Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A3 Printed in the Islamic Republic of Iran, 2010 © Shiraz University

BV **AS A NON SEPARABLE DUAL SPACE***

A. AHMADI LEDARI^{1**} AND M. HORMOZI²

¹Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I. R. of Iran Email: ahmadi@hamoon.usb.ac.ir
²University of Gothenburg, Chalmers University of Technology, Gotheburg, Sweden Email: Hormozi@chalmers.se

Abstract – Let *C* be a field of subsets of a set *I*. Also, let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a non-decreasing positive sequence of real numbers such that $\lambda_1 = 1$, $1/\lambda_i \rightarrow 0$ and $\sum_{i=1}^{\infty} 1/\lambda_i = \infty$. In this paper we prove that ΛBV of all the games of Λ -bounded variation on C is a non-separable and norm dual Banach space of the space of simple games on C . We use this fact to establish the existence of a linear mapping T from ΔBV onto *F A* (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of *I*,*C*.

Keywords – Set functions, duality, compactness, non separable

1. INTRODUCTION

Let *C* be a field of subsets of a nonempty set *I*. It is well-known that the space *F A* of all the finitely additive games of bounded variation on *C* , equipped with the total variation norm, is isometrically isomorphic to the norm dual of the space of all simple functions on C , endowed with the sup norm ([1]) (also see [2]). Maccheroni and Ruckle in [3] established a parallel result for the space *BV* of all the games of bounded variation on *C* . Indeed, they showed that *BV* , equipped with the total variation norm, is isometrically isometric to the norm dual of the space of all simple games endowed with a suitable norm where a simple game is a game which is non zero only on a finite number of elements of *C* . Let $\Lambda = {\lambda_i}_{i=1}^{\infty}$ be a non-decreasing positive sequence of real numbers such that $\lambda_1 = 1$, $1/\lambda_i \rightarrow 0$ and $\sum_{i=1}^{\infty} 1/\lambda_i = \infty$. We introduce space *ABV* which shares many properties of space *BV*. Here, we prove that space ΔBV of all the games of Λ bounded variation on *C* equipped with the total variation norm, is isometrically isometric to the norm dual of the space of all simple games, endowed with a suitable norm. We use this fact to establish the existence of a linear mapping *T* from ΛBV onto *F A* (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of (I, C) .

2. PRELIMINARIES

A set function $v: C \to R$ is a game if $v(\phi) = 0$. A game on C is monotone if $v(A) \le v(B)$ whenever $A \subseteq B$. A chain $\{S_i\}_{i=0}^n$ in *C* is a finite strictly increasing sequence

 \overline{a}

Received by the editor November 24, 2008 and in final revised form August 3, 2010

Corresponding author

A. Ahmadi Ledari / M. Hormozi

$$
\phi = S_0 \subset S_1 \subset \ldots \subset S_n = I
$$

of the elements of $C \cdot \Delta BV$ is the set of all games such that

$$
\|u\|=\sup\left\{\sum_{i=1}^n\frac{|u(S_i)-u(S_{i-1})|}{\lambda_i}\colon\{S_i\}_{i=0}^n\text{ is a chain in }C\right\}<\infty.
$$

A game in ΔBV is said to be of Δ bounded variation. A game is called a simple game if it is nonzero only on a finite number of elements of C . A function u in ΔBV is called finitely additive if

$$
u(A \cup B) = u(A) + u(B)
$$

whenever *A* and *B* are in *C* and $A \cap B = \phi$.

The set F A of finitely additive functions in ABV forms a closed subspace of ABV . A function *u* in *ABV* is called increasing if $u(A) \le u(B)$ whenever $A \subset B$. Each *u* in *ABV* has the form $u = u^+ + u^-$ when u^+ and u^- are increasing and $||u|| = u^+(I) + u^-(I)$. A linear mapping *T* in $L(BV)$ is positive if *Tu* increases whenever *u* increases.

Let C denote the group of automorphisms of (I, C) . A subspace X is called symmetric if $u \circ \pi$ is in *X* for each *x* in *X* and each π in C. A value is a linear mapping *T* from a symmetric subspace *X* of ΔBV onto the space FA of finitely additive set functions which satisfies three conditions:

(a) T is positive: i.e., Tu increases whenever u increases.

