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Abstract — In this paper, the Lorentzian version of Beltrami-Euler formula is investigated in ‘Rf . Initialy,
the first fundamental form and the metric coefficients of generalized timelike ruled surface are calculated and
by the help of the Christoffel Symbols, Riemann-Christoffel curvatures are obtained. Thus, the curvatures of
spacelike and timelike tangential sections of generalized timelike ruled surface with timelike generating space
and central ruled surface are found to be related to the determinant of the first fundamental form of the
surface. In addition to this, the relation between the sectional curvature and the distribution parameter of this
ruled surface is obtained. Finally, paying attention to the spacelike and timelike central ruled surface of the
generalized timelike ruled surface one by one, four different types of Lorentzian Beltrami-Euler formulas are
congtituted for generalized timelike ruled surface with timelike generating space.

K eywor ds— Sectional curvature, ruled surface, Beltrami-Euler formula

1. INTRODUCTION

The fundamentals of the curvature theory go back to at least as far as the 3 century BC. In ancient
Greece Apollonius of Perga studied normals, centers of the curvature and the evolutes of elementary
curves, [1]. The last three centuries have seen the theory of curvature bloom. L. Euler introduced the
theory of curvature of surface in his first study. Euler’s sectional curvatures were basically curvatures of
curves obtained as intersections of a norma plane with the curve. Thus, the Euler theorem (Euler-
curvature formula) related to norma and principal curvatures entered the literature. A short time later
Meusnier also considered the intersections of planes that were not necessarily normal and gave a theorem
with his name, called the Meusnier theorem. Various differential geometry books give the Euler and
Meusnier theorem for 2—dimensional surfaces in 3-dimensional Euclidean space, (see for example, [2,
3)).

Generalized ruled surface theory was put forward by M. Juza in [4] and the studies on this area
reached ever higher during the last century. H. Frank, O. Giering, and C. Thas studied the properties of the
ruled surface in n— dimensional Euclidean space.

Applying the Euler and Meusnier theorems, which are the well-known theorems in the classical
surface theory to the tangential sections of generalized ruled surface was performed by H. Frank and O.
Giering, [5]. The sectional curvatures of the generalized ruled surfaces were evaluated in n— dimensional
Euclidean space E" and the obtained relations were entered into the literature as the Beltrami-Euler
formula and Beltrami-Meusnier formulain [5].

In this work, we have studied the sectional curvatures of generalized timelike ruled surfaces with
timelike generating space in n— dimensional Minkowski space ‘R, , taking into account the generalized
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timelike ruled surfaces given in [6] and [7]. Furthermore, we have also investigated the Beltrami Euler
formulain the sense of Lorentzian in n— dimensional Minkowski space ‘R’ .

2. PRELIMINARIES

Let X =

(%%,
product of X

L%,) and Y =(¥,,Y,,...,Y,) be vectorsin R" with n>1. The Lorentzian inner
and\? is

defined to be the real number

(XYY =X+ XY, oo X Y1 = XY

The inner product space consisting of the vector space R" together with the Lorentzian inner product
is called N—dimensional Minkowski space, and is denoted by R;. Since < , > is an indefinite metric,
recall that a vector X € R can have one of three Lorentzian causal characters: it can be spacelike if
<>2, >Z> >0 or X =0, timelikeif <>Z >Z><o and null (lightlike) if <>Z >Z>=o and X =0, [8].

Similarly, an arbitrary curve o = a(t) < R} can locally be spacelike, timelike or null (lightlike), if
al of its velocity vectors a(t) are respectively spacelike, timelike or null (lightlike), [9]. The norm of
X ein |sdef|nedas||x| |<)z X

et W be a subspace of R; and denote < >‘ as the reduced metric in subspace W of R;. A
subspace W of R can be spacelike, timelike or null (lightlike) if ( , >‘W is positive definite, ( , >‘W is
nondegenerate of index 1 or ( , >‘W is degenerate, respectively, [9)].

