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Abstract — A k-nacci sequence in afinite group is a sequence of group elements X,, X, X,,**+, X ,--- for
which, given aninitial (seed) set x,, X, Xttty X g each element is defined by

Xn_{xoxl---xnl forj<n<Kk,
XokXnken " %o fOrnzk.

In this paper, we examine the periods of the k-nacci sequencesin Miller's generalization of the polyhedral
groups <2,2 2: q>, <n,2 2: q>, <2, n2; q>, <2,2 n: q> ,forany N> 2.
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1. INTRODUCTION

The study of Fibonacci sequences in groups began with the earlier work of Wall [1] where he considered
Fibonacci sequences of the cyclic groups C, . Wilcox extended the problem to abelian groups [2]. In [3]
the Fibonacci length of a 2-generator group is defined. The concept of Fibonacci length for more than two
generators has been considered, [4] and [5]. Prolific co-operation of Campbell, Doostie and Robertson
expanded the theory to some finite simple groups [3]. The theory has been generalized in [6], [7] to the
ordinary 3-step Fibonacci sequences in finite nilpotent groups. Then, it is shown in [8] that the period of 2-
step genera Fibonacci sequence is equal to the length of the fundamenta period of the 2-step general
recurrence constructed by two generating elements of the group of exponent p and nilpotency class 2.
Karaduman and Yavuz showed that the periods of the 2-step Fibonacci recurrences in finite nilpotent
groups of nilpotency class 5 and a prime exponent are p.k(p), for 2< p <2927, where p isprimeand
k(p) is the periods of ordinary 2-step Fibonacci sequences [9]. The 2-step general Fibonacci sequences
in finite nilpotent groups of nilpotency class 4 and exponent p and the 2-step Fibonacci sequences in
finite nilpotent groups of nilpotency class N and exponent p arediscussed in [10] and [11], respectively.
In [12] the relationship between a number of recurrence sums involved in the j th term of the last
component of the Fibonacci sequences finite nilpotent groups of nilpotency class N and exponent p and
the coefficients of the binomial formula has been investigated. Knox proved that periods of the k-nacci (k-
step Fibonacci) sequences in the dihedral group were equal to 2K+ 2 [13]. Other work on Fibonacci
length is discussed in [14] and [15]. Recently, the works have been done on the k-nacci sequences [16-18].
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This paper isrelated to the periods of the k-nacci sequences in Miller’ s generalization of the
polyhedral groups<2,2|2; q>,<n,2|2; q>,<2, n|2; q>,<2,2|n; q> ,forany n.

Definition 1.1. A k-nacci sequence in afinite group is a sequence of group elements x,,x, x,,---, x,,--- for
which, given aniinitial (seed) set X, %, %,,-**, X4, €ach element is defined by

X _{Xoxlmxnl forj <n<k,
Xy Xnier o Xy fOrn>k.

We also require that the initial elements of the sequence, X,, X, X%,,-+, X;_;, generate the group, thus
forcing the k-nacci sequence to reflect the structure of the group. It is important to note that the Fibonacci
length of a group depends on the chosen generating n-tuple. The k-nacci sequence of a group generated by
X0 X3 X577, X;_y IS denoted by F.(G; %, xl,---,xjfl) and its period is denoted by R, (G; X,, xl,---,xjfl) )

Definition 1.2. For a finitely generated group G=< A> where A= {a.a,,...a,}, the sequence
X =a,, 0<i<n-1, x,, :HXHH, i >0, is caled the Fibonacci orbit of G with respect to the
generating set A, denoted F,(G).™

Notice that the orbit of a k-generated group is a k- nacci sequence.

2-step Fibonacci sequence in the integers modulo M can be written as F,(Z,;0,1). A 2-step
Fibonacci sequence of a group of elementsis caled a Fibonacci sequence of afinite group.

A finite group G isk-nacci sequenceable if there exists ak-nacci sequence of G such that every
element of the group appears in the sequence.

