Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A3 Printed in the Islamic Republic of Iran, 2010 © Shiraz University

ΛBV AS A NON SEPARABLE DUAL SPACE^{*}

A. AHMADI LEDARI^{1**} AND M. HORMOZI²

¹Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I. R. of Iran Email: ahmadi@hamoon.usb.ac.ir ²University of Gothenburg, Chalmers University of Technology, Gotheburg, Sweden Email: Hormozi@chalmers.se

Abstract – Let C be a field of subsets of a set I. Also, let $\Lambda = \{\lambda_i\}_{i=1}^{\infty}$ be a non-decreasing positive sequence of real numbers such that $\lambda_1 = 1$, $1/\lambda_i \to 0$ and $\sum_{i=1}^{\infty} 1/\lambda_i = \infty$. In this paper we prove that ΛBV of all the games of Λ -bounded variation on C is a non-separable and norm dual Banach space of the space of simple games on C. We use this fact to establish the existence of a linear mapping T from ΛBV onto FA (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of (I, C).

Keywords - Set functions, duality, compactness, non separable

1. INTRODUCTION

Let *C* be a field of subsets of a nonempty set *I*. It is well-known that the space *F A* of all the finitely additive games of bounded variation on *C*, equipped with the total variation norm, is isometrically isomorphic to the norm dual of the space of all simple functions on *C*, endowed with the sup norm ([1]) (also see [2]). Maccheroni and Ruckle in [3] established a parallel result for the space *BV* of all the games of bounded variation on *C*. Indeed, they showed that *BV*, equipped with the total variation norm, is isometrically isometric to the norm dual of the space of all simple games endowed with a suitable norm where a simple game is a game which is non zero only on a finite number of elements of *C*. Let $\Lambda = \{\lambda_i\}_{i=1}^{\infty}$ be a non-decreasing positive sequence of real numbers such that $\lambda_1 = 1$, $1/\lambda_i \rightarrow 0$ and $\sum_{i=1}^{\infty} 1/\lambda_i = \infty$. We introduce space ΛBV which shares many properties of space *BV*. Here, we prove that space ΛBV of all the games of Λ bounded variation on *C* equipped with the total variation norm, is isometrically isometric to the norm dual of the space of all simple games, endowed with a suitable norm. We use this fact to establish the existence of a linear mapping *T* from ΛBV onto *F A* (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of (I, C).

2. PRELIMINARIES

A set function $v: C \to R$ is a game if $v(\phi) = 0$. A game on C is monotone if $v(A) \le v(B)$ whenever $A \subseteq B$. A chain $\{S_i\}_{i=0}^n$ in C is a finite strictly increasing sequence

^{*}Received by the editor November 24, 2008 and in final revised form August 3, 2010

^{**}Corresponding author

A. Ahmadi Ledari / M. Hormozi

$$\phi = S_0 \subset S_1 \subset \ldots \subset S_n = I$$

of the elements of C. ABV is the set of all games such that

$$|| u || = \sup \left\{ \sum_{i=1}^{n} \frac{|u(S_i) - u(S_{i-1})|}{\lambda_i} : \{S_i\}_{i=0}^{n} \text{ is a chain in } C \right\} < \infty.$$

A game in ΛBV is said to be of Λ bounded variation. A game is called a simple game if it is nonzero only on a finite number of elements of C. A function u in ΛBV is called finitely additive if

$$u(A \cup B) = u(A) + u(B)$$

whenever A and B are in C and $A \cap B = \phi$.

The set FA of finitely additive functions in ABV forms a closed subspace of ABV. A function u in ABV is called increasing if $u(A) \le u(B)$ whenever $A \subset B$. Each u in ABV has the form $u = u^+ + u^-$ when u^+ and u^- are increasing and $||u|| = u^+(I) + u^-(I)$. A linear mapping T in L(BV) is positive if Tu increases whenever u increases.

Let C denote the group of automorphisms of (I, C). A subspace X is called symmetric if $u \circ \pi$ is in X for each x in X and each π in C. A value is a linear mapping T from a symmetric subspace X of ΛBV onto the space F A of finitely additive set functions which satisfies three conditions:

(a) T is positive: i.e., Tu increases whenever u increases.