Let the set of all timelike vectorsin ?Rf be.For X eI, wecall

C(X):{\?er\ <>2,\?><o}

the time-conic of Minkowski space R; including vector X, [9].
Let X and Y betwo timelike vectors in Minkowski space R; . In this case the following inequality

exists:
(X9 X[V

With equality if and onIy if X and Y arelinear dependent.
If timelike vectors X and Y stay inside the same time-conic then there is a unique non-negative rea
number of € > 0 such that

(%5) = [3][¥]ooco g

where the number @ is called an angle between the timelike vectors, [9].
Let X and Y be spacelike vectorsin R, that span a spacelike subspace. We have that

(%.9) <[]V

with equality if and only if X and Y are linearly dependent. Hence, there is a unique 0< @ < 7 such
that

(5)= ][]t ®

The Lorentzian spacelike angle between X and Y isdefinedas 6, [10].
Let X and Y be spacelike vectorsin R that span atimelike subspace. We have that
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(%)= X1V

Hence, thereis a unique real number 8 > 0 such that
(%)= ¥]eosno @

The Lorentzian timelike angle between X and Y isdefined as 6, [10].
Let X beaspacelike vector and Y be atimelike vector in R, . Then there is a unique real number
6 > 0 such that

(%)= | X[|V]snne. @
The Lorentzian timelike angle between X and Y isdefinedtobe @, [10].

3. GENERALIZED TIMELIKE RULED SURFACE WITH TIMELIKE GENERATING
SPACE IN n—DIMENSIONAL MINKOWSKI| SPACE R;

Let {el(t)ek(t)} be an orthonormal vector field, which is defined at each point a(t) of a spacelike
curve of an n—dimensiona Minkowski space R;. At the point «o(t)e®R] this system spans a
k — dimensional subspace and is denoted by E, (t). It is given by E,(t)= Spie,(t),....e(t)}. If the
timelike subspace E, (t) moves along timelike curve o, we obtain a (k+1)—dimensional surface in
M. This surface is caled a (k+l)—dimensiona| timelike ruled surface of the n-—dimensional
Minkowski space R} and isdenoted by M , [7].

The subspace E, (t) and the curve o are caled the generating space and the base curve,
respectively. A parametrization of the ruled surfaceis the following:

#(t,u,. U ) =a(t)+ D ug(t). (5)

is called asymptotic bundie of M with respect to E,(t). It is clear that A(t) is a timelike subspace. If
dimA(t)=k+m, 0<m<k, then one can find an orthonormal base for A(t) containing E, (t) such as
{&,(t)..€ (t). 2, (t)...a,n(t)} . Furthermore, for the orthonormal base {g(t),...,& (t)} , the following
equations hold [7]

. k
e =Y 0a,8+K,3,, , l<o<m
=1
. K (6)
Emip = Za(m+p)ﬂeﬂ , 1< P <k-m
u=1
where
g,uav,u = _gva,uv (7)

and
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K >Ky,>...>K,>0. 8
The subspace
P& (1).--8, (). & (1).n (1)t (1)}
is called tangential bundleof M with respect to E, (t) and is denoted as T(t). It is obvious that

k+m£dimT(t)£k+m+1 . 0<m<k.

In what follows, we examine two cases separately. If gimT (t) = k+m, then {e (t)...e(t). 8, (t)...a,. (1)}
is the base for both asymptotic and tangential bundles. If dimT(t)=k+m+1, then one can find an
orthonormal base for T(t) as {g(t),...e, (t) 8., (t)..a.n(t) 8. ()} - For both cases tangentiad bundle
T(t) isatimelike subspace[7].

If dimT (t): k+m+1, then M, (k+1)—dimensiona| timelike ruled surface, has
(k — m)— dimensional subspace called the central space of M and is denoted by Z, . (t)c E, (t). The
subspace Zk_m(t) is either spacelike or timelike subspace. If the base curve @ of M is chosen as the
base curve and Zk_m(t) is the generating space, we get a (k—m+1)—dimensional ruled surface
contained by M in R;. This is denoted by Q and called the central ruled surface. If Zk_m(t) is
spacelike (timelike) then central ruled surface €2 becomes a spacelike (timelike) ruled surface [6].

Taking Q to be (k—m+1)— dimensional central ruled surfaceof M (m> 0), we can write

k

a(t) = z é,vev + nm+1a'k+m+1 ! 77m+1 7 O (9)

v=l

for the base curvec (t) [6]. Tangential space of M is perpendicular to the asymptotic bundle A(t) at the
central points. Considering the equation (5) at the central point of central ruled surface Q < M , we see
that [5]

u =0, 1<o<m (10)