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a
fixed subsequence. The number of elements in the repeating subsequence is called period of the sequence.
For example, the sequence a,b,c,d,eb,c,d,eb,c,d,e, .- IS periodic after the initial element a and has
period 4. A sequence of group elements is simply periodic with period k if the first k elements in the
sequence form a repeating subsequence. For example, the sequence a,b,c,d,e, f,a,b,c,d,e f,a,b,c,d,e, f, -
issimply periodic with period 6.

Remark 1.1. The polyhedral group (I ,m n), for I, m,n > 1 isdefined by the presentation

<x,y,z:x' =y"=2" :xyz:1>

or
<x,y,z:x':y"‘=(xy)”=1>.
The polyhedra group (I,mn) is finite if, and only if, the number
k:lmn(%+i+1—1 — mn+nl +Im—lmn is positive and the order of (I,mn) being 2myk.
m n

These groups are also called triangle groups and are denoted by T(I M, n) :

Remark 1.2. Miller’s generalization of the polyhedral group <I,rr1n>, for I,m,n>1 is defined by the
presentation

<x,y: X' =y, (xy)" :1>.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010


www.SID.ir

K-nacci sequencesin miller’s... 277
Its order isthat of (I ,m n) multiplied by the period of central element
S=x =y".
If this period isfinite, any divisor g yieldsafactor group
(1.min;q) = (m.1|n; )
defined by
<x,y: X =y™=S,(xy)' =S =1>.
For more information on these groups, see[19].

2. MAIN RESULTSAND PROOFS

Theorem 2.1. Let G be the group defined by the presentation G = <x, y:ix>=y®> =S (xy)? =S :1>. We
get
4k+4, q=4,
P(G,x,y)=12k+2, =2,
k+1, qg=1

Proof: Wefirst notethat || = 20, |y| = 20, |xy| = 2, xy = y* ¥ x*, yx = x> ty?
If k=2, the sequence will be asfollows:

X, y’ Xy, yxy1 y4y’ y7X, y12X’ yZOy’ y32xy’ y52yxy’ y88y’ yl43X, y232X, y376y’ yGOBXy,

If q=4, P.(G;x,y)=12 becauseof y® =x°=1.
If q=2, P.(G;x,y)=6 because of y4— =1,
If q=1, P(G;x,y)=3 becauseof y? = x? =1.
If k=3, the sequence will be as follows:

X, ¥, Xy, L yxy, y*y, y7x Y2, y2x vy y, yOxy, v, vy yxy, vy,

Yo x, YT Yy Ty yloeosxy .
If q=4, Pk(G;X, y) 16 because of y =1.
If q=2, P.(G;x,y)=8 because of y“—x =1.
If g=1, Pk(G;x,y) 4 because of y =1.

Let kK>4.
If q=4,thefirst K elements of the sequenceare X, = X, X, = Y, X, = XY, X, :(xy)2 =11---,1 where
X; =1for 4< j <k-1. Thus, we have the sequence

k+1

k-1
X =[x =1 %1 = HX| YXYs X2 = HX—
i—0

i=1

k+2 k+3 2k+1

3 4 4
Xii3 :Hxi = XY, Xiia :HXi =XT=Y o X :HXi =X

i=3 i=4 i=k+2

Autumn 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4


www.SID.ir

278 O. Deveci / E. Karaduman

2k+2 2k+3 2k+4
Xoki3 = HX =Y, g = HX = XY, Xoki5 = HX =xt=y -,
i=k+3 i=k+4 i=k+5
3k+5 4k+2
Xao= || % =1L, 1(wherex; =1for 3k+6<x, <4k+2), X, = [ % =1,
i=2k+6 i=3k+3
4k+3 4k+4 4k+5
Xaksa = H X =X Xy = H X =Y Xy = H X=Xy,
i=3k+4 i=3k+5 i=3k+6

4k+6

o H)g 11+, 1(wherex; =1for 4k +7< x; <5k +4), -

i=3k+7

Since the elements succeeding Xy, 41 Xai51 Xaks6 depend on X, y and xy for their values, the cycle
begins again with the 4k + 4™ element; that is, X, = X,,4, X, = Xge.s: -+ Thus, B (G; X, y) =4k +4.

