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Abstract – A k-nacci sequence in a finite group is a sequence of group elements 0 1 2, , , , ,nx x x x   for 
which, given an initial (seed) set 0 1 2 1, , , , jx x x x  , each element is defined by 
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In this paper, we examine the periods of the k-nacci sequences in Miller’s generalization of the polyhedral 
groups qnqnqnq ;2,2,;2,2,;22,,;22,2 , for any 2n . 
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1. INTRODUCTION 

 
The study of Fibonacci sequences in groups began with the earlier work of Wall [1] where he considered 
Fibonacci sequences of the cyclic groups nC . Wilcox extended the problem to abelian groups [2]. In [3] 
the Fibonacci length of a 2-generator group is defined. The concept of Fibonacci length for more than two 
generators has been considered, [4] and [5]. Prolific co-operation of Campbell, Doostie and Robertson 
expanded the theory to some finite simple groups [3]. The theory has been generalized in [6], [7] to the 
ordinary 3-step Fibonacci sequences in finite nilpotent groups. Then, it is shown in [8] that the period of 2-
step general Fibonacci sequence is equal to the length of the fundamental period of the 2-step general 
recurrence constructed by two generating elements of the group of exponent p  and nilpotency class 2 . 
Karaduman and Yavuz showed that the periods of the 2-step Fibonacci recurrences in finite nilpotent 
groups of nilpotency class 5 and a prime exponent are . ( )p k p , for 2 2927p  , where p  is prime and 

( )k p  is the periods of ordinary 2-step Fibonacci sequences [9]. The 2-step general Fibonacci sequences 
in finite nilpotent groups of nilpotency class 4 and exponent p  and the 2-step Fibonacci sequences in 
finite nilpotent groups of nilpotency class n  and exponent p  are discussed in [10] and [11], respectively. 
In [12] the relationship between a number of recurrence sums involved in the  thj  term of the last 
component of the Fibonacci sequences finite nilpotent groups of nilpotency class n  and exponent p  and 
the coefficients of the binomial formula has been investigated. Knox proved that periods of the k-nacci (k-
step Fibonacci) sequences in the dihedral group were equal to 2 2k   [13]. Other work on Fibonacci 
length is discussed in [14] and [15]. Recently, the works have been done on the k-nacci sequences [16-18]. 
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This paper is related to the periods of the k-nacci sequences in Miller’s generalization of the 
polyhedral groups qnqnqnq ;2,2,;2,2,;22,,;22,2 , for any n . 

 
Definition 1.1. A k-nacci sequence in a finite group is a sequence of group elements 

0 1 2, , , , ,nx x x x   for 
which, given an initial (seed) set 0 1 2 1, , , , jx x x x  , each element is defined by 
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We also require that the initial elements of the sequence, 0 1 2 1, , , , jx x x x  , generate the group, thus 
forcing the k-nacci sequence to reflect the structure of the group. It is important to note that the Fibonacci 
length of a group depends on the chosen generating n-tuple. The k-nacci sequence of a group generated by 

0 1 2 1, , , , jx x x x   is denoted by 0 1 1( ; , , , )k jF G x x x   and its period is denoted by 0 1 1( ; , , , )k jP G x x x  . 
 

Definition 1.2. For a finitely generated group G A   where  1 2, ,..., nA a a a , the sequence 

1 ii ax , 10  ni , 


 
n

j
jini xx

1
1 , 0i , is called the Fibonacci orbit of G  with respect to the 

generating set A , denoted  GFA . 

Notice that the orbit of a k-generated group is a k- nacci sequence. 
2-step Fibonacci sequence in the integers modulo m  can be written as 2 ( ;0,1).mF Z  A 2-step 

Fibonacci sequence of a group of elements is called a Fibonacci sequence of a finite group. 
A finite group G  is k-nacci sequenceable if there exists a k-nacci sequence of G  such that every 

element of the group appears in the sequence. 
A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a 

fixed subsequence. The number of elements in the repeating subsequence is called period of the sequence. 
For example, the sequence , , , , , , , , , , , , ,a b c d e b c d e b c d e   is periodic after the initial element a  and has 
period 4. A sequence of group elements is simply periodic with period k if the first k elements in the 
sequence form a repeating subsequence. For example, the sequence , , , , , , , , , , , , , , , , , ,a b c d e f a b c d e f a b c d e f   
is simply periodic with period 6. 