For the spacelike base curve « of (k+1)—dimensiona| timelike ruled surface M , if 77, # 0 the
equality

o

Pp="m1 1<5<m (11)
K

o

iscalled the o™ principal distribution parameter of M [6].
Taking the canonical base of the tangential bundleof M in R," to be

k k m
{Z(a + ZawuyJev + ) Uy KBy + TonnBrmenr € %,---,@}- (12)
v=1 u=1 o=1

We can evauate the first fundamental form of M and the metric coefficients with respect to this
canonical base. In conventional notation, we choose U, =t and calculate the metric coefficientsof M as
follows
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2
i 2 2
<¢t’¢t> ZS (é/ +Zavy yj +Z uO'KG) +(77m+1) ’
o=1
ng = <¢u‘, ’¢t> [é/ +Zav,u ,uj ! 1S Vs k’ (13)
gv,u :<¢Uv’¢uﬂ>=(€‘v§yﬂ ,1£ V,,USk.
Therefore, the matrix of the first fundamental form of M is expressed as
2‘9 [é’ +Zam ,IJ +Zm: 77m+1)2 51[§1+Zk:a1yuyj 32(§2+Zk:a2yuyj gk(é/k-i_zak,u ,uj
81[§1+Zk:alﬂuyj & 0 0
[g_}: 52[(2""%“2””#] 0 &, 0
ij u=1
k
& {g’k +2akﬂu#] 0 0 &
It iseasily seen that
m 2 .
g:det[gij}:_Z(uaKo-) _77§1+1 ., 0<i,j<k. (14)
o=1
Since— Z ryrfwl =0, [gij] Is a regular matrix. Hence, from equations (13) and (14) we

2
k k
00 :—g+28‘/ [é/v +Zav;tuyJ ’
v=1l =1
( +Zaw #] , 1<v <Kk, (15)

9, =&,0, \ 0<v,u<k,
9:det[gii]=_zm:(ua’fa)2—77ri+1’ 0<i,j<k.
o=1

In addition to these, the inverse matrix elements of [gij ] are obtained as
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9¥=-g7,
(é’ +Zavﬂ ﬂ] , 1<v <k, (16)
9" = («9 6,,9— (5 +Z% },][Q +Zk:“zﬂUﬂD gt , 1<v,A<k
= 1
Substituting the equations (15) and (16) into the Koszul equation (given in [8])
tgefEm
m j m

the Christoffel symbols are reached

1 _ag k k o9
Fgo:_ E_FZ;[;\/_FZQV;JU;JJT ’

ré(,:z—lg (éﬁZ% ﬂj[—gi[mgam J J

u=1 V=]

WLZg{({,1 +Zdlﬂu#]+zk:{§v +Zk:am y]ah + ;«% ;L? H

v=l

r,=r.,, =0, (18)
A A
r,=r, =0,
1 ag
Fgo_rgz 29 ou,

Ff0=Fé l: [§A+zaﬂ,y ﬂ];? "‘29(“&/)}

Let {uo,ul,...auk} be a base of tangent space at the neighborhood of the coordinate systems
{09:01,...,0, } (a—:ai ,0<i <k)of M, then the Riemannian curvature tensor of M becomes
u

! k
:ZR:jar
r=0
where the Riemannian curvature tensor’ s coefficients are
0 0 Zk: Zk:
R, =—T" ———T, > [0 + > IS
boou aujl = Tt
Therefore, the Riemannian-Christoffel curvature tensor of M is

th] Zgrh( 1—‘|I ZF|IFJS+ZF J (19)

In addition, there exist the following relations, [8]
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o - Rj h' (20)
Rin = ~Rin-
Considering the equations (18) and (19), R;o, R;,.» R0 arefoundto be
Riow =0 , 0<i,j<Kk,
Ry =0 , 0<i,j<k,1<v,u<k, (21)
Rouo = l&z_g_ia_g 9 1<v,u<k

4. LORENTZIAN BELTRAMI-EULER FORMULA FOR GENERALIZED TIMELIKE RULED
SURFACESWITH TIMELIKE GENERATING SPACE IN n—DIMENSIONAL

MINKOWSKI SPACE, R}

Two-dimensional subspace IT of (k+1)—dimensional timelike ruled surface at the point £ €T, (&) is
caled the tangent section of M at point &. If V. and W form a basis of the tangent section I1, then
Q(V, W)= (V,V)(W, \7V>—<\7,W>2 is a nonzero quantity if and only if IT is nondegenerate. This quantity
represents the sguare of the Lorentzian area of the parallelogram determined by V and wW. Using the
square of the Lorentzian area of the parallelogram determined by the basis vectors {\7, \Tv} , one has the
following classification for the tangent sections of the timelike ruled surfaces:

Q(V, W) = (V, V) (W, W) —(V, ”> <0 , (timeikeplane),
Q(V, W) = (V,V) (W, W) —(V,W)" =0 , (degenerate plane),
Q(V, W) = (V, V) (W, W) —(V, >>O . (spacelike plane).

