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Abstract — In this paper, we study L*-solutions of the following two-direction poly-scale refinement egquation
M-1 N
F() =2 D [Chaf(A™X=N)+Cply T (-2"X=1)]
m=1 n=—N

We prove that the vector space of al L*-solutions of the above equation is at most one-dimensiona and
consists of compactly supported functions of constant sign. We aso show that any- L solution of the above
equation is either positive or negative on its support under a special assumption. With regard to the L*-
solutions of the equation, some simple sufficient conditions for the existence of nontrivial L*-solutions and
the nonexistence of such solutions are given.

K eywor ds — Two-direction poly-scal e refinement equation, |*-solutions, iterated function systems

1. INTRODUCTION

Two-scale refinement equation f (X) = ZkeZ C f(2x—K) plays abasic role in the construction and application
of wavelets [1-6]. Recently, poly-scale refinement equation

f(x)= hilzcmynf(/1”‘x—n) @

m=1 neZ

has been studied [7-9]. It is the extension of the two-scale refinement equation, and poly-scale refinable functions
have more good properties than two-scale refinable functions [ 7]. In addition, two-direction refinement equation

f(x)=> e f(Ax—n)+> ¢, f(~Ax—n) @)

has been studied and a system theory was built [10-12]. In [13] and [14], Kapica and Morawiec focus on L*-
solutions of (2) with nonnegative coefficients, and give necessary and sufficient conditions for the existence of non-
trivial L*-solutionsin several special cases. In [15], the existence of solutions of two-direction poly-scal e refinement
equation

f(x) = MZAZ[Crlmf(/imx—n)+cr;fn f(—A™x—n)] @A)

m=1 neZ

is investigated, and conditions for the existence of a compactly supported distributional solution of (3) are derived,
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together with an explicit form of its Fourier transform.
In this paper, based on [13] and [14], we study L*-solutions of

M-1 N
F()=> > [ch, f(A™x=n)+c, f(=2"x-n)] 4
m=1 n=—N

where the coefficients are nonnegative and integers 4 > 2, N >1,M > 2. Define two matrices

1 1 1
Cn G nat o Cin
1 1 1
C* = Con Gna 0 G
- . . . i)
1 1 1
_CM 4N Cva-na 7 CGuan
[ -1 -1 -1
G-~ G N o Cin
-1 -1 -1
C = G CGona 0 Gy
-1 -1 -1
_CM 4N Cvaana 7 Cuaan

Throughout this paper, we always assume that

> A, =1, (5)

(m,n,&)eS
where S={(m,n,&): me{L,...M -1} ,ne{-N,..,N},¢ e{]_—]},c,fm > O} . Then we can rewrite (4) into

f(x)= > ¢, f(eA™—n). (6)
(m,n,¢)eS

If M =2, then (6) takestheform of (2). If C~ =0, then (6) takes the form of (1).

This paper is arranged as follows. In the next section we show that the vector space of all L*-solutions of 6)is
at most one-dimensional. Moreover, any non-trivial L*-solution of (6) is compactly supported and it is either positive
or negative on it is support almost everywhere. In section 3, sufficient conditions for the existence of non-trivia L*-
solutions of (6) as well as for the nonexistence of such solutions are given. At last, we finish this paper with two
remarks and two examples.

2 BASIC PROPERTIES OF L1-soLUTIONSOF (6)

Obviously the set of all L*-solutions of (6) isareal vector space. Denote by V. this space.
dimV, isthedimensionof V.. For | € N, put

S ={(m,n,&,m,n,&):(Mm,n,&) €S, | €{12,...1}}

and S" = llim S . First, we get the Fourier transform of  (X) for Vf € V_ .

—>+0
Theorem 2.1. Let f €V, and define a sequence of function

Con " Con " ‘ e
B = 2 e leN.
(M N6y m 0 g )eS ﬂ'ml m
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Then { f, :1 € N} converges uniformly on any compact subset of R ,

f(t)=f(0)!LrEfl(t), teR.