If q=2, then the first kK elements of thesequenceare Xo = X% = Y, X, = XY, X, = (xy)’ =11, ---,1
where x; =1 for 4< j <k -1. Thus, we have the sequence

k-1 k+1 k+2

X =[]% =1 %= HX—yXka+2 HX—ka+3 HXI—X%

i=0

k+3

H)g_x =y*=11- -1(wherex; =1for k+4< j<2Kk), X, ,, = HX =1

i=k+1

2k+1 2k+2 2k+3

X2 = [T % =% X = [T X =Y =¥ Xara = [ [ % =%V,

i=k+2 i=k+3 i=k+4

2k+4

Xps = [ [ % =X =y'=11---,1(wherex, =1for 2k+5< j <3k+2),-

i=k+5
Since the elements succeeding X,, .., Xo.3, Xo,4 depend on X, y and Xy for their values, the cycle
begins again with the 2k + 2™ element; that is X, = Xy, X, = Xp,5, -+~ THUS, P,(G; X, y) = 2k + 2.
If g=1, the first K elements of the sequence are x, =X, % =V, X, =Xy, X, = (xy)* =1,1,---,1
where x; =1 for 4< j <k —1. Thus, we have the sequence

k-1

Kk
% =[x =Lxa=]]x=yy=x

i=0 i=1

k+1 k+2

=[x =Y =V %= [% =Xy=x,
i=2 i=3

k+3

=[[x=x"=y"=11-,1(wherex; =1fork+4< j < 2k+1),--.
i=4

Since the elements succeeding X, X, X3 depend on X, y and xy for their vaues, the cycle
begins again with the k+1" element; that is, X, = X3, X = X5, -+ Thus, P, (G; %, y) =k +1. Also,
see [18] for adifferent proof when q =1 since <2, 2| 2: 1> =(2,2,2).

Theorem 2.2. Let G be the group defined by the presentation G = <x,y; x> = y" =S, (xy)? = S :1>.
Then the following are true.
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i.If g=1, P(G;x,y)=(2k+2).

i.If q=2",ueN, P(G;xy)=(2k+2)2"*,

iii. If p> 2 isaprimenumber and g = 2p, then Pk(G;x, y) are the samefor both g and p.

iv.If g=p"p,”---p;" and p; >2 (1<i<j) isthe biggest of P, P,, -+, P; Prime numbers, then
either P (G; X, y) are the same for both q and p; or B, (G; X, yXPk’q(G;x, y). Where B, (G;x,y)
denote period of G for g and Pk,pi (G;X, yij’q(G;x, y) means that Pk’pi (G;x, y) divides Pk’q(G;x, y)

Proof: Wefirst notethat |X| = 2q, |y = an, yxy = y'“"x, xyx = y .
If k=2, the sequence will be as follows:

X, Y, XY, y(q—l)nX y(q—l)nxyx y2q ~1)n yX, y3q 2)n X y5q 2)n y’ y8q 4)n Xy,
y(14q 7)n Ny, y22q -11)n ny y36q -17)n yx, y58q 28)n ny, y94q —44)n y y52q 72)n xy y147q -117)n X .
y(199q—189 XYX, y346q 305)n yx, y545q 494)n X y891q 798)n y1 y1436q—1292 Xy, Y (23284-2091)n X, (1)
y(3764q -3383)n ny y (6092-5473)n yx, y (98560-8856)n ny, y15948q—14328) Y,
i.1f q=1, P,(G;x ) =6 becauseof (2,n21)=(2,n2)=D,.
ii.If g=2",ue N, the sequence reduces to
X=X XK =Y % =X, X =Y X X = Y YK X = Y YK X =YX X =y Y,
X, = —2 7nX X5 = —2 11ny, e Xy = —231107nx X, = —231791ny, e Xy = y—z any
Xy = y_z =Y, Xt = y_zu X, Xty = y—2 R
Where 8,8, € N.