For the nondegenerate tangent section I1 given by the basis {\7,\7v} of M at the point &, the
definition

K. (V,W) = (22)

or

K (_.’ W) _ Z I:ﬁjkmvvi Vj kam (23)

is called the sectiona curvature of M at the point &, where V = Zﬂ — and W= 27 6_ Here the
X

coordinates of the basisvectors V. and W are (B Bor-- ) AN (yo,yl,,,,,yk) respectively, [8]

Let the base curve of timelike ruled surface M with the timelike generating space in SRl be the base
curve of the central ruled surface 2 of M . In this case, the normal tangential vector n of M that is
orthogonal to E, (t) is defined as

n= z U ak+a ) + 77rmlak+m+l (t) ! (77m+1 # 0) (24)
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at the point V& (t, u, ) so that this normal tangential vector field is always spacelike since it is orthogonal

to the generating space E, (t). In the principal frame {e, (t),&, (t),...,6,, (t),&(t),6.(t)....8 (1)}
of generating space E, (t) there is only onetimelike vector as follows

<es(t),es(t)>=—1 , 1<s<k.

Therefore,
(e,8)(nn)~(g,n)*>0 , 1<v<k , v=s,
(e,,&)(n,n)~(e,n)" <0.

That is, the v"" principal tangential section (g,,n), 1<v <k, v# S with respect to the principal
frame of E, (t) isthe spacelike planeand s" principal tangential section (e,,n) isthe timelike plane.

Considering these two cases separately, from equations (21), (23) and (24) the following theorem can
be given related to the spacelike and timelike principal sectional curvatures at the point £ e M .

Theorem 4.1. Let M be a generalized timelike ruled surface with timelike generating space and central
ruled surface in n—dimensiona Minkowski space R;. The v™ principal sectional curvature of the
spacelike section (g,,n), 1<v <k, v#s and the s" principal sectional curvature of the timelike
section (e&,,n) at thepoint V& e M are given by

2
10°g 1(adg
K.(e,n)=—— , 1<v<k , 25
-(e.n) 296UV2+492((3UJ v V#S (25)
and
(e L0 1(a) @9)
S 2g ou.” 4g®\ou, )’

respectively, where n is the spacelike normal tangential vector and €,, 1< s<Kk, istimelike base vector
in timelike generating space E, (t).

Proof: Let the coordinates of €, (1<v <k) and n, which form the basis of principal section (e,,n)
with respect to the canonical basis given by equation (12) of tangential bundle of timelike ruled surface
M be (B, Bu---  Bc) ad (¥o,74,---, 7« ), respectively. Considering equations (22) we find that the v
principal sectional curvature of (e,,n) (1<v <k) becomes

K (e n): BB, 757Rovo _
T e )(nn)~(g.n)

If we substitute equations (21) and (24) into the last equation, we obtain

102 ?
g 1[6gj

Kg (e ,n) = - 2"
(e.e)(n. n>—<ev.zugxaakw nak>

o=1
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Taking € (1<s<k) to be the timelike vector in the generating space

S

E (t)= Sp{el(t),ez(t),...,es (t).....& (t)} , the v™ spacelike principal sectional curvature and the
s" timelike principal sectional curvature are found to be

1629_1[89]2

20u’ 4glo

K.(g,n)= iuv DI 1gv<k | ves
2

and
wzg_l(agj
20u’ 4g\ oy,
K§ (eS’ ) m ) )
_Z(UO'KO') _77m+1
o=1

respectively. Therefore, considering the last equation together with the equation (14) completes the proof.

Corollary 4.1. The sectional curvature of the v" nondegenerate (spacelike or timelike) principal section
(e,,n) (1<v<k) of timelikeruled surface M at the point V& e M s

Kg(ev,n)gv[ iazg+ 1 (ang , 1<v<k (27)

- 2gou,”® 4g°\ au,
where ¢, =(e,,g, ) =+1.

From this point on we are going to name the sectional curvature of nondegenerate v" principal
section (ev,n), 1<v <k,tobethe v" principal sectional curvature timelike ruled surface M .

Theorem 4.2. Let M be a generalized timelike ruled surface with timelike generating space and centra
ruled surface and n be the spacelike normal tangent vector of M in n— dimensional Minkowski space
R, . The o™ principal sectional curvature and the (m+ ,o)th principal sectional curvature of M at the
point V& e M are

gU(K0)2|:i(uth)2+77I$1+l_(uo"(¢7)2:|
K. (e,,n)=- = - , 1<o<m (28)
(Z(UIKI )2 + nrfhtl]
=1
and
K:(6n,.n)=0 , 1<p<k-m (29)

respectively, where &, =(e € ) ==+1.