(b) *T* is symmetric: i.e., $T(u \cdot \theta \pi) = (Tu) \cdot \theta \pi$ for each π in C and *u* in *X*.

(c) *T* is efficient: $(Tu)(I) = u(I)$ for each *u* in *X*.

In this note we establish the existence of linear operations from all of ΛBV onto FA which satisfy (a), (b) and a weaker form of (c), namely symmetry under a semigroup of \dot{C} . In addition, these linear operators are projections (i.e., $Tu = u$ for *u* in FA). Our main result is that, given any locally finite subgroup Φ of C there is a projection *T* from ΛBV onto *F A* which is symmetric under Φ . Since *ABV* is a (proper) subspace of R^C , it inherits a topology from the product topology of R^C . This is the weak topology generated by the projection functional

$$
P_A: \Lambda BV \to R
$$

$$
u \to u(A)
$$

where $A \in \mathbb{C}$. A net $\{u_{\alpha}\}\)$ converges to *u* in this topology if $u_{\alpha}(A) \rightarrow u(A)$ for all $A \in \mathbb{C}$ (we write $u_a \xrightarrow{c} u$). This topology is called Λ -vague topology for the analogy with the vague topology on the set of probability measures.

3. *BV* **AS A NON SEPARABLE DUAL SPACE**

In [4], Aumann and Shapley proved that BV is a Banach space. Here, we show ΛBV is a Banach space too.

Let $\Omega = \{S_i\}_{i=0}^n$ be a chain. For any set function V we define

$$
\|v\|_{\Omega} = \left\{ \sum_{i=1}^{n} \frac{|\nu(S_i) - \nu(S_{i-1})|}{\lambda_i} \right\} < \infty.
$$

BV as a non separable dual space

This shows that a necessary and sufficient condition, $v \in \Lambda BV$, is that $||v||_{\Omega}$ be bounded over all chain Ω . Then, $v \in \Lambda BV$ if and only if $||v|| = \sup ||v||_{\Omega}$, where the sup is taken over all chains Ω .

It is obvious that this defines a norm on ΔBV . Now, we show that with this norm, ΔBV is a complete space.

Theorem 3.1. *ABV* is complete, hence a Banach space.

Proof: Let $\{v_n\}$ be a Cauchy sequence of elements of ΛBV . For any subset *S* of *I*, we show that sequence $\{V_n(S)\}\$ is a Cauchy sequence in R.

Let *S* be a subset of *I*. For the chain

$$
\Phi \subset S \subset I;
$$

We have

$$
\| \nu_n - \nu_m \| \ge \frac{\left| (\nu_n(S) - \nu_m(S)) - (\nu_n(\Phi) - \nu_m(\Phi)) \right|}{\lambda_1}
$$

$$
= \left| (\nu_n(S) - \nu_m(S)) \right|.
$$

Then the sequence $\{v_n(S)\}\$ is a Cauchy sequence in *R* and is convergent; denote it's limit by $v(S)$. We must first show that ν is Λ -bounded variation. Let *N* be such that $||\nu_n - \nu_m|| \le 1$ whenever $n \geq N$. Then for each chain Ω and each $n \geq N$ we have

$$
\begin{aligned} ||v_n||_{\Omega} - ||v_N|| &\leq ||v_n||_{\Omega} - ||v_N||_{\Omega} \\ &\leq ||v_n - v_N||_{\Omega} \\ &\leq ||v_n - v_N||_{\Omega} \\ &\leq 1 \end{aligned}
$$

letting $n \to \infty$, we deduce

$$
\left\|\left.v\right\|_{\Omega}\right\|~\leq~\left.1+\left\|\left.v_{N}\right.\right\| \right\|_{.}
$$

Hence ν is Λ -bounded variation. That $|| \nu_n - \nu || \rightarrow 0$ is now easily verified, so the theorem is proved.

Here, we show that ΔBV is a non separable space. So, the dual of ΔBV is non separable too.

Theorem 3.2. $\Delta BV[a, b]$ is non separable.

