δ is a continuous homomorphism in the weak^{*}-topology and convolution product of $M(G)$. Thus by Theorem 3.7 and Proposition 4.1, the topological semigroup $\delta(G)$ is Johnson amenable. Also, $\delta(G)$ is a dual structural semigroup for dual Banach algebra $M(G)$. Thus by Theorem 5.2, $M(G)$ is Connes-amenable.

The following is a Hann-Banach theorem. This is similar to Proposition 2 of [9] in the Banach algebra case, see also [10]. We call an element *x* of *S*-module *E symmetric* if for every *s* in *S*, $s \cdot x = x \cdot s$.

Theorem 5.4. Let *S* be a Johnson amenable topological semigroup. Let *E* be a Banach *S* -bimodule and *F* be a Banach submodule of *E*. Then any symmetric functional in F^* has an extension to a symmetric functional in E^* .

Proof: The quotient Banach space $Y = E/F$ is a Banach *S*-bimodule by the actions $s \cdot (x + F) = s \cdot x + F$ and $(x + F) \cdot s = x \cdot s + F$ for *s* in *S* and *x* in *E*. Let *f* be a symmetric element of F^* and \hat{f} be any continuous extension of f on E . For every s in S , $s \cdot \hat{f} - \hat{f} \cdot s$ is in F^{\perp} , the Banach space of all functional in E^* that vanish on *F*. Let *Q* be the canonical isometry from F^{\perp} onto $(E / F)^*$. Then the map $\delta(s) = Q(s \cdot \hat{f} - \hat{f} \cdot s)$ is a bounded crossed homomorphism, since *Q* is weak*weak* continuous and *S*-bimodule homomorphism. Since *S* is Johnson amenable, there exists *h* in F^{\perp} such that $\delta(s) = s \cdot Q(h) - Q(h) \cdot s$, for all s in S. It follows that $\overline{f} = \hat{f} - h$ is a symmetric extension of *f* on *E* .

REFERENCES

- 1. Johnson, B. E. (1972). Cohomology in Banach algebras. *Mem. Amer. Math. Soc., 127*, 96.
- 2. Duncan, J. & Namioka, I. (1978). Amenability of inverse semigroups and thier semigroup algebras, *Proceedings of the Royal Society of Edinburgh* 80A, 309-321.
- 3. Amini, M. (2004). Module amenability for semigroup algebras. *Semigroup Forum*, 69, 243-254.
- 4. Paterson, A. L. T. (2002). *Amenability*. Amer. Math. Soc. Providence, 1978.
- 5. Runde, V. (2002). *Lectures on amenability*. Lecture Notes in Mathematics: Vol. *1774*, Berlin, Springer-Verlag.

M. Maysami Sadr / A. Pourabbas

- 6. Runde, V. (2001). Amenability for dual Banach algebras. *Studia Math, 148*(1), 47-66.
- 7. Runde, V. (2004). Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. *Math.cand.*, 95(1), 124-144.
- 8. Runde, V. (2003). Connes-amenability and normal, virtual diagonals for measure algebras I. *J. London Math. Soc.*, 67(3), 643-656.
- 9. Bunce, J. W. (1972). Characterizations of amenable and strongly amenable C*-algebras. *Pacific J. Math, 43*, 563- 572.
- 10. Lau, A. T. (1978). Characterization of Amenable Banach Algebras, *Proc. Amer. Math. Soc., 70*(2), 156-160.