Proof: Considering the equation (14) we see that
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And

2 2
M _08 | 9 | 1<p<k-m
ou ou OU,. ,

m+p m+p

Substituting these equations into the equation (27) we find the o™ nondegenerate principal sectional
curvature to be

2 2 2
K. (e,,n)= ~2(x,) +& A(U,5,) (%) , 1<o<m

) (S o)

=1 =1

After simple calculations we reach equation (28). Similarly, when we calculate the (m+ p)th
principal sectional curvature, we find

K;(8n,n)=0 , 1<p<k-m
Therefore, we give the following corollary.

Corollary 4.2. Let M be a generalized timelike ruled surface with timelike generating space and central
ruled surface in n—dimensional Minkowski space %R;. At the point V&eM, the (m+ p)th
(1< p<k—m) principal sectional curvature of M isequal to zero.

Theorem 4.3. Let M a be generaized timelike ruled surface with timelike generating space and central
ruled surface and P, , 1< o <m, be the o™ principal distribution parameter of M in n— dimensional
Minkowski space R . At the central point V¢ e M, ¢ principal sectional curvature and (m+ p)th
principal sectional curvatureof M are

Kg(ea,n)z—gaé , 1<o<m

and
Kg(emm,n):o , 1<p<k-m

respectively.

Proof: Taking { € to be the central point and considering equations (25) and (26) and after
simplification we find the o™ sectional curvature of M to be

2
Kg(ea,n)z—ga(’("] , 1<o<m
77m+1

Considering the last equation together with the equation (11) and Corollary 4.2 completes the proof.
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Now, we take e to be a unit vector in generating space Ek(t) of ruled surface M , and n to be a
spacelike normal tangent vector orthogonal to E, (t) Let us elaborate on the curvature of tangential
section (e,n).

Since unit vector e(t) isin E(t), wewrite

e(t)e p{a(t),....& (1), 8 (t),- & (1)}

So
(1) :gﬂgeg (t)+p§lﬂpep ) . Je]=1

As E(t) isatimelike subspace it contains a timelike vector. Since F,(t)= Sa{el(t),...,an(t)}
and Z, . (t)= aj{qml(t),...,q( (t)} , this timelike vector stays either in the subspace F,(t) or in the
central space Z,_, (t). That is, if the central space Z, . (t) is spacelike, the space F, (t) istimelike or if
Z,_(t) is timelike then the space F,(t) is spacelike. In this case the central ruled surface Q of
timelike ruled surface M is either spacelike or timelike. Furthermore, the unit vector e(t) is either
spacelike or timelike.

Therefore, there exist the following cases (al, a2, bl, b2). Now we consider these situations
separately.

(al) Central space Z,_,(t) and unit vector e(t) are spacelike

Let €, 1<s<m, be atimelike vector in Fm(t). In this case the spacelike unit vector e can be
written as follows:

s-1 m Kk
e=) coshd,e, +sinhge + Y coshd,e + Y coshd,e,
o=1 o=s+1 p=m+l
k

=Y coshb,e +sinhb,e,.
v=l

V#S

(30)

It isclear herethat

k
> cosh?6, —sinh? 6, =1
v=l

where the angles 6,,0,,...,6,,...,6, arethe hyperbolic angles between spacelike unit vector eand base
vectors €,€,,...,€,,...,6 , respectively.

(a2) Central space Z,_,(t) is spacelike and unit vector e(t) istimelike

Let e, 1<s<m, be atimelike vector in Fm(t). In this case the timelike unit vector e can be
written as

s-1 m Kk
e=) sinhg,e, +coshde + Y sinhg,e, + > sinhd,e,
o=1 o=s+1 p=m+l

K (31)
=Y sinhg,e, +coshb,e,.

v=l
V#S
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In addition,
K
Y sinh*g, —cosh? g, = -1
Vs

where the angles 6,,0,,...,6,,...,6, are the hyperbolic angles between timelike unit vector eand base
vectors €,€,,...,€,,...,6 , respectively.