Proof: For each a satisfying $a < s < b$ and subset *A* of $[a,b]$, let χ _s (A) be the set function defined by

$$
\chi_s(A) = \begin{cases} 1 & \text{if } [a,s] \subseteq A \\ 0 & \text{otherwise.} \end{cases}
$$

We see that χ_s is a monotone set function and belongs to the $\Lambda BV[a,b]$. For any *s* and *r* with $a < s < r < b$, let Ω be the chain $\emptyset \subseteq [a, s] \subseteq I$. Then

A. Ahmadi Ledari / M. Hormozi

$$
\| \chi_r - \chi_s \| \ge \| \chi_r - \chi_s \|_{\Omega}
$$

$$
\ge \frac{|(\chi_r - \chi_s)([a,s]) - (\chi_r - \chi_s)(a)|}{\lambda_1}
$$

$$
\ge 1
$$

This completes the proof.

4. *BV* **AS A DUAL SPACE**

In [3], Maccheroni and Ruckle showed that *BV* is a dual Banach space. Indeed, they showed that *BV* is isometrically isomorphic to the norm dual of space of all simple games. Here, we establish this result for $\triangle BV$.

We define the game $e_A: C \rightarrow R$ by

$$
e_A(B) = \begin{cases} 1 & \text{if} \quad B = A \\ 0 & \text{otherwise} \end{cases}
$$

Let *X* be the space of all simple games. For all $A \in \mathbb{C} - \{\phi\}$ and $e_{\phi} = 0$ being $x = \sum_{A \in \mathbb{C}} x(A)e_A$ for all $x \in X$, we have $X = \langle e_A : A \in C \rangle$. For each chain $\Omega = \{S_i\}_{i=0}^n$ in *C*, define a semi norm on *X* by

$$
\|x\|_{\Omega} = \max_{0 \le k \le n} \left| \sum_{i=k}^{n} x(s_i) \right|.
$$
 (1)

For all $x \in X$. Let $X_{\Omega} = \langle e_A : A \in \Omega \rangle$. If $x \in X_{\Omega}$, we say that *X* depends on the chain Ω . For all $x \in X$, set

$$
|| x || = inf \sum_{e=1}^{L} || x_e || \Omega_e
$$

where the inf is taken over all finite decompositions $x = \sum_{e=1}^{L} x_e$ in which x_e depends on the chain Ω_e and $\|\cdot\|_{\Omega_e}$ is defined as in (1) for all $e = 1, 2, ..., L$.

Lemma 4 of [3] showed that this equation defines a norm on *X* .

Lemma 4.1. The function $|| \cdot || : X \rightarrow R$ is a norm on X.

Given a linear continuous functional $f: X \to \mathbb{R}$, define the game G_f as follows

$$
G_f(A) = f(e_A)
$$

For all $A \in \mathbb{C}$.

Theorem 4.2. Let X^* be the norm dual of $(X, \|\cdot\|)$. The operator

$$
G: X^* \to \Lambda BV
$$

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3 Summer 2010

<www.SID.ir>

BV as a non separable dual space

 $f \mapsto G_f$

is an isometric isomorphism from X^* onto ΛBV .

Proof: We first show that if $\Omega = \{S_i\}_{i=0}^n$ is a chain in C , then

$$
\sum_{k=1}^n \frac{|G_f(S_k) - G_f(S_{k-1})|}{\lambda_k} \leq ||f||,
$$

which implies that $G_f \in \Lambda BV$ and $|| G_f || \le || f ||$.

Define $x \in X_{\Omega}$ by

$$
x(S_n) = Sgn(f(eS_n) - f(eS_{n-1})),
$$

\n
$$
x(S_n) + x(S_{n-1}) = Sgn(f(eS_{n-1}) - f(eS_{n-2})),
$$

\n
$$
\vdots
$$

\n
$$
x(S_n) + x(S_{n-1}) + \dots + x(S_1) = Sgn(f(eS_1) - f(eS_0)),
$$

\n
$$
x(S_0) = 0.
$$

Obviously $||x||_{\Omega} \le 1$, so that $||x|| < 1$. Similar to proof of theorem 5 of [3], we have,

$$
\parallel f \parallel \geq f(x) = \sum_{j}^{n} \left| G_{f}(S_{j}) - G_{f}(S_{j-1}) \right|
$$

$$
\geq \sum_{j=1}^{n} \frac{\left| G_{f}(S_{j}) - G_{f}(S_{j-1}) \right|}{\lambda_{j}}
$$

which implies that $|| f || \ge || G_f ||$. Then *G* is well defined and obviously linear and injective. Given $u \in \Lambda BV$, we can define f_u on X by

$$
f_u(x) = \sum_{A_j \in C} \frac{u(A_j)}{\lambda_j} x(A_j),
$$

for all $x \in X$. It is trivial that f_u is linear.