(b) T is symmetric: i.e., $T(u \ 0 \ \pi) = (Tu) \ o \ \pi$ for each π in C and u in X.

(c) T is efficient: (Tu)(I) = u(I) for each u in X.

In this note we establish the existence of linear operations from all of ΛBV onto FA which satisfy (a), (b) and a weaker form of (c), namely symmetry under a semigroup of C. In addition, these linear operators are projections (i.e., Tu = u for u in FA). Our main result is that, given any locally finite subgroup Φ of C there is a projection T from ΛBV onto FA which is symmetric under Φ . Since ΛBV is a (proper) subspace of R^{C} , it inherits a topology from the product topology of R^{C} . This is the weak topology generated by the projection functional

$$P_A : \Lambda BV \to R$$
$$u \to u(A)$$

where $A \in C$. A net $\{u_{\alpha}\}$ converges to u in this topology if $u_{\alpha}(A) \rightarrow u(A)$ for all $A \in C$ (we write $u_{\alpha} \xrightarrow{C} u$). This topology is called Λ -*vague* topology for the analogy with the vague topology on the set of probability measures.

3. ABV AS A NON SEPARABLE DUAL SPACE

In [4], Aumann and Shapley proved that BV is a Banach space. Here, we show ΛBV is a Banach space too.

Let $\Omega = \{S_i\}_{i=0}^n$ be a chain. For any set function ν we define

$$\|\nu\|_{\Omega} = \left\{ \sum_{i=1}^{n} \frac{|\nu(S_i) - \nu(S_{i-1})|}{\lambda_i} \right\} < \infty.$$

 ΛBV as a non separable dual space

This shows that a necessary and sufficient condition, $\nu \in \Lambda BV$, is that $\|\nu\|_{\Omega}$ be bounded over all chain Ω . Then, $\nu \in \Lambda BV$ if and only if $\|\nu\| = \sup \|\nu\|_{\Omega}$, where the sup is taken over all chains Ω .

It is obvious that this defines a norm on ΛBV . Now, we show that with this norm, ΛBV is a complete space.

Theorem 3.1. ΛBV is complete, hence a Banach space.

Proof: Let $\{v_n\}$ be a Cauchy sequence of elements of ABV. For any subset S of I, we show that sequence $\{v_n(S)\}$ is a Cauchy sequence in R.

Let S be a subset of I. For the chain

$$\Phi \subset S \subset I;$$

We have

$$||v_{n} - v_{m}|| \ge \frac{|(v_{n}(S) - v_{m}(S)) - (v_{n}(\Phi) - v_{m}(\Phi))|}{\lambda_{1}}$$
$$= |(v_{n}(S) - v_{m}(S))|.$$

Then the sequence $\{v_n(S)\}$ is a Cauchy sequence in R and is convergent; denote it's limit by v(S). We must first show that v is Λ -bounded variation. Let N be such that $||v_n - v_m|| \le 1$ whenever $n \ge N$. Then for each chain Ω and each $n \ge N$ we have

$$\| \boldsymbol{v}_n \|_{\Omega} - \| \boldsymbol{v}_N \| \leq \| \boldsymbol{v}_n \|_{\Omega} - \| \boldsymbol{v}_N \|_{\Omega}$$

$$\leq \| \boldsymbol{v}_n - \boldsymbol{v}_N \|_{\Omega}$$

$$\leq \| \boldsymbol{v}_n - \boldsymbol{v}_N \|$$

$$\leq 1$$

letting $n \to \infty$, we deduce

$$\left\| v \right\|_{\Omega} \le 1 + \left\| v_N \right\|_{\cdot}$$

Hence ν is Λ -bounded variation. That $||\nu_n - \nu|| \rightarrow 0$ is now easily verified, so the theorem is proved.

Here, we show that ΛBV is a non separable space. So, the dual of ΛBV is non separable too.

Theorem 3.2. $\Lambda BV[a,b]$ is non separable.

Proof: For each a satisfying a < s < b and subset A of [a,b], let $\chi_s(A)$ be the set function defined by

$\chi_s(A) = \langle$	1	if	[a,s]	$\subseteq A$
	0	oth	erwise.	