Since the elements succeeding  SPPD S depend on X, y for their values, the cycle begins again
with the 6.2 element; that is, X, = X, .1, X = X_ 1, -+ Thus, P(G; X, y)=6.2"".
iii. If p> 2 isaprimenumber and q = 2p, then we have the sequence

Xo =X X =Y, Xo = XY, X3 = Y "X Xy = Y IXYK X =YY X =YX,
X7 = y’zn y, X8 = y*4nxy, Xg = y*7nX Xlo — yfllﬂxyx Xll — yfl7n yX,

2.14n 2.22n 117n

Xp = Y2 Xg = YR, X = YR, X = Y X, )
Xig = Y XYY Xy = YUY, Xig = Y X g = y Y,
Xog = Y 2HX, X5 = y’z'”e“” Yoo Xer = YK X = YRy,

Where b;,b, e N .

If p|2.247 and p2.399 or p[2.4428 and p|2 7164 or ... pj2b, and p2b,, then 2p2.247
and 2p[2.399 or 2p|2.4428 and 2p|2.7164 or ... 2p|2b and 2p|2b, . So, it can be seen that from
), P. (G X, y) are the same, for both g and p.

iv. By computing b, b, in (2), it can be seen that either PZ(G; X y) are the same, for both g and p, or
P (G Y) R (Gixy).

Let k>
iIf q=1, then P.(Gix,y) = 2k+2 because of (2,n2;1) = (2,n,2)= D, .

i. If g=2",ue N, thefirst K elements of the sequence are x = x, x, =y, x, = xy, x, = (xy)’ =11 ---,1 Where
X; =1for 4< j < k-1. Thus, we have the sequence
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k-1 k+1

% =% =L %= Hx YUY, X, = Hx Yy xyx,
i=0 i=1
k+2 (2 —l)n k+3 (4 —2)n 2k+1
=TIx =Y "y e =[x =Y = [ X =X,
i=3 i=4 i=k+2
2k+2 , 2k+3 4
Yoz = [T % =YY Xea = [T % = Y™,
i=k+3 i=k+4
2k+4
Xos = | [ % = Y™ Xy =L L -+, L(wherex, =1for 2k+6< j <3k+2),--,
i=k+5
4k+3 4k+4 4k+5
Yooi2) = L1 X =% %o = L1 X =YY Xz = L1 % = V"%,

i=3k+4 i=3k+5 i=3k+6

4k+6
Yooizys = L % =Y Xz =1L+, 1 (wherex; =1 for 2(2k +2)+4< j<Bk+4),-,

i=3k+7

8k+7 8k+8 5 8k+9 6
o= L1 % =% Xz = L1 % =YY Xeazya = [ X =Y

i=7k+8 i=7k+9 i=7k+10
8k+10

Xocops = 11 % =Y Xyoen): -+, 1 (wherex, =1for 4(2k+2)+4< j<9k+8), -,

i=7k+11

2Y(k+1)+1-k

X2“(k+1)+2—k - H X =1 X (2k+2)-1 _1' 11

i=2Y (k+1)+2-k—-k

(wherex, =1for 2°*(k+1)+3-k< j<2'*(2k+2)-1andueN ),

2Uk+2" -1 k2 .
— _ o 2ny,
Xyra (2k+2) H %=X Xz“ 2k 2)41 | I X=y Y=Y,
i=2"k—k+2 i=2"k—k+2"+1
M k+2"+1 Mk+2"42
_ _ 2u+1n _ _ _ 2Un _
X2”’1(2k+2)+2 - l l X =Y Xy =Xy, Xz“’1(2k+2)+3 - I | X=Y =1
i=2"k-k+2"+2 i=2"k-k+2"+3

