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Abstract – Using QCD factorization for the hadronic matrix elements, we show that existing data, in 
particular the branching ratios BR ( B →J/ψK) and BR ( B →J/ψπ), can be accounted for in this approach. 
We analyze the decay )(/ KJB   within the framework of QCD factorization. The calculation of the 
relevant hard-scattering kernels for twist-2 and twist-3 is completed. We calculate this decay in a special scale 
( bm ) and in two schemes for Wilson coefficients in NLO. We consider three functions for /J . The 
twist-3 contribution involves the logarithmically divergent integral, we consider 0H  the canceling 
divergent. The obtained results are in agreement with available experimental data. 
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1. INTRODUCTION 

 
There are many ways that the quarks produced in a nonleptonic weak decay can arrange themselves into 
hadrons. There are many complicated trees of gluon and quark interactions, pair production, and loops that 
link the final state into the intial state. These make the theoretical description of nonleptonic decays 
difficult [1]. The idea of factorization in hadronic decays of heavy mesons is already quite old. 
Factorization is a property of the heavy quark limit, in which we assume that the b-quark mass is 
parametrically large. The b quark then decays into a set of very energetic partons. How these partons and 
what is left of the B meson hadronize into two mesons depends on the identity of these mesons [2]. Color 
transparency is the basis for the factorization hypothesis, in which amplitudes factorize into products of 
two current matrix elements. This ansatz is widely used in heavy-quark physics, as it is almost the only 
way to treat hadronic decays. However its validity is not demonstrated by any quantitative theoretical 
argument, and there are some instances in which this approach is not applicable. The most obvious cases 
are those in which the final state is chosen in such a way that the quark pair of one of the currents does not 
correspond to a final state particle. Whether factorization “works” or not depends on the particular decay 
considered. Surprisingly, it seems to be applicable in many cases. It has been used mainly in hadronic two-
body decays [3, 4], but it may also be applicable to certain multibody decays [1, 5]. For a long time, 
exclusive two-body B-decay amplitudes have been estimated in the “naive” factorization approach or 
modifications thereof. In many cases, this approach provides the correct order of magnitude for branching 
fractions, but it cannot predict direct CP asymmetries due to the assumption of no strong rescattering. It is, 
therefore, no longer adequate for a detailed phenomenological analysis of B-factory data. Naive 
factorization has now been superseded by QCD factorization [6, 7]. Although this scheme has not proved 
rigorous yet, it provides the means to compute two-body decay amplitudes from first principles. Its 
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accuracy is limited only by power corrections to the heavy quark limit and the uncertainties of theoretical 
inputs such as quark masses, form factors and light cone distribution amplitudes [8].  

Weak decays of heavy mesons involve three fundamental scales, the weak interaction scale WM , the 
b-quark mass bm , and the QCD scale QCD , which are strongly ordered: QCDbW mM  . The underlying 
weak decay being computable, all theoretical work concerns strong-interaction corrections [7]. The strong 
interaction effects which involve virtualities above the scale bm  are well understood. They renormalize 
the coefficients of local operators iO  in the weak effective Hamiltonian. Assuming the standard model of 
flavour violation, the amplitude for the decay 21MMB   is given by, 
 
                                                    )()()( 

i
iii

F BOMMC
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                                                (1) 

 
in which, FG  is the Fermi constant. Each term in the sum is the product of a CKM factor i , a coefficient 
function )(iC , which incorporates strong-interaction effects above the scale bm , and a matrix element 
of an operator iO . In extension of the standard model, there may be further operators and different flavour 
violating couplings, but the strong interaction effects below the scale   are still encoded by the matrix 
elements of local operators. Therefore, the theoretical problem is to compute these matrix elements. Since 
they depend on bm  and QCD , one should take advantage of the fact that QCDbm   and compute the 
short distance part of the matrix element. Then, the remainder depends only on QCD , and it-to leading 
order in bQCD m/ -turns out to be much simpler than the original matrix element [2]. 

Beneke et al. [6] considered general two body nonleptonic decays of B mesons extensively including 
a light-light meson system as well as a heavy-light system in the final state. The general idea is that in the 
limit QCDbm  , the hadronic matrix elements can be schematically represented as 

 
                                     ])([)(  
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where 1M , 2M  are final-state mesons and iO  is a local current-current operator in the weak effective 
Hamiltonian. If we neglect radiative corrections in s  and power corrections in QCD , we get the 
factorized result with a form factor times decay constant. At higher order in s , this simple factorization is 
broken, but the corrections can be calculated systematically in terms of short distance Wilson coefficients 
and meson light-cone distribution amplitudes. We call this, the QCD-improved factorization [9]. 
 