We see that χ_s is a monotone set function and belongs to the $\Lambda BV[a,b]$. For any *s* and *r* with a < s < r < b, let Ω be the chain $\emptyset \subseteq [a,s] \subseteq I$. Then

Summer 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3

A. Ahmadi Ledari / M. Hormozi

$$\|\chi_{r} - \chi_{s}\| \geq \|\chi_{r} - \chi_{s}\|_{\Omega}$$

$$\geq \frac{|(\chi_{r} - \chi_{s})([a, s]) - (\chi_{r} - \chi_{s})(\emptyset)|}{\lambda_{1}}$$

$$\geq 1$$

This completes the proof.

4. ΛBV AS A DUAL SPACE

In [3], Maccheroni and Ruckle showed that BV is a dual Banach space. Indeed, they showed that BV is isometrically isomorphic to the norm dual of space of all simple games. Here, we establish this result for ΛBV .

We define the game $e_A : C \to R$ by

$$e_{A}(B) = \begin{cases} 1 & \text{if } B = A \\ 0 & \text{otherwise} \end{cases}$$

Let X be the space of all simple games. For all $A \in C - \{\phi\}$ and $e_{\phi} = 0$ being $x = \sum_{A \in C} x(A)e_A$ for all $x \in X$, we have $X = \langle e_A : A \in C \rangle$. For each chain $\Omega = \{S_i\}_{i=0}^n$ in C, define a semi norm on X by

$$||x||_{\Omega} = \max_{0 \le k \le n} \left| \sum_{i=k}^{n} x(s_i) \right|.$$
(1)

For all $x \in X$. Let $X_{\Omega} = \langle e_A : A \in \Omega \rangle$. If $x \in X_{\Omega}$, we say that X depends on the chain Ω . For all $x \in X$, set

$$\|x\| = \inf \sum_{e=1}^{L} \|x_e\| \Omega_e$$

where the inf is taken over all finite decompositions $x = \sum_{e=1}^{L} x_e$ in which x_e depends on the chain Ω_e and $\|.\|_{\Omega_e}$ is defined as in (1) for all e = 1, 2, ..., L.

Lemma 4 of [3] showed that this equation defines a norm on X.

Lemma 4.1. The function $\| . \| : X \to R$ is a norm on X.

Given a linear continuous functional $f: X \to R$, define the game G_f as follows

$$G_f(A) = f(e_A)$$

For all $A \in C$.

Theorem 4.2. Let X^* be the norm dual of $(X, \|.\|)$. The operator

$$G: X^* \to \Lambda BV$$

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3

Summer 2010 www.SID.ir ΛBV as a non separable dual space

 $f \mapsto G_f$

is an isometric isomorphism from X^* onto ABV.

Proof: We first show that if $\Omega = \{S_i\}_{i=0}^n$ is a chain in C, then

$$\sum_{k=1}^{n} \frac{\left|G_{f}(S_{k}) - G_{f}(S_{k-1})\right|}{\lambda_{k}} \leq ||f||,$$

which implies that $G_f \in \Lambda BV$ and $\parallel G_f \parallel \,\leq \, \parallel f \parallel$.

Define $x \in X_{\Omega}$ by

$$x(S_{n}) = Sgn(f(eS_{n}) - f(eS_{n-1})),$$

$$x(S_{n}) + x(S_{n-1}) = Sgn(f(eS_{n-1}) - f(eS_{n-2})),$$

$$\vdots$$

$$x(S_{n}) + x(S_{n-1}) + \dots + x(S_{1}) = Sgn(f(eS_{1}) - f(eS_{0})),$$

$$x(S_{0}) = 0.$$

Obviously $||x||_{\Omega} \le 1$, so that ||x|| < 1. Similar to proof of theorem 5 of [3], we have,

$$|| f || \ge f(x) = \sum_{j=1}^{n} |G_{f}(S_{j}) - G_{f}(S_{j-1})|$$
$$\ge \sum_{j=1}^{n} \frac{|G_{f}(S_{j}) - G_{f}(S_{j-1})|}{\lambda_{j}}$$