Xyrs(2s2)oa =11, 1(wherex, =1for 2 (2k+2)+4< j<k+2'(k+1) andueN ),

Since the elements succeeding qu (oks2)! qu (oks2)1! qu (2ks2)2 depend on X, y, xy for their
values, the cycle begins again with the 2”‘1(2k + 2) element; that is X, = X X =X
Xy = Xpsgeimpgr - THUS, B(Gix )= (2k +2) 2,

iii. If p>2 is prime number and q=2p, the firss k elements of the sequence are
Xo =X X =Y, X, = Xy, X = (xy)* =1,1,---,1 where X; =1 for 4< j<k-1. Thus, we have the
sequence

241 (2k+2) ! 241 (2k+2)+1
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(2g-1)n

_ _ q—l n _ q—l n _
X =1 X = y( "X, X2 = y( ) XYX, X3 =Y YX,
X _ (40-2)n X _ —anx X \,~2cn X _\—2cn
ks = Y 7 X =Y » Xogsoir = Y Y Xopio02 =Y Xy,
—2¢4Nn —2C5n —C4qN

Xokizea =Y " Xouioia =Y T Xy =Y T (©)

_ \sy2¢n _ \y—2cn _ \y—2c4n
Xﬁ(2k+2) =Yy X, Xﬁ(2k+2)+l =y 7Y, X B(2k+2)+2 — y xy, B(2k+2)+ =y,

_ yy—2c5n — \y—2C N

Xﬁ(2k+2)+4 y 1T Xﬂ(2k+2)+k =y (wherecl,cz,ce,,c4,---,ck+l,ﬁe N),---.

If pl2c,, p2c,, p2c,, p|2c,,
2p|2c,, 2p|2c,, 2pj2c,, 2p|2c,, 2p|2¢
the same, for both q and p.

iv. By computating C,, C,, C5, C,, -+, C,, in (3), it can be seen that either P (G; X, y) are the same, for
both q and p,or B, (G;x, y)( J(Gix.y).

The i,ii,iii and iv axioms in the Theorem 2.2 are valid for both <2 n|2 q> and < ,2|2; q> because of
(n22ia)=(2n2.).

pl2cs, -+, P|2C,,,. then
5.+, 2P|2C,.,,. S0, it can be seen that from (3) P, (G; X, y) are

Theorem 2.3. Let G be the group defined by the presentation g = <x, yix?=y? =S, (xy) =S =1>. Then
the following are true.

i. If =2, then
N k+1
2 )7 n=0mod4,

R,(G;x y)=6.
i". P,(G;xy)=4 n(k+1), n=2mod4,
2n(k+1), otherwise.

ii’. Let K>5.
1. If thereisno t € [3 k—2] such that t isaodd factor of N, then

N k+1
2 ) n=0mod4,

R(G;xy)=1 n(k+1), n=2mod4,
2n(k+1), otherwise.

2. Let a bethe biggest odd factor of N in [3, k — 2], then two cases occur:

i If 2.3 ¢[3 k—2]for j e N, then
(k+1
aln—| |,
2 n=0 mod 4,

R(Gixy)=1 a(n(k+1)), n=2mod4,
a(Zn(kJrl)), otherwise.

ii””. If S isthe biggest odd number whichisin [3, k—2]and g =a3! for j e N, then
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k+1
ﬁ[n(TD n=0 mod 4,

R(Gxy)= ,B(n(k+1)), n=2mod 4,
p(2n(k+1)), otherwise.

ii. If p>2isaprimenumber and q=2p, then Pk(G;X, y) are the same, for both g and p .
ii. 1f q=p,"p,”--p," and p, >2 (1<i<j) isthebiggest of Py, p,, -+, P; Prime numbers, then

either Pk(G;X, y) are the same, for both g and p, or P,

(Gix Y)Peq(Gix.Y).

K, p

Proof: The proof is similar to the proofs of Theorem 2.1. and Theorem 2.2.

10.

11.

12.

13.
14.

15.

16.

17.

18.
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