 
Remark 1.1. The polyhedral group  nml ,, , for , , 1l m n >  is defined by the presentation  

 

1:,,  xyzzyxzyx nml

 
 

or 
 

 , , : 1
nl mx y z x y xy   . 

 

The polyhedral group  , ,l m n  is finite if, and only if, the number 

lmnlmnlmn
nml

lmnk 





  1

111  is positive and the order of  nml ,,  being klmn2 . 

These groups are also called triangle groups and are denoted by  nmlT ,, . 

 
Remark 1.2. Miller’s generalization of the polyhedral group nml, , for , , 1l m n >  is defined by the 
presentation  

 

  1,:,  nml xyyxyx . 

 

Archive of SID

www.SID.ir

www.SID.ir


K-nacci sequences in miller’s… 
 

Autumn 2010                                                           Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 

277

Its order is that of  nml ,,  multiplied by the period of central element 
 

ml yxS  . 
 

If this period is finite, any divisor q  yields a factor group 
 

qnlmqnml ;,;, 
 

 
defined by 

 

  1,:,  qnml SxySyxyx . 

 
For more information on these groups, see [19]. 
 

2. MAIN RESULTS AND PROOFS 
 

Theorem 2.1. Let G  be the group defined by the presentation   1,:, 222  qSxySyxyxG . We 
get  

 
4 4, 4,

( , , ) 2 2, 2,

1, 1.
k

k q

P G x y k q

k q

 
  
    

 
Proof: We first note that 12121212 ,,2,2,2   qqqq yxyxxyxyxyqyqx .  

If 2k , the sequence will be as follows: 
 

.,,,,,,,,,,,,,,, 608376232143885232201274 xyyyyxyxyyyyxyyxyyyyxyxyyyyxyxyyx  
 

If 4q  ,   12,; yxGPk  because of 188  xy . 
If 2q  ,   6,; yxGPk  because of 144  xy . 
If 1q  ,   3,; yxGPk  because of 122  xy . 
If 3k , the sequence will be as follows: 
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If 4q  ,   16,; yxGPk  because of 188  xy . 
If 2q  ,   8,; yxGPk  because of 144  xy . 
If 1q  ,   4,; yxGPk  because of 122  xy . 
Let 4k .  
If 4q  , the first k  elements of the sequence are   1,,1,1,,, 2

3210  xyxxyxyxxx  where 
1jx  for 14  kj . Thus, we have the sequence 
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Since the elements succeeding 645444 ,,  kkk xxx  depend on yx,  and xy  for their values, the cycle 

begins again with the ndk 44   element; that is, .,, 541440   kk xxxx  Thus,  ; , 4 4kP G x y k  .  
If 2q  , then the first k  elements of the sequence are   1,,1,1,,, 2

3210  xyxxyxyxxx  
where 1jx  for 14  kj . Thus, we have the sequence 
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Since the elements succeeding 423222 ,,  kkk xxx  depend on yx,  and xy  for their values, the cycle 

begins again with the ndk 22   element; that is .,, 321220   kk xxxx  Thus,   22,;2  kyxGP .  
If 1q  , the first k  elements of the sequence are   1,,1,1,,, 2

3210  xyxxyxyxxx  
where 1jx  for 14  kj . Thus, we have the sequence 
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Since the elements succeeding 1 2 3, ,k k kx x x    depend on yx,  and xy  for their values, the cycle 

begins again with the 1ndk   element; that is, 0 1 1 2, , .k kx x x x     Thus,  2 ; , 1P G x y k  . Also, 
see [18] for a different proof when 1q   since  2,2 2;1 2,2,2 . 

 
Theorem 2.2. Let G  be the group defined by the presentation   1,:, 22  qn SxySyxyxG . 
Then the following are true.  
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i. If 1q ,    22,;  kyxGPk . 
ii. If Nuq u  ,2 ,     1222,;  u

k kyxGP . 
iii. If 2p  is a prime number and pq 2 , then  yxGPk ,;  are the same for both q  and p . 
iv. If ju

j
uu pppq 21

21  and )1( 2 jipi   is the biggest of jppp ,,, 21   prime numbers, then 
either  yxGPk ,;  are the same for both q  and ip  or    yxGPyxGP qkpk i

,;,; ,, . Where  yxGP qk ,;,  
denote period of G  for q  and    yxGPyxGP qkpk i

,;,; ,,  means that  yxGP
ipk ,;,  divides  yxGP qk ,;,  

 
Proof: We first note that   11 ,,,2   yxyxxyyxyqnyqx nq . 