which implies that $|| f || \ge || G_f ||$. Then G is well defined and obviously linear and injective. Given $u \in \Lambda BV$, we can define f_u on X by

$$f_u(x) = \sum_{A_j \in C} \frac{u(A_j)}{\lambda_j} x(A_j),$$

for all $x \in X$. It is trivial that f_u is linear. If x depends on $\Omega = \{S_j\}_{j=0}^n$, then

$$f_{u}(x) = \sum_{j=0}^{n} \frac{u(S_{j})}{\lambda_{j}} x(S_{j})$$
$$= \frac{u(S_{0})}{\lambda_{0}} \sum_{k=0}^{n} x(S_{k}) + \sum_{j=1}^{n} \left[\left(\frac{u(S_{j}) - u(S_{j-1})}{\lambda_{j}} \right) \sum_{k=j}^{n} x(S_{k}) \right]$$
$$= \sum_{j=1}^{n} \left[\frac{u(S_{j}) - u(S_{j-1})}{\lambda_{j}} \sum_{j=1}^{n} x(S_{k}) \right]$$

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3 www.SID.ir

A. Ahmadi Ledari / M. Hormozi

$$\leq \sum_{j=1}^{n} \left[\frac{|u(S_j) - u(S_{j-1})|}{\lambda_j} \left| \sum_{k=j}^{n} x(S_k) \right| \right]$$

$$\leq ||x||_{\Omega}||u||_{.}$$

If $x = \sum_{e=1}^{L} x_e$ with $x_e \in X_{\Omega_e}$ for all e = 1, 2, ..., L, then

$$f_u(x) = \sum_{e=1}^{L} f_u(x_e)$$
$$\leq \sum_{e=1}^{L} ||u|| ||x_e||_{\Omega_e}$$
$$\leq ||u|| \sum_{e=1}^{L} ||x_e||_{\Omega_e}$$

and so

$$f_u(x) \le \inf \left\{ \| u \| \sum_{e=1}^{L} \| x_e \|_{\Omega_e} : x = \sum_{e=1}^{L} x_e, x_e \in X_{\Omega_e} \right\}$$
$$= \| u \| \| x \|.$$

We conclude that $f_u \in X^*$, $G(f_u) = u$ and G is onto. For all $u \in \Lambda BV$, $f_u = G_u^{-1}$ and $||G_u^{-1}|| = ||f_u|| \le ||u||$.

Therefore, for all $f \in X^*$, $||f|| = ||G_{(G_f)}^{-1}|| \le ||G_f||$ and G is an isometry. Let G be similar to the previous theorem. We show that,

Theorem 4.3. G is weak $^* \Lambda$ – vague homeomorphism.

Proof: Let $\{f^a\}$ be a net in X^* . By using the notations of the previous theorem, we have that $f^a \xrightarrow{w^*} f$ iff $f^a(x) \to f(x)$ for all $x \in X$ iff $f^a(e_A) \to f(e_A)$ for all $A \in C$ iff $G_{f^a}(A) \to G_f(A)$ for all $A \in C$ iff $G_{f^a} \xrightarrow{C} G_f$.

In Theorem 4.2, together with the Alaoghlu theorem, we have the compactness of the unit ball U(BV) in the Λ -vague topology.

Theorem 4.4. The unit ball U(BV) is compact with respect to the Λ – *vague* topology.

5. PROJECTIONS FROM ABV **ONTO** FA

Given I and C as in §1, let Θ denote the set of one-to-one functions Θ from I into I such that $\pi(S) \in C$ if and only if $S \in C$. Then Θ forms a group under composition. For each π in Θ the function T_{π} defined by $T_{\pi}u = u \circ \pi$ is a linear operator from ΛBV into ΛBV with $||T_{\pi}|| = 1$. A function u in ΛBV is called finitely additive if

$$u(A \cup B) = u(A) + u(B)$$

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3

Summer 2010 www.SID.ir ΛBV as a non separable dual space

whenever A and B are in C an $A \cap B = \phi$. The set FA of finitely additive functions in ΛBV forms a closed subspace of ΛBV . A function u in ΛBV is called increasing if $u(A) \le u(B)$ whenever $A \subset B$. Each u in ΛBV has the form $u = u^+ - u^-$ when u^+ and u^- are increasing and $||u|| = u^+(I) - u^-(I)$. A linear mapping T in $L(\Lambda BV)$ is positive if Tu is increasing whenever u is increasing.