(b1) Central space Z,_,(t) istimelike and unit vector e(t) is spacelike

Let €, 1<s<k—m, be a timelike vector in the centra space Z,_,,(t). In this situation the
spacelike unit vector e can be defined as

m m+s-1 k
e=) coshd,e, + > coshde +sinhg, &, .+ > coshde,
o=1 p=m+1 p=m+s+1
K (32)
= > coshd,e +sinhfg,, &,
v=1
and
k
> cosh?d, —sinh?g,, =1
v=l
o that the angles 6,,6,,...,0...,...,6, are hyperbolic angles between spacelike unit vector e and base

Vectors €,6,,...,6,,.,..., 6 , respectively.
(b2) Central space Z,_,,(t) and unit vector e(t) aretimelike

Let €,.,, 1<s<k—m, be a timelike vector in the central space Z,_,(t). In this case write
etimelike unit vector can be written as

m m+s-1 k
e=Y sinhd,e + > sinhde, +coshd, &,..+ >, sinhde,
o=1 p=m+l p=mrs+l

K (33)
= Y sinh6,e +coshd,, &,

v=l
V#MHS

and

k
> sinh*g, —cosh?d,, =-1
=1

v#M+S

where the hyperbolic angles between timelike vector e and base vectors €,€,,...,6,.,...,6 ae
6,.,0,,....,0,.,...,0,, respectively.

Thus, we can give the following theorems for curvatures of the tangential section (e, n) for (al, a2,
b1, b2) cases, respectively.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3 Summer 2010


www.SID.ir

Sectional curvature of timelike ruled surface... 209

Theorem 4.4. Let M be generalized timelike ruled surface with the spacelike central ruled surface in
n—dimensional Minkowski space R; and e be a spacelike unit vector in E, (t) taking n to be a
normal tangential vector orthogonal to E, (t) of M . The following relation exists between the sectional
curvature of spacelike section (e, n) and principal sectional curvatures at thepoint e Q < M

K. (e n):Zm:coshzé?aKg(e(,,n)—sinh2 0K, (e.n) (34)
o=1

where €, 1< s<m, isatimelike vector in subspace F, (t) and the hyperbolic angles between spacelike
unit vector e and base vectors €, e,,...,€,,...,§ ae 6,,6,,...,0,,...,06, respectively, so that

[ [
e:Zl:coshevev +sinhde, and Zl:coshzev —sinh?4, =1.

Proof: Let the coordinates of the spacelike unit vector e within the generating space Ek(t) be
(ﬂo,ﬁl,...,ﬁk) and the coordinates of spacelike normal tangent vector n be (yo,yl,...,;/k). From
equations (3), (4), (22) and (23), we see that at the central point ¢ € Q

Zm: cosh’6.R
=1

o 0o

(ee)(n,n)—(e, n>2

with the last equation in mind we find from equation (21)

m 2 2 2 2
K, (en)=> cosh?4, 10 gz+ 12 % +sinh? 6, 120 gz+ 12 q ,
o 2gou,” 4g°(ou, 2g ou.” 497\ du,

O*S

0 +Sinh2 05R5050
Kg (e’ n) _ o7s

If one considers the equations (25) and (26) at the central point V{ €, there exists a relation
between sectional curvature of spacelike section (e, n) and the principal sectiona curvatures of M
which we gave in the equation (34).

This relation is called |. type Lorentzian Beltrami-Euler formula for the spacelike section of
generalized timelike ruled surface with spacelike central ruled surface at the central point £ € Q).

Theorem 4.5. Let M be generalized timelike ruled surface with spacelike central ruled surface in
n— dimensional Minkowski space R; and e be atimelike unit vector in E, (t) , taking n to be anormal
tangential vector orthogonal to E, (t) of M . In this case the relation between the sectional curvature of
timelike section (&,n) and principal sectional curvaturesis

K, (en)= —Zm:sinh2 0,K, (e,,n)+cosh?6,K, (e,n) (35)
o=1

at thepoint £ € Q< M , where g,, 1< s<m, isatimelike vector in the subspace Fm(t) and the angles
6,.,0,,...,0,,...,6, represent the hyperbolic angles between the timelike unit vector e and the base
vectors €,6,,...,€&,,...,§ , respectively, so that the following equations hold
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k k
e=) sinh6,e +coshd,e, and Zl:sinh2 0, —cosh’ 4, =-1.

v=l
V#S V#S

Proof: Let the coordinates of the timelike unit vector € in the generating space E, (t) of M and the
coordinates of the spacelike norma tangent vector n be (,Bo,ﬁl,...,ﬁk) and (70,;/1,...,7/k),
respectively, in R; . Thus, if we consider the equations (3) and (4) we see that