Proof: Fix | € N and t € R. Then by (5), we have

051 _,_Cﬂ it 51+ ‘il n
fM-fam] < Y R _n e —A‘

n'th
(Mg om0 g )eS A

Ak Ak n

ctr ...ct £ g
< Z moy T man e 600 ‘
(Mynyep,m 0 g )eS
N
< o [t].
That is, { f, ;1 € N} satisfies the uniform Cauchy condition, and thus converges uniformly on every compact

subset of R.
Next, we take the Fourier transform of f by (6} we get

fm=[ e tmx= Y G (—t)

(m,n,¢)eS ﬂ“m
By iterating,
! &€
- C2 ...Cq Y ™ .&
MMy m.n i1 ! |
= —=—e
f (t) Z /’iﬁhﬁ—“'#—m J f (/riml+ +m t)

(Mg eem 0 g )eS

for | eN and t e R.When | — +o0 , we get our assertion.
For M = 2, by Theorem 2.1, we have the following corollary. Thisresult is the same asin [14].

Corollary 3.1. In Theorem 2.1, assume M =2. Let feVC and define a sequence of function

a ..co ity 2y

f,(t) = Z Cl“l—lﬂe " 4 JeN.Then {f :1 €N} converges uniformly on any compact
(L& 1n ,5|) s A

subset of R, and f (t) = f(O)I|mf(t) teR.
Let N, =max{|n|:c{, >0 for je{l..,M-1 and

.Nk N
Y= k.T:maij{l _____ M 1}/1 ke{l,...M -1 ;.

Fix KeY .Forevery (Mmn,&g) €S, wecandefineamap T_._ R —> R by

m,n,e

X+N
eA™

Tone (0 =

Clearly these mappings consist of an iterated function system (IFS) by independently choosing the map T

m,n,&
with probability % Put
= 0.,..0
Tmlafhafl’“'m’n\ &) _Tmixrhxfl Tm’”l’fl
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for (m,n,&,--,m,n,&)eS, | e N. According to [16], there exists a unique nonempty compact set J
satisfying

U om0 =3, ™

(m,n,&)eS
Furthermore, for arbitrary closed bounded A€ R, let

TA= |J Ton(A, TPHA=TTP(A) for peN.

(m,n,¢)eS

Then TP(A) = J. . Asaresult,

J, :{anmgl,_m L (O):{(mn,5):! eN}eSN}

ISR DL SRR ML

:{Z;Lﬁn n{(m.n,&):l EN}ESN}

leN

NK NK
|- K =]
{ A5 -1 /1K—J

and

JC = ﬂ( U T'Th,mvslr--m 8 (J)J (8)
TN (my,n,e,-m 0,5 )eS

CE
Given probability weights {% :(m,n,g) € S, there exists a unique Borel regular measure of total mass 1
such that

v

C _
pe)= Y =T (). ©)
(m,n,&)eS A
Moreover, g issupported on J.. ([16]).
Let's give some remarks, which can be easily derived from (7) and (8).

Remark 2.1. Assume

Sn{(m,n,),(m,—n,-1)} # F < SN{(m,—n,1),(m,n,-1)} # S (10)

for me{L,...,M -1 and ne{l,...,N_}.Then I, =-J..
Remark 2.2. Denote
@y ={limT, e @1, 2) 1 €N} e SV

for je€l,..,M —1.Then

M-1

U(JC)J- cJ.. (11)

=1

Remark 2.3. Assume
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A <2N, +1 (12)
and
S{(K,nD,(K,—n,-D} = for ne{-N,,..,N.}. (13)
Then J_ =J.
Remark 2.3. Let
Cll,—N 611,—N+1 Cll,N
Ct = C;—N C;,iml C;N
Cl%/l -1,-N CI:\L/I -1,-N+1 Cl%/l -LN
and
q}N qul c_{il
6‘ _ Cg,.l—N 6;,1—.N+1 églru
Cl\_/ll—l,—N CI\_/Il—l,—N+1 CI\_/Il—l,N

be two matrices of nonnegative reals satisfying Sc éz{ (mn,e):¢,,>0 and Z AT"¢,  =1. Then
Jc c ‘]C‘ . (m,n,e)eS

In the next section, we will seethat (12) is necessary for dimV, =1.

In [14], Morawiec shows that every nontrivial L*-solution f of (6) is compactly supported with suppf =J c
inthe case of M = 2. In [15] Yang and Xue discuss the support of any compactly supported solution of (6). For
both of the generalizations, we give the next theorem of the precise information about the support of f e VC .

Theorem 2.2. Suppose f € V,\ {C}.Then f isof constant sign with suppf =J..

Proof: By (6) and (5),

I f||1:jR|f R ]dx< > c;;an|f (eA™x—n) | dx =l L.

(m,n,¢)eS

Hence | f [e V,. Jointly with Theorem 2.1, we get that f is either nonnegative or nonpositive.
Without loss of generality we can assumethat f isnonnegativewith || fll, =1. Let

#(B) = f (x)dx

for any Borel set B € R . Then (B) defines a probability Borel measure on R . Notice that

F= 2 Cunf (T 0n (),

(m,n,&)eS
(14)
thus we get (9). Asaresult, £(B) isthe unique probability Borel measure satisfying (9). suppf =J_ since u(B)
is supported on J ..
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For M = 2, by Theorem2.2, we have the following corollary. This result has been derived by Morawiec in
[14].

Corollary 2.2. In Theorem 2.2, suppose M =2. Let f eV _\{O}. Then f is of constant sign with
suppf =J..

From Theorem 2.1, we see that V is one-dimensional or zero-dimensional. By Theorem 2.2 we get that if
dimV, =1, then 1,(J.) >0, where |, is the Lebesgue measure on the real line. Condition |,(J.) >0 is
necessary, but not sufficient, to guarantee dimV, =1. From the proof of Theorem 2.2 we see that if dimV,_ =1,
then g isabsolutely continuous. On the other hand, if 4 is absolutely continuous, then its density (i.e. the Radon-
Nikodym derivative) belongs to V_, which jointly with Theorem 2.1 leads to dimV, =1. Thus, we conclude that
dimV_ =1 if and only if the unique probability Borel measure y satisfying (9) is absolutely continuous with
respect to |, . But it is not easy to test the absolute continuity of 4 .

In general, the absolute continuity of a Borel measure 4 with respect to |1 does not guarantee its density to be
positive on its support. But, in our case, we show that the density of the unique probability Borel measure u
satisfying (9) is positive on its support.

Let's give some denotes and two lemmas before the next theorem.

Foral (m,n, &, -,m,n,&)eS with | e N, let

J

My = Ve g (Je)-

According to (7), we get

U Jmemng =Je  for VleN. (15)

(my,ny, &1, 0M 0,8 )eSI

For agiven measurableset Ac J_, put

Af) = A’ A\—(H—l) = U T_lm,n,g(A—I m‘]m,n,g)forl € NO’ A— = U A—I’

(m,n,&)eS leNg

where Ny = N U{C} . Itiseasy tocheck that A_ < J, by (7).

Lemma 2.1. Suppose J; is anon-degenerated interval. Let A< J.. be a measurable set. Then either |,(A_) =0
or ll(A—) = Il(‘Jc) '

Proof: Put A =J_\ A _. For the case of |,(A)=0, we get |,(A_)=1,(3.). For the case of |,(A)>0, we
provethat |,(A_)=0.

Assume that |, (A)>0. Fix XeA and suppose that T, ., (X)¢A for some (m,n,&)eS. Then
Tons(X)€A_since A_cJ,. Sothereisapositiveinteger | satisfying T_ . (X)e A, nJ ., and therefore
xe A ., < A_, whichisacontradiction. Hence T .(A) = A for (m,n,&) € S. By induction we get

Trrmyaa,---m LR (A) AN Jmunla&'lr":m g

for (nl,nl,el,~--,m,n|,£|)eS', | e N.Thus

1L(A
e (A <h(AnI,

(16)

LR R R UL R épee My 'gl)

for (m’m’gl,"':m,n|,8|)68' .
Fix aninterval | < J_. Taking into account (15), we get that there exists a nonnegative integer | and a set