If 2k , the sequence will be as follows: 
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i. If 1q ,   6,;2 yxGP  because of   nDnn  2,,21;2,2 . 
ii. If Nuq u  ,2 , the sequence reduces to 
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Where Naa 21,  . 
Since the elements succeeding 

12.62.6 11 ,
 uu xx  depend on yx,  for their values, the cycle begins again 

with the 12.6 u  element; that is, .,,
12.612.60 11 
  uu xxxx  Thus,   1

2 2.6,;  uyxGP .  
iii. If 2p  is a prime number and pq 2 , then we have the sequence  
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Where Nbb 21, . 
If 247.2p  and 399.2p  or 4428.2p  and 7164.2p  or … 1.2 bp  and 2.2 bp , then 247.22 p  

and 399.22 p  or 4428.22 p  and 7164.22 p  or … 1.22 bp  and 2.22 bp . So, it can be seen that from 
(2),  yxGP ,;2  are the same, for both q  and p . 
iv. By computing 21, bb  in (2), it can be seen that either  yxGP ,;2  are the same, for both q  and ip  or 

   2, 2,; , ; ,
ip qP G x y P G x y . 
Let 3k .  

i. If 1q , then   22,;  kyxGPk  because of   nDnn  2,,21;2,2 . 
ii. If Nuq u  ,2 , the first k  elements of the sequence are   1,,1,1,,, 2

3210  xyxxyxyxxx  where 
1jx  for 14  kj . Thus, we have the sequence 
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Since the elements succeeding       22221222222 111 ,,
  kkk uuu xxx  depend on xyyx ,,  for their 

values, the cycle begins again with the  222 1  ku  element; that is  2220 1 
kuxx ,   12221 1 

kuxx , 

  .,
22222 1 


kuxx  Thus,     12.22,;  u

k kyxGP . 

iii. If 2p  is prime number and pq 2 , the first k  elements of the sequence are 

  1,,1,1,,, 2
3210  xyxxyxyxxx  where 1jx  for 14  kj . Thus, we have the 

sequence 
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If 154321 2,,2,2,2,2,2 kcpcpcpcpcpcp  , then  

154321 22,,22,22,22,22,22 kcpcpcpcpcpcp  . So, it can be seen that from (3)  yxGPk ,;  are 
the same, for both q  and p . 
iv. By computating 14321 ,,,,, kccccc    in (3), it can be seen that either  yxGPk ,;  are the same, for 
both q  and ip or    yxGPyxGP qkpk i

,;,; ,, . 
The i,ii,iii and iv axioms in the Theorem 2.2 are valid for both qn ;2,2  and qn ;22,  because of 

qnqn ;2,2;22,  . 
 

Theorem 2.3. Let G  be the group defined by the presentation   1,:, 22  qn SxySyxyxG . Then 
the following are true. 
i. If 2q  , then 
i’.  2 ; , 6P G x y  . 

ii’.    
 

3,4

1
,

0 mod 4,2

; , 1 , 2 mod 4,

2 1 , otherwise.

k
n

n

P G x y n k n

n k

  
     

 


 

iii’. Let 5k . 
1. If there is no  2,3  kt  such that t  is a odd factor of n , then 

 

   
 

1
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k

k
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n
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2. Let   be the biggest odd factor of n  in  2,3 k , then two cases occur: 
i’’. If  2,33.  kj  for Nj , then 

 

    
  

1
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k
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ii’’. If   is the biggest odd number which is in  2,3 k  and j3   for Nj , then 
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1
,

2 0 mod 4,

; , 1 , 2 mod 4,

otherwise.2 1 ,

k

k
n

n

P G x y n k n

n k







    
        
 
  

 
ii. If 2p  is a prime number and pq 2 , then  yxGPk ,;  are the same, for both q  and p . 
iii. If ju

j
uu pppq 21

21  and )1( 2 jipi   is the biggest of jppp ,,, 21   prime numbers, then 
either  yxGPk ,;  are the same, for both q  and ip  or    yxGPyxGP qkpk i

,;,; ,, . 
 

Proof: The proof is similar to the proofs of Theorem 2.1. and Theorem 2.2. 
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