=0 , p,=coshd, , 1<s<m
ﬂ‘/:s'nhev y 1<v<k , V#S

and
={ne)=1, 7,=(ng)=0 , 1<v<k

If we substitute these equations into equation (23) for the central point ¢ € (2 and consider equation
(21) wereach

m 2 2 2 2
K (en)=Ysnhtg,| 09 L[99 || g | > 00 11091
~ 2g ou,” 4g9°(ou, 29 ou,” 49\ dug

O#S

Taking into consideration the equations (25) and (26) at the central point V¢ € QO completes the
proof.
The equation (35) is caled II. type Lorentzian Beltrami-Euler formula for the timelike sectional
curvature of generalized timelike ruled surface with spacelike central ruled surface at the central point
e,

Theorem 4.6. Let M be generalized timelike ruled surface with timelike central ruled surface, e be a
spacelike unit vector within E, (t) and n be a normal tangential vector orthogonal to E, (t) of M in
n— dimensional Minkowski space R} . In this case the following relation between the sectional curvature
of spacelike section (e, n) and the principal sectional curvatures at the central point ¢ € Q < M are held

K, (e n):zrn:cosh2 6,K,(e,.n) (36)

o=1

where €,,., 1<s<k-m, isatimelike vector in the central space Z, (t) and the hyperbolic angles
between spacelike unit vector e and base vectors €,e,,...,€,.,...,6 ae 6,0,,...,6,.,...,6,
respectively. In this case the following relations are held

K K
e= 3 coshge +sithd, &, and D cosh’f, ~sinh®g,, =1

V#MHS V#MHS

Proof: Let the coordinates of the spacelike unit vector e in the generating space of M and the
coordinates of the spacelike normal tangent vector n be (B, A.....5) ad (Yo 7--7¢)
respectively in R; . In asimilar manner, using equations (3), (4), (21), (23) and (25) at the point V¢ € Q
we reach the relation
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m
K, (en)=> cosh?d,K, (e,,n)
o=1
in between the sectional curvature of spacelike section (e, n) and the principal sectional curvature of M .

Thisrelationiscaled I11. type Lorentzian Beltrami-Euler formula for the spacelike sectional curvature
of generalized timelike ruled surface with timelike central ruled surface M at the central point £ € Q).

Theorem 4.7. Let M be generalized timelike ruled surface with timelike centra ruled surface, e be a
timelike unit vector in E,(t) and n be a normal tangential vector orthogonal to E,(t) of M in
n— dimensional Minkowski space R; . Therelation

K. (en)=->sinh?6,K, (e,,n) (37)
o=1
holds between the sectional curvature of timelike section (e, n) and the principal sectional curvatures at
the central point £ € Q, where g, 1< s<k-m, isatimelike vector in the central space Z,_, (t) and
the hyperbolic angles between timelike unit vector e and base vectors €,6€,,...,6,.,...,6 ae
6,.0,,...,0 6, , respectively, so that

9 VUmisreees

K Kk
e= _Zl sinhd,e +coshd,.e,.. and Zl: sinh?@, —cosh? 4, =-1.

V#MHS V#MHS

Proof: Let the coordinates of the timelike unit vector e and the spacelike normal tangent vector n in R;
be (Lo, Brr--1 B) and (7o, 71,17, ) respectively, taking €, ., 1< s<k-m, to be atimelike vector
within the central space Z, (t) and the hyperbolic angles between timelike unit vector e and base
vectors €,6,,...,8,..,...,§ tobe 8,,0,,...,6,...,...,6,, respectively. From the equations (3), (4), (21),
(23) and (26) one can easily see that equation (37) holds between the timelike sectional curvature (e, n)
and the principal sectional curvatures of M at the point { € ). The equation (37) is caled 1V. type
Lorentzian Beltrami-Euler formula for the timelike sectional curvature of generalized timelike ruled

surface M with timelike central ruled surface at the central point £ € Q.

Example4.1. Let SRf be afive-dimensional Minkowski space, given by Lorentz metric
<X!?> =X+ XYo + XY+ XY, — X Ys

where X = (X, %, X X4, X5 ), Y = (Y1, Voo Y Va Vs ) € R®. Teking &, 7 and e=+x>+7> to be
arbitrary constants, a spacelike curve « : 1 — R? isgiven asfollows;

a(t) =1(2rgt,\@zccoshgt+zcsinh &‘t+6‘2‘t,2K‘8t,\/§T coshet+rsinhgt—/<gt,\/§ssinh &t + ¢ cosh gt).
£

In this case, the orthonormal vector field system {q(t) & (t)} defined at every point of curve « is
expressed as

e_L(t):l(K+r, J3ksinhet, k-7, \/§rsinh8t,x/§£coshgt),
&

ez(t)=i(z'—/(, xcoshet, k+ 7, rcosh et gSinhgt).