2. EFFECTIVE WEAK HAMILTONIAN 
 

In any phenomenological treatment of the weak decays of hadrons, the starting point is the weak effective 
Hamiltonian at low energy. It is obtained by integrating out the heavy fields (e.g., the top quark, W  and 
Z bosons) from the standard model Lagrangian [10]. The effective weak Hamiltonian for hadronic B 
decays consists of a sum of local operators iO  multiplied by short distance coefficients iC  and products of 
elements of the quark mixing matrix,  pspbp VV  or  pdpbp VV  [8]. It can be written as, 

 

                                                            
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G

H )()( 

2
1                                                         (3) 

 
where, FG  is the Fermi constant, CKMV  is the CKM matrix element, )(iC  are the Wilson coefficients, 

)(iO  are the operators entering the operator product expansion (OPE) and   represents the 
renormalization scale. In the present case, since we take into account tree and penguin operators, the 
matrix elements of the effective weak Hamiltonian reads 
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where dq   or s according to the transition db   or sb   ( cup , ). )(BOMM i21  are the hadronic 
matrix elements, and jiMM  indicates either a pseudo-scalar and a vector in the final state or two pseudo-
scalar mesons in the final state. The matrix elements describe the transition between the initial and final 
states at scales lower than   and include, up to now, the main uncertainties in the calculation because 
they involve non perturbative physics. The operator product expansion is used to separate the calculation 
of the amplitude, )()()(  BOMMCFMA ii 21 , into two distinct physical regimes. One is called hard 
or short distance physics, represented by )(iC  and calculated by a perturbative approach, the other is 
called soft or long distance physics. This part is described by )(iO , and is derived by using a non 
perturbative approach such as the CN/1  expansion, QCD sum rules or hadronic sum rules. The operators 

)(iO  can be understood as local operators which govern effectively a given decay, reproducing the weak 
interaction of quarks in a point like approximation. The definitions of the operators iO  are recalled for 
completeness: 
Current-current operators: 
 
                              AVAV

p pqbpO  )()( 1 ,                   AVAV
p pqbpO  )()( 2                           (5) 

 
QCD penguin operators: 
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Electroweak penguin operators: 
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where     25121 1 qqqq AV    ; α, β are colour indices, qe  are the electric charges of the quarks in units 
of |e|, and a summation over all the active quarks ( csduq ,,, ) is implied. In equation (5) p denotes the 
quark u or c and q denotes the quark d or s, according to the given transition db   or sb   [10]. The 
effective Hamiltonian relevant for KJB /  ( sb  ) has the form: 
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in this case we have 021  ,

uO . Where 
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63 OO   are the QCD penguin operators and 107 OO   are the electroweak penguin operators [11]. For 
/JB   ( dq  ), we have db   transition and then 021  ,

uO  (hence we will find that 021  uu aa  in 
section 4 and we have Wilson coefficients in ca1 or

ca 2 , which is dependent on the kind of decays), so we 
only replace 

cdcbVV  and 
tdtbVV  instead of the CKM matrix elements in (8).  

 
3. THE FACTORIZATION FURMULA 

 
We consider weak decays 21MMB   in the heavy-quark limit. The formal expression of the previous 
discussion is given by the following result for the matrix element of an operator iO  in the weak effective 
Hamiltonian, which is valid up to corrections of the order of bQCD m/ [2]: 
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if 1M  and 2M  are both light, and 
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if 1M  is heavy and 2M  is light. 

Here, )( ,
2

12mF MB
j
  denotes a 21,MB   form factor, and M  is the lightcone distribution amplitude 

for the quark–antiquark Fock state of meson M. )(uT I
ij  and ),,( vuT II

i   are hard scattering functions, which 
are perturbatively calculable. Finally, 21,M  denote the light meson masses. The second line of (10) is 
somewhat simplified and may require including an integration over transverse momentum in the B meson 
starting from order 2

s . Equation (10) applies to decays into two light mesons, for which the spectator 
quark in the B meson can go to either of the final-state mesons. An example is the decay   KB 0 . If 
the spectator quark can go only to one of the final-state mesons, such as, for example, in  KBd  , we 
call this meson 1M and the second form factor term on the right-hand side of (10) is absent. The 
factorization formula simplifies when the spectator quark goes to a heavy meson (see (11)), such as in 

 DBd . In this case the hard interactions with the spectator quark can be dropped because they are 
power suppressed in the heavy-quark limit. In the opposite situation that the spectator quark goes to a light 
meson but the other meson is heavy, factorization does not hold as discussed above [2]. 

This method works well for the case with two light mesons like   or K  [6, 12], in which the final 
state mesons carry large momenta. Interestingly enough, when there is a heavy quark in the final state 
such as  DB , this method still works when a spectator quark of the B meson is absorbed by, say, a 
D meson [6, 13]. However, when the spectator quark is absorbed by a light quark, say, in 0DB  , 
nonfactorizable contributions are infrared divergent and the factorization breaks down. 

 
4. ),(/  KJB   DECAYS 

 
When we consider the decay KJB / , it looks ambiguous at first sight as to whether we can apply the 
same method used in B  or  DB , since the spectator quark in the B meson goes into a light K 

Archive of SID

www.SID.ir

www.SID.ir


QCD factorization in hadronic K),(J/B   decays 

 

Autumn 2010                                                           Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 

289

meson. However, what is special about /J  is that the size of the charmonium is so small ( csm/1 ) that 
the charmonium has a negligible overlap with the ( KB, ) system, hence enabling the same improved 
factorization method in the decay KJB / . 

When the mass of the /J  meson is not negligible, the light-cone wave function of the /J  meson 
should include higher twist contributions. The light cone wave functions are obtained in powers of 

EmJ //  or EQCD /  where )( bmE   is the energy of the /J  meson. For B decays into two light 
mesons, the higher twist contributions are negligible since they are of order EQCD / . However, for 

KJB / , higher twist contributions are important. Therefore, we expect that the decay rate using only 
the leading, asymptotic wave function of /J  will be smaller than the experimental result. When we use 
light cone meson wave functions for exclusive decays, KJB /  the transition amplitude of an operator 

iO  in the weak effective Hamiltonian is given by 
 

BOKJ i)(/   
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j mF   is the form factors for )(KB  , and )(xM  is the lightcone wave function for the 

meson M. )(uT I
ij  and ),,( vuT II

i   are hard scattering amplitudes, which are perturbatively calculable. The 
second term in (12) represents spectator contributions. Under naive factorization, the decay amplitude of 

)(/ KJB   reads 
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and in naive factorization [9, 14], 1222 1  icii CNCa )/(  and icii CNCa 21212 1 )/(  . Wilson 

coefficients are presented in Table 1. In Table 2, we computed these parameters. And   is the 
polarization vector of /J . There is only one non-vanishing helicity amplitude. In the rest frame of the 
decaying B meson only longitudinally polarized /J  is produced. Bp.  is then given by 
 

Table 1. Wilson coefficient for Leading Order (LO) and Next Leading  
Order (NLO) in NDR and HV scheme )( bm , 1291/  

 
 LO NLO(NDR) NLO(HV) 

1C  1.144 1.082 1.105 

2C  -0.308 -0.185 -0.228 

3C  0.014 0.014 0.013 

4C  -0.030 -0.035 -0.029 

5C  0.009 0.009 0.009 

6C  -0.038 -0.041 -0.033 

/7C  0.045 -0.002 0.005 
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Table 1. (Continued) 

 
/8C  0.048 0.054 0.060 

/9C  -1.280 -1.292 -1.283 

/10C  0.328 0.263 0.266 
 

Table 2. Numerical values of ia  in Naive Factorization 
 

Naïve NLO(NDR) NLO(HV) LO 

1a  1.02 1.029 1.041 

2a  0.175 0.140 0.073 

3a  0.002 0.0033 0.004 

4a  -0.030 -0.024 -0.025 

5a  -0.004 -0.002 -0.0036 

6a  -0.038 -0.030 -0.035 

7a  0.0001 0.0001 0.00047 

8a  0.0004 0.0004 0.00048 

9a  -0.009 -0.009 -0.009 
 
 

                                                                        P
m

m
p

J

B
B




/
.                                                                   (14) 

 
where P  is the absolute value of the 3-momentum of the /J  (or the K ) in the B rest frame [15]. There 
are two serious problems with the naive factorization approximation. First, the Wilson coefficients )(iC , 
and hence, ia  are renormalization scale and 5 -scheme dependent, whereas the decay constants and form 
factors are not. Hence, the amplitude (13) is not physical. However, if we include the s  correction to the 
amplitudes, it turns out that the   dependence of the Wilson coefficients is cancelled and the overall 
amplitude is insensitive to the renormalization scale. Second, nonfactorizable effects, which play an 
essential role in colour suppressed modes, are not taken into account. Nonfactorizable contributions at 
order s come from the radiative corrections of the operators 8641 OOOO ,,,  and 10O  and the relevant 
Feynman diagrams are shown in Fig. 1. The radiative corrections with a fermion loop do not contribute 
due to the color structure. For each operator 8641 OOOO ,,,  and 10O  if we add all the diagrams in Fig. 1 and 
symmetrize the result with respect to   1 , the infrared divergence of each diagram cancels and the 
remaining amplitude is infrared finite. One thing to note is that there appear imaginary parts in the 
nonfactorizable contribution, which are due to the final state interaction. The strong phase can be 
calculated in the QCD-improved factorization and it is important in exploring the CP violation in 
nonleptonic decays. 

The aforementioned two difficulties for naive factorization are resolved in the QCD factorization 
approach, in which the inclusion of vertex corrections and hard spectator interactions (see Fig. 1) yields 
[11, 16]: 
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Fig. 1. Vertex and spectator corrections to KJB /  decay 
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where the upper entry of the matrix is evaluated in the naive dimension regularization (NDR) scheme and 
the lower entry in the Hooft-Veltman (HV) renormalization scheme, )/()( ccF NNC 212  , and cN  is the 
number of colors. Wilson coefficients are presented for leading order (LO) and the next leading order (in 
NDR and HV scheme) in Table 1. The hard scattering functions If  arise from the vertex corrections, Figs. 
1(a, c)-1(b, d), while IIf  arises from the hard spectator interactions Figs. 1(e)-1(f). Formally, the 
coefficients ia  are scale and 5 -scheme independent. The results for the hard scattering functions If  are 
(Tables 3, 4) [11]: 
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2
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2
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where the contributions of If   are from Fig. 1(a, c) 
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and the contributions of Ig  are from Fig. 1(b, d) 
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where 22

BJ mmz //  and   is the momentum fraction of a c quark inside the /J  meson, and the 
asymptotic wave functions ( )( , )(T ) for the /J  meson are symmetric functions under   1 . 
The asymptotic form of the distribution amplitudes )(  and )(T  is the same. 
 

Table 3. If , 2
IIf , 3

IIf  for KJB /  ( sq  ) , bm  
 

 
If  2

IIf  )( 03 HIIf   

)()(/    16J  -0.813-6.61i 4.95 4.89 

)/()(/ 21  J  -0.517-6.94i 3.30 3.26 
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1
1589 .
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xx
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



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-0.672-6.74i 

 
4.02 

 
3.98 

 

Table 4. If , 2
IIf , 3

IIf  for /JB   ( dq  ), bm  
 

 
If  2

IIf  3
IIf  

)()(/    16J  -0.813-6.61i 4.91 4.85 

)/()(/ 21  J  -0.517-6.94i 3.27 3.24 
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-0.672-6.74i 
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3.94 

 
And [9]: 
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as for the hard scattering function IIf  that is orginated from spectator diagrams, we write [11]: 
 

 32
IIIIII fff  

 
where, the superscript denotes the twist dimension of LCDA. To the leading-twist order, we obtain 
(Tables 3, 4), 
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however, we shall see that numerically the twist-2 nonfactorizable effects are small; the predicted decay 
rate of KJB /  is too small by a factor of 7 ∼  10. Therefore, it is inevitable that higher-twist effects 
which are seemingly power suppressed should play an essential role. Chirally enhanced corrections arise 
from twist-3 two-particle light cone distribution amplitudes, whose normalization involves the quark 
condensate (Table 3, 4). Consequently [9, 11], 
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                    (18) 

 
the contributions to, for example, KB   from the ))(( PSPS   penguin operators are enhanced by the 
factor 

 

                                                          )(
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112
22 2

O
mmmm
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K

b
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


                                               (19) 

 
because the current masses of light quarks are difficult to fix, we would like to take rrK  , which is 
proportional to the quark condensate. The logarithmic divergence of the   integral in (17) implies that the 
spectator interaction is dominated by soft gluon exchanges between the spectator quark and the charmed 
or anti-charmed quark of /J . The twist-3 contribution involves the logarithmically divergent integral 
( KM  or π) 
 

                                 ),( Hi
H

QCD

BM
H e

m
Ln

d 


   1
1

0
 10  H ,  180180  H                              (20) 

 
because this divergence is associated with a soft interaction of the ejected meson with the spectator quark, 
the divergence arises specifically from the region BQCD m/  , and therefore one expects that 

)/( QCDB
M
H mLnX  . The choice for the values of M

HX  introduces unavoidable model dependence in the 
predictions [16, 17]. Here, we considered that 00  HH  ,  and computed ia  coefficients in QCD 
factorization (Tables 5, 6, 7, 8) by different 3- twist contributions. 
 

Table 5. Numerical value of ia  for KJB /  ( sq  ), bm , by using 2
IIf  

 

)(/  J  )(  16  )/( 21  70

1821

1
1589 .]

)(.

)(
)[(.






  

Twist 3 2
IIf  

 
 

NDR 

2a  0.0689-0.0505i 0.062-0.053i 0.067-0.051i 

3a  0.0054+0.0016i 0.0056+0.0017i 0.0054+0.0016i 

5a  -0.0045-0.0019i -0.0047-0.0020i -0.0046-0.00195i 

7a  0.000105+0.0000196i 0.000108+0.0000205i 0.000105+0.0000199i 

9a  -0.00919-0.0000953i -0.0092-0.0001i -0.0092-0.0000971i 

 
 

HV 

2a  0.0629-0.0516i 0.056-0.054i 0.062-0.053i 

3a  0.00502+0.00135i 0.0052+0.0014i 0.0050+0.0014i 

5a  -0.00523-0.00154i -0.0054-0.0016i -0.0053-0.00157i 

7a  0.000145+0.0000215i 0.000148+0.0000228i 0.000146+0.0000221i 

9a  -0.00914-0.0000963i -0.0092-0.000101i -0.0091-0.0000983i 
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Table 6. Numerical value of ia  for KJB /  ( sq  ), bm , by using 3
IIf  

 

)(/  J  )(  16  )/( 21  70

1821

1
1589 .]

)(.

)(
)[(.






  

Twist 3 3
IIf  

 
 

NDR 

2a  0.106-0.050i 0.083-0.053i 0.093-0.051i 

3a  0.0042+0.0016i 0.0049+0.0017i 0.0046+0.0016i 

5a  -0.0031-0.0019i -0.0039-0.0020i -0.0036-0.00195i 

7a  0.000091+0.0000195i 0.00099+0.00002i 0.000096+0.0000199i 

9a  -0.0091-0.0000953i -0.00917-0.0001i -0.0091-0.0000971i 

 
 

HV 

2a  0.101-0.051i 0.077-0.054i 0.087-0.052i 

3a  0.0040+0.0013i 0.0046+0.0014i 0.0043+0.0013i 

5a  -0.0041-0.0015i -0.0047-0.0016i -0.0045-0.00157i 

7a  0.00012+0.0000217i 0.000139+0.00002i 0.000135+0.0000221i 

9a  -0.0090-0.0000964i -0.0091+0.0001i -0.0090-0.0000983i 
 

Table 7. Numerical value of ia  for /JB   ( dq  ), bm , by using 2
IIf  

 

)(/  J  )(  16  )/( 21  70

1821

1
1589 .]

)(.

)(
)[(.


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


  

Twist 3 2
IIf  

 
 

NDR 

2a  0.068-0.050i 0.058-0.053i 0.063-0.051i 

3a  0.0054+0.0016i 0.0057+0.0017i 0.0056+0.0016i 

5a  -0.0045-0.0019i -0.0049-0.0020i -0.0047-0.0019i 

7a  0.000105+0.0000195i 0.000109+0.0000205i 0.000107+0.0000199i 

9a  -0.0092-0.0000953i -0.0092-0.000100i -0.0092-0.0000971i 

 
 

HV 

2a  0.062-0.051i 0.052-0.054i 0.056-0.052i 

3a  0.0050+0.0013i 0.0053+0.0014i 0.0051+0.0014i 

5a  -0.0052-0.0015i -0.0055-0.0016i -0.0054-0.0016i 

7a  0.000145+0.0000217i 0.000150+0.0000228i 0.000148+0.0000221i 

9a  -0.0091-0.0000964i -0.0091-0.000101i -0.0091-0.0000983i 
 

Table 8. Numerical value of ia  for /JB   ( dq  ), bm , by using 3
IIf  

 

)(/  J  )(  16  )/( 21  70

1821

1
1589 .]

)(.

)(
)[(.


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


  

Twist 3 3
IIf  

 
 

NDR 

2a  0.105-0.050i 0.083-0.053i 0.092-0.051i 

3a  0.0042+0.0016i 0.0049+0.0017i 0.0046+0.0016i 

5a  -0.0031-0.0019i -0.0040-0.0020i -0.0036-0.00195i 

7a  0.00009+0.0000195i 0.0001+0.0000205i 0.000096+0.0000199i 

9a  -0.0091-0.0000953i -0.00917-0.0001i -0.0091-0.0000971i 
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Table 8. (Continued) 
 

HV 

2a  0.10-0.051i 0.077-0.054i 0.087-0.052i 

3a  0.0040+0.0013i 0.0046+0.0014i 0.0043+0.0013i 

5a  -0.0041-0.0015i -0.0048-0.0016i -0.0045-0.00157i 

7a  0.00012+0.0000217i 0.0001+0.0000228i 0.00013+0.0000221i 

9a  -0.0090-0.0000964i -0.0091-0.0001i -0.0090-0.0000983i 

 
5. WAVE FUNCTIONS OF /J , K, Π, B 

 
The leading-twist (twist-2) LCDAs of /J  can be expanded as, 
 

]))([)(()(/ 1125
2

3
116 2

2    aJ  
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J a                                               (21) 

 
where the parameters 2a  and Ta2  are defined by the matrix element of the twist-2 conformal operator with 
conformal spin 3 [18], while twist-2 DAs K  and   can be expanded in terms of Gegenbauer 
polynomials 23/C : 
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K Ca )()()((),( /)()(                                       (22) 

 

as before,   is the light-cone momentum fraction of the anti-quark in K and  . Here, we consider the 

asymptotic function with the values of the Gegenbauer moments K
na2  to be an available from [19]. In the 

far ultraviolet  , we have 0M
i  so at the scale bm , which is still large compared to the 

nonperturbative scale of QCD, the Gegenbauer moments M
i are expected to be small. The asymptotic 

form of the distribution amplitudes )(  and )(T  is the same, which is given as )()()(   16T . 

In the numerical analysis, we also consider the wave function of the form: )/()()( 21  T , 

70
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1
1589 .]

)(.
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)[(.)()(








 T  [20]. 

Twist-3 LCDAs, )(K
p and )(


K  of the kaon and pion are defined in the pseudoscalar and tensor 

matrix elements. They can be expanded in terms of Gegenbauer polynominals: 
 

 )()()( //)(   21
4

21
21 bCaCK

p  

                                                       ))()(()( /)(   


23
2116 dCK                                                 (23) 

 
in which we can find the coefficients a, b, d in [19]. Twist-3 DAs of pseudoscalar mesons are associated 
with a chiral enhancement factor  . We take its asymptotic form, then we apply )()()(  

  16K  
and 1)()(  K

p . We find that the twist-3 kaon (pion) LCDA )(

K  contributes to spectator diagrams in 

KJB /  ( /JB  ) decay. For the B meson, we use [21] 
 

                                                         ])(exp[)()( 222
1 2

1
1

B

B
B

B m
N


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where, GeVB 250.  and BN  are a normalization constant, 11
0   dB )( . This B meson wave function 

corresponds to MeVB 300 , which is defined by  
1

0 B

BB m
d


 )(

. This can be understood since the B 

meson wave function is peaked at small : It is of order QCDBm /  at BQCD m/  . Hence, the integral 

over  /)(B  produces a QCDBm /  term [9, 11]. 

 
6. BRANCHING RATIO 

 
The decay rate is simply given by 
 

2
2116

BHMM
m

S
eff

B
   

 
where 21/S , if 1M  and 2M  are identical, and 1S  otherwise [8]. Also, the decay rates for 21MMB   
are given by  
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where 
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mmmmmm
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2
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                                    (26) 

 
is the C.M. momentum of the decay particles [22]. We assume that in the limit, in which bm  goes to 
infinity, /Jm  is heavy enough to regard the size of the /J  meson as small, but light enough to employ 
the leading-twist light cone wave function for /J . Then, 2/Bc mP   and  //. JBB mmp 22 . The 
branching ratio is given by 
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where totB  / =1.638 ps, tot = (4.2±0.3) ×10-13 [23]. 
 

7. FORM FACTORS 
 

B-to-light form factors are parametrized in the LCSR as 
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where the relevant fitted parameters Fa  and Fb  are in Table 9. (Here, we want to find form factors in 

22
/Jmq  ). The momentum dependence of the form factors is given by [24], 
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in this section, form factors are calculated by (25). 
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Table 9. Values of Fa  and Fb  
 

Fb  Fa  )(0F   

0.271.35 0.3±0.04 
F  

0.620.39 0.3±0.04 
0F  

0.261.34 0.3±0.04 
TF  

0.351.37 0.35±0.05 KF  

0.410.40 0.035±0.05 KF0  

0.371.37 0.36±0.05 K
TF  

 
8. CP ASYMMETRY 

 
Since there are no mixing effects present in the charged B meson system, non-vanishing CP asymmetries 
of the kind 
 

                                                    
)()(

)()(
)(

fBfB

fBfB
fBACP














                                              (30) 

 
would give us unambiguous evidence for “direct” CP violation in the B system, the CP asymmetries (30) 
arise from the interference between decay amplitudes with both different CP-violating weak and different 
CP-conserving strong phases. In the SM, the weak phases are related to the phases of the CKM matrix 
elements, whereas the strong phases are induced by final-state interaction processes. In general, the strong 
phases introduce severe theoretical uncertainties into the calculation of )( fBACP  , thereby destroying 
the clean relation to the CP-violating weak phases. However, there is an important tool to overcome these 
problems, which is provided by amplitude relations between certain nonleptonic B decays. For the charged 
B meson decays, the direct CP-violating asymmetries dir

CPA  can be defined as usual. For   KJB /  
decay, there is no direct CP violation, since there is no weak phase appearing in their decay amplitude 
[25]. 
 

      01600170 ..)/(   KJBAdir
CP   

 
080090 ..)/(   JBAdir

CP  
 

In this scheme in the standard model, there is no contribution to CP asymmetry in the decay 
amplitude since the CKM matrix elements involved here are all real. The CP asymmetry totally comes 
from 00 BB   mixing. 

For the 21
0 MMB   decays, because these decays are neutral B meson decays, we should consider 

the effects of 00 BB   mixing. In the case of KJB / , we have to deal with both current–current, i.e. 
tree-diagram-like, and with penguin contributions. For the 0B  decay, the CP asymmetry is time 
dependent. 
 
                                                         )sin()cos()( mtAmtAtA mix

CP
dir
CPCP                                                   (31) 

 
the direct and mixing induced CP-violating asymmetries dir

CPA  and mix
CPA  can be written as 

 

22

2

21

2

1

1

rr

r
A

CP

CPdir
CP
















coscos

sinsin
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2

2

2 21

2222

1

2

rr

rr
A

CP

CPmix
CP















coscos

)(sin)sin(cossin)Im(
                              (32) 

 
where  ,,  are used in the Wolfenstein approximation. The CP-violating parameter CP  is 

 

                                                                 
0

0
2

BHf

BHf
e

eff

effi
fCP

                                                          (33) 

 

f  is the CP-eigenvalue of the final states and )()( / TreePenguin TPr  [26-28]. Keeping only linear terms in r, 
 

 sinsinrAC dir
CP 2    ,   

   S
mix
CP rAS



 sincoscossin 222   
 

in sccb   quark-level decays, the time-dependent CP violation parameters measured from the 
interference between decays with and without mixing are  2sinCPsccS   and 0sccC , to a very good 
approximation. The theoretically cleanest case if )(/ KJB  , where 
 
                                                              

 i
KJ e 2/ , 

 i
J e 2/                                                      (34) 

 
and so 
 

  2sinIm / KJ ,   2sinIm / J  
 

then 
 

)sin()/(  2 KJBAmix
CP  

 
)sin()/(  2 JBAmix

CP  
 
                                                               )cos()sin()( , tmtA sdCP 2                                                       (35) 

 
one more important implication of the SM is [26, 29-31], 
 

)/()/(   KJBAKJBA CPd
dir
CP  0  

 
This theoretical expectation agrees well with the data [25], 
 

0250018000 ..)/(  KJBAdir
CP   

 
25011000 ..)/(  JBAdir

CP  
 

in [20], the values of )sin( 2 are expressed for 00 /JB   and compared with experimental data 
( 222. ), and we have redescribed these values in Table 10 and compared them with the experimental 
data which are for 00 KJB /  in 120. . 
 

Table 10. Determination of weak phase   through  

mixing-induced CP asymmetry 
 

(deg)  KJS /  /JS  

18.0 0.585 -0.585 
18.3 0.593 -0.593 
18.6 0.601 -0.601 
18.9 0.610 -0.610 
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Table 10. (Continued) 
 

19.2 0.618 -0.618 
19.5 0.626 -0.626 
19.8 0.634 -0.634 
20.1 0.642 -0.642 
20.4 0.650 -0.650 
20.7 0.658 -0.658 
21.0 0.666 -0.666 
21.3 0.674 -0.674 
21.6 0.681 -0.681 
21.9 0.689 -0.689 
22.2 0.696 -0.696 
22.5 0.704 -0.704 
22.8 0.711 -0.711 
23.1 0.718 -0.718 
23.4 0.726 -0.726 
23.7 0.733 -0.733 
24.0 0.740 -0.740 
24.3 0.747 -0.747 
24.6 0.754 -0.754 
24.9 0.760 -0.760 

Exp. [25] 0.642±0.035 -0.69±0.25 

 
8. INPUT 

 
For numerical analysis, we use the following input parameters [9, 11]: 
 

GeVmb 44. , GeVmc 51. , GeVmB 285. , GeVmJ 13./    
 

MeVfJ 405/ , MeVfB 190 , MeVfK 160 , MeVf 133   
 

MeVQCD 300 , MeVB 300 , 20.)(  bs m   
 

702
1 .)( / 

J
KB mF , 41802

0 .)( / 
J

KB mF  
 

58702
1 .)( / 




J
B mF , 35102

0 .)( / 



J

B mF  [22, 32 and 33] 
 

3

4

2

12





N

N
CF ,           5101661  .FG   
 




























9890000800400003500090

04100000309690000102250

00370223096030

0802108021

0802108021

08021

.....

.....

...

)..()..(

)..()..(

)..(

ii

ii

i

CKM

ee

ee

e

V  

 
| 

cscbVV | 0390. , | 
tstbVV | 0410.  

 
| 

cdcbVV | 0090. , | 
tdtbVV | i014003190 ..   

 
9. DISCUSSION AND RESULTS 

 
The hadronic decays )(/ KJB   are interesting because, experimentally, they are the only color 
suppressed modes which have been measured, and theoretically they are calculable by QCD factorization, 
even the emitted meson /J  is heavy. We computed ia  coefficients in Naïve factorization (Table 2) and 
in QCD factorization (Tables 5-8) by two 3-twist contributions, and then we obtained decay rates (Tables 
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11, 12) and branching ratios for two decays (Tables 13, 14). We compare branching ratios in Tables 13, 14 
which, for the )(/    16J  function, is in agreement with the experiments. 
 

Table 11. Decay rates in Naïve Factorization and QCD Factorization for KJB / (GeV),( bm ) 
 

 )(LO  )(NLO  

(NDR) 

)(NLO  

(HV) 
NF 1.61×10-16 8.46×10-16 5.32×10-16 

QCDF  
)()(/    16J   

 
2

IIf  

2.07×10-16 1.92×10-16 

)/()(/ 21  J  1.37×10-16 1.31×10-16 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
2.01×10-16 

 
1.92×10-16 

)()(/    16J   
 
3
IIf  

3.77×10-16 3.59×10-16 

)/()(/ 21  J  2.71×10-16 2.52×10-16 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
3.12×10-16 

 

 
2.91×10-16 

 
Table 12. Decay rates in Naïve Factorization and QCD Factorization for /JB  (GeV), ( bm ) 

 
 )(LO  )(NLO  

(NDR) 

)(NLO  

(HV) 
NF 1.02×10-17 4.44×10-17 2.71×10-17 

QCDF  
)()(/    16J   

 
2

IIf  

1.21×10-17 1.19×10-17 

)/()(/ 21  J  1.08×10-17 1.06×10-17 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
1.13×10-17 

 
1.11×10-17 

)()(/    16J   
 
3
IIf  

1.96×10-17 1.96×10-17 

)/()(/ 21  J  1.53×10-17 1.51×10-17 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
1.68×10-17 

 

 
1.69×10-17 

 

 
Table 13. Branching ratios in Naïve Factorization and QCD Factorization for KJB /  ( bm ) 

 
 )(LOBR  )(NLOBR  (NDR) )(NLOBR  (HV) 

NF 30
3083 .

.. 
 ×10-4 61

31120 .
.. 

 ×10-4 01
80612 .
.. 

 ×10-4 

QCDF  
)()(/    16J   

 
2

IIf  

40
3094 .
.. 

 ×10-4 40
3054 .
.. 

 ×10-4 

)/()(/ 21  J  30
2023 .
.. 

 ×10-4 20
2013 .
.. 

 ×10-4 
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Table 13. (Continued) 
 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

  
40
3074 .
.. 

 ×10-4 

 
40
3054 .
.. 

 ×10-4 

)()(/    16J   
 
3
IIf  

70
6098 .
.. 

 ×10-4 70
6058 .

.. 
 ×10-4 

)/()(/ 21  J  50
4046 .
.. 

 ×10-4 40
4006 .
.. 

 ×10-4 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
60
5047 .
.. 

 ×10-4 

 
50
5096 .
.. 

 ×10-4 

Exp. [25] (10.07± 0.35) ×10−4 
 

Table 14. Branching ratios in Naïve Factorization and QCD Factorization for /JB   ( bm ) 
 

 )(LOBR  )(NLOBR  (NDR) )(NLOBR  (HV) 

NF 020
020240 .

.. 
 ×10-4 010

010100 .
.. 

 ×10-4 050
040640 .

.. 
 ×10-4 

QCDF  
)()(/    16J   

 
2

IIf  

030
020280 .
.. 

 ×10-4 020
020280 .
.. 

 ×10-4 

)/()(/ 21  J  020
010250 .
.. 

 ×10-4 020
020250 .
.. 

 ×10-4 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
020
010260 .
.. 

 ×10-4 

 
020
020260 .

.. 
 ×10-4 

)()(/    16J   
 
3
IIf  

040
030460 .

.. 
 ×10-4 040

030460 .
.. 

 ×10-4 

)/()(/ 21  J  030
020360 .

.. 
 ×10-4 030

020350 .
.. 

 ×10-4 

70

1821

1
1589 .

/

]
)(.

)(
)[(.

xx

xx
xx

J







 

 
030
030400 .
.. 

 ×10-4 

 
030
030400 .

.. 
 ×10-4 

Exp. [25] (0.49±0.06)×10-4 
 

In the colour suppressed KJB /  and /J  decays, non factorizable contribution is more 
important. Our result on the color suppressed KJB /  and /JB  decays is still sensitive to the 
values of both )( /

2
1 


J

B mF   [or )( /
2

1 J
KB mF  ]. 

We considered coefficients in bm  and three functions for /J , in which the numerical results 
are better for )(/    16J . Also, we assumed 0H . 

To leading-twist contributions from the light-cone distribution amplitudes (LCDAs) of the mesons, 
vertex corrections and hard spectator interactions, which include cm  effects, imply results in Tables 13, 
14. Hence, the predicted branching ratio is too small by a factor of 5; the nonfactorizable corrections to 
naive factorization to leading-twist order are small. 

We study the twist-3 effects due to the kaon. The prediction ))(/( KJBBR   is in agreement with 
the experiments [25]: 
 

4103500710  )..()/( KJBBR              410060490  )..()/( JBBR  
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