If *x* depends on $\Omega = \left\{ S_j \right\}_{j=0}^{n}$, then

$$
f_u(x) = \sum_{j=0}^n \frac{u(S_j)}{\lambda_j} x(S_j)
$$

=
$$
\frac{u(S_0)}{\lambda_0} \sum_{k=0}^n x(S_k) + \sum_{j=1}^n \left[\frac{u(S_j) - u(S_{j-1})}{\lambda_j} \right] \sum_{k=j}^n x(S_k)
$$

=
$$
\sum_{j=1}^n \left[\frac{u(S_j) - u(S_{j-1})}{\lambda_j} \sum_{j=1}^n x(S_k) \right]
$$

Summer 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3 <www.SID.ir>

A. Ahmadi Ledari / M. Hormozi

$$
\leq \sum_{j=1}^{n} \left[\frac{|u(S_j) - u(S_{j-1})|}{\lambda_j} \left| \sum_{k=j}^{n} x(S_k) \right| \right]
$$

$$
\leq ||x||_{\Omega} ||u||.
$$

If
$$
x = \sum_{e=1}^{L} x_e
$$
 with $x_e \in X_{\Omega_e}$ for all $e = 1, 2, ..., L$, then

$$
f_u(x) = \sum_{e=1}^{L} f_u(x_e)
$$

$$
\leq \sum_{e=1}^{L} ||u|| ||x_e||_{\Omega_e}
$$

$$
\leq ||u|| \sum_{e=1}^{L} ||x_e||_{\Omega_e},
$$

and so

$$
f_u(x) \le \inf \left\{ \|u\| \sum_{e=1}^L \|x_e\|_{\Omega_e} : x = \sum_{e=1}^L x_e, x_e \in X_{\Omega_e} \right\}
$$

= $||u|| ||x||$.

We conclude that $f_u \in X^*$, $G(f_u) = u$ and G is onto. For all $u \in \Lambda BV$, $f_u = G_u^{-1}$ and $||G_{u}^{-1}|| = ||f_{u}|| \leq ||u||.$

Therefore, for all $f \in X^*$, $|| f || = || G^{-1}_{G_f} || \le || G_f ||$ and G is an isometry. Let G be similar to the previous theorem. We show that,

Theorem 4.3. G is weak^{*} Λ – vague homeomorphism.

Proof: Let $\{f^a\}$ be a net in X^* . By using the notations of the previous theorem, we have that $f^a \xrightarrow{w^*} f^b$ iff $f^a(x) \to f(x)$ for all $x \in X$ iff $f^a(e_A) \to f(e_A)$ for all $A \in C$ iff $G_{f^a}(A) \rightarrow G_f(A)$ for all $A \in \mathbb{C}$ iff $G_{f^a} \xrightarrow{C} G_f$.

In Theorem 4.2, together with the Alaoghlu theorem, we have the compactness of the unit ball $U(BV)$ in the Λ – *vague* topology.

Theorem 4.4. The unit ball $U(BV)$ is compact with respect to the Λ – *vague* topology.

5. PROJECTIONS FROM *BV* **ONTO** *FA*

Given *I* and C as in §1, let Θ denote the set of one-to-one functions Θ from *I* into *I* such that $\pi(S) \in C$ if and only if $S \in C$. Then Θ forms a group under composition. For each π in Θ the function T_{π} defined by $T_{\pi}u = u \circ \pi$ is a linear operator from ΔBV into ΔBV with $||T_{\pi}|| = 1$. A function u in ΔBV is called finitely additive if

$$
u(A \cup B) = u(A) + u(B)
$$

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A3 Summer 2010

<www.SID.ir>

BV as a non separable dual space

whenever *A* and *B* are in *C* an $A \cap B = \phi$. The set *F A* of finitely additive functions in ΔBV forms a closed subspace of $\triangle BV$. A function *u* in $\triangle BV$ is called increasing if $u(A) \le u(B)$ whenever $A \subseteq B$. Each *u* in ΔBV has the form $u = u^+ - u^-$ when u^+ and u^- are increasing and $||u|| = u^+(I) - u^-(I)$. A linear mapping *T* in $L(\Lambda BV)$ is positive if $T\mathcal{U}$ is increasing whenever \mathcal{U} is increasing.