Ne?
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This system spans a 2—dimensional subspace of tangent space at the point a(t) € in and this
subspaceis denoted by E, (t). Itisclear that E, (t) istimelike subspace. The parametrization

P(L,0) = a(t)+ S ug (1)

v=1

defines a 3— dimensiona timelike ruled surface denoted by M , with the spacelike base curve and the

timelike generating space. Therefore, taking {q(t), e, (t)} to be the principal frame of the generating space
E,(t) andeE(t) 6 (t),e(t).e(t), a(t)(}) to be the base of the tangential bundle of M and by using
the Gramm-Schmidth method, we reach the orthonormal base vectors as follows;

a(t)= \/,g(/c 7, 2k coshet, —k — 7, 2r coshet, 2esinhet),

a,(t)= \/_g(\/é(l(‘+2') 2xsinhet, \3(x—7), 2rsinhet, ZSCOShEt)

as(t):%(o, 7,0, x,0).

That is, there exists an orthonorma base {q(t),ez(t),ag(t),a4(t),a5(t)} for the tangential
bundle of M. The differential equation of the principal frame of the generating space of M and the
velocity vector of the base curve o are given by the following equations;

& (1) =&, (1) +2eay 1),

ez(t):gel(t)+\/§ga4(t),
a :—gq+\/§ge2+ga5,

respectively. Thus the first fundamental form’s regular matrix of 3— dimensional timelike ruled surface
M with timelike generating space becomes

2
232U, - 262, + 3622 —%uzz +362 —g—eu, 3e+ey,

[6.],,- 1o
J3e+ ey, 0 -1

so that, the determinant of the first fundamental form of M is
g-deg,] =250 - 2ol - 5" 3)

The normal tangent vector of the timelike ruled surface M , which is orthogonal to the generating
space E,(t), is obtained at the point V& e M to be

n= \/_gulas+\/§gua+ga5
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Here, it is quite obvious that the normal tangent vector n is a spacelike vector. In this example, the
first principal tangential section (q, n) is a timelike plane while the second principal tangential section
( e, n) becomes a spacelike plane. First and second principal sectional curvatures can be expressed as

1% 1(ag)
K§ (el’n)_ Zg au12 _492 (8ul}

and

10°g 1 (ag ’
K. (e,n)=-——39 .
g(ez ) 29 auzz 49° [GUZJ

If we substitute the first and the second order partial differentials of equation (38) into these last two
equations we find curvatures of the first principa timelike tangential section (q,n) and of the second
principal spacelike tangential section (ez, n) as

12u? +18
K.(g,n)= 2
A(&n) (6u2 +2u2 +3)°
and
12u7 + 6
Kf(%’n):_(6 2 : 2 2
ul+2u2+3)

respectively. Furthermore, since U, =u, =0 at the central point V¢ e Q, K. (g,n) and K, (e, n)
becomes
q 2
K,(g,n)=2 an Kg(ez,n):—g.

In addition to these, since the first and second principal distribution parameter of M at the point
Vi eQ

2 2 JE 2
—&
3
we reach
1 1 2
K (&n)=—2;=2 and K (&n)=-Z=-7.
R > 3

Which is the same result as before. Let e be an arbitrary unit vector within the timelike subspace
E, (t) Itisclear that unit vector e is either a spacelike or atimelike vector.

First, we suppose that e is a spacelike unit vector in E, (t) Taking angles between spacelike unit
vector e and base vectors €, €, tobe 6,, 6,, we write the following relations

e=sinhde +coshd,e, , —sinh®@,+cosh’d, =1.
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In this case, from the |. type Lorentzian Beltrami-Euler formula, the curvature of spacelike tangential
section (&,n) of M at the central point is found to be

K, (en)=-2sinh? 6?1—§cosh2 0,.

Secondly, we suppose that the unit vector € is a timelike unit vector in E, (t) and the angles
between timelike unit vector € and base vectors €, €, are the hyperbolic angles &, , 6, , respectively. In
this case timelike unit vector € iswritten in the form

e =coshd, g +sinhd,e, , —cosh’d, +sinh® @, =-1.

From the last equations and IlI. type Lorentzian Beltrami-Euler formula, the curvature of timelike
tangential section (e*,n) of M at the central point isfound to be

K, (€,n)=2cosh’ 4, +§sinh29;.
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