Definition 5.1. Let Φ be a subgroup of Θ . A Φ -value is a projection P from ΛBV onto FA which fulfills the following conditions:

$$\|Pu\| \le \|u\|, \qquad u \in \Lambda BV.$$
⁽²⁾

$$Pu(I) = u(I), \quad u \text{ in } \Lambda BV.$$
 (3)

$$PT_{\pi} = T_{\pi}P \quad for \quad all \quad \pi \quad in \quad \Phi.$$
(4)

Definition 5.2. For each finite partition D of I into members of C, $\Gamma_{\Lambda} - set[\Gamma_{\Lambda}(D)]$ is the set of all T in $L(\Lambda BV)$ for which

$$Tu(I) = u(I)$$
 for u in ABV ; (5)

$$||Tu|| \le ||u||, \qquad u \in \Lambda BV; \tag{6}$$

Tu is additive on the algebra of sets determined by D; (7)

$$Tu(B) = u(B) \quad for \quad u \quad in \quad FA, \quad B \quad in \quad D.$$
(8)

Lemma 5.3. No set $\Gamma_{\Lambda}(D)$ is empty.

Proof: Suppose $D = \{D_1, D_2, ..., D_k\}$ (any order). Let $E_0 = \phi$, $E_1 = D_1, ..., E_n = D_1 \cup D_2 \cup ... \cup D_n$, ..., $E_k = I$. For each D_i in C let d_{D_i} be the function

$$d_{D_j}(A) = \begin{cases} \lambda_i & \text{if } D_j \subseteq A \\ 0 & \text{otherwise.} \end{cases}$$

Define Q_D from ΛBV into ΛBV by

$$Q_{D^{u}} = \sum_{j=1}^{k} \frac{(u(E_{j}) - u(E_{j-1}))d_{D_{j}}}{\lambda_{j}}$$

It is clear that Q_D is linear and satisfied (5) since the sum for $Q_{D^u}(I)$ collapses to u(I). Since each d_{D_j} is increasing, and each coefficient is positive when V is increasing it follows that Q_D is positive. If $u = u^+ - u^-$ when u^+ and u^- are increasing and $||u|| = u^+(I) + u^-(I)$ we have

$$||Q_{D^{u}}|| \leq ||Q_{D}u^{+}|| + ||Q_{D}u^{-}||$$

= $Q_{D}u^{+}(I) + Q_{D}u^{-}(I)$
= $u^{+}(I) + u^{-}(I)$
= $||u||.$

A. Ahmadi Ledari / M. Hormozi

Thus (6) is valid. We omit the straightforward arguments which show Q_D satisfies (6) and (7). Now with a similar proposition 2.2 and theorem 2.3 of [5], one can prove that

Theorem 5.4. There exists a projection Q from ABV onto FA satisfying (2) and (3).

Theorem 5.5. If Φ is a locally finite subgroup there is a Φ -value P from ΛBV onto FA.

Acknowledgements- The authors express their sincere thanks to Professor Fabio Maccheroni and Professor William H. Ruckle for their valuable suggestions and comments which led to the improvement of this paper.

REFERENCES

- 1. Dunford, N. & Schwartz, J. T. (1958). Linear operators. New York, Interscience.
- 2. Esi, A. H. & Polat, H. (2006). On strongly Δ^n -summable sequence spaces. *Iran. J. Sci. Technol.*, 30(2), 229-234.
- 3. Maccheroni, F. & Ruckle, W. H. (2002). *BV* as a dual space. *Rendiconti del Seminario Matematico di Padova*, 107, 101-109.
- 4. Aumann, R. J. & Shapley, L. S. (1974). Values of non-atomic games. Princeton University Press.
- 5. Ruckle, W. H. (1982). Projection in Certain Spaces of set Functions. *Mathematics of Operations Research*, 7(2), 314-318.