Definition 5.1. Let Φ be a subgroup of Θ . A Φ -value is a projection P from ΛBV onto F A which fulfills the following conditions:

$$
\|Pu\| \le \|u\|, \qquad u \in \Lambda BV. \tag{2}
$$

$$
Pu(I) = u(I), \qquad u \quad in \quad \Delta BV. \tag{3}
$$

$$
PT_{\pi} = T_{\pi}P \quad \text{for all} \quad \pi \quad \text{in} \quad \Phi. \tag{4}
$$

Definition 5.2. For each finite partition *D* of *I* into members of C, Γ_{Λ} – set $[\Gamma_{\Lambda}(D)]$ is the set of all *T* in $L(ABV)$ for which

$$
Tu(I) = u(I) \quad \text{for} \quad u \quad \text{in} \quad \Delta BV \, ; \tag{5}
$$

$$
||Tu|| \le ||u||, \qquad u \in \Lambda BV;
$$
\n⁽⁶⁾

Tu is additive on the algebra of sets determined by D; (7)

$$
Tu(B) = u(B) \quad \text{for} \quad u \quad \text{in} \quad FA, \quad B \quad \text{in} \quad D. \tag{8}
$$

Lemma 5.3. No set $\Gamma_{\Lambda}(D)$ is empty.

Proof: Suppose $D = \{D_1, D_2, ..., D_k\}$ (any order). Let $E_0 = \phi$, $E_1 = D_1, ..., E_n = D_1 \cup D_2 \cup ... \cup D_n$, $E_k = I$. For each D_j in C let d_{D_j} be the function

$$
d_{D_j}(A) = \begin{cases} \lambda_i & \text{if } D_j \subseteq A \\ 0 & \text{otherwise.} \end{cases}
$$

Define Q_p from ΛBV into ΛBV by

$$
Q_{D^u} = \sum_{j=1}^k \frac{\big(u(E_j) - u(E_{j-1})\big) d_{D_j}}{\lambda_j}.
$$

It is clear that Q_D is linear and satisfied (5) since the sum for $Q_{D^u}(I)$ collapses to $u(I)$. Since each *Dj* d_{D_j} is increasing, and each coefficient is positive when V is increasing it follows that Q_D is positive. If $u = u^+ - u^-$ when u^+ and u^- are increasing and $||u|| = u^+(I) + u^-(I)$ we have

$$
\|Q_{D^u}\| \le \|Q_D u^+\| + \|Q_D u^-\|
$$

= $Q_D u^+(I) + Q_D u^-(I)$
= $u^+(I) + u^-(I)$
= $||u||$.

A. Ahmadi Ledari / M. Hormozi

Thus (6) is valid. We omit the straightforward arguments which show Q_D satisfies (6) and (7). Now with a similar proposition 2.2 and theorem 2.3 of [5], one can prove that

Theorem 5.4. There exists a projection *Q* from ΛBV onto *F A* satisfying (2) and (3).

Theorem 5.5. If Φ is a locally finite subgroup there is a Φ – *value P* from ΛBV onto *F A*.

Acknowledgements- The authors express their sincere thanks to Professor Fabio Maccheroni and Professor William H. Ruckle for their valuable suggestions and comments which led to the improvement of this paper.

REFERENCES

- 1. Dunford, N. & Schwartz, J. T. (1958). *Linear operators.* New York, Interscience.
- 2. Esi, A. H. & Polat, H. (2006). On strongly ∆ⁿ -summable sequence spaces. *Iran. J. Sci. Technol., 30*(2), 229-234.
- 3. Maccheroni, F. & Ruckle, W. H. (2002). *BV* as a dual space. *Rendiconti del Seminario Matematico di Padova, 107,* 101-109.
- 4. Aumann, R. J. & Shapley, L. S. (1974). *Values of non-atomic games.* Princeton University Press.
- 5. Ruckle, W. H. (1982). Projection in Certain Spaces of set Functions. *Mathematics of Operations Research, 7*(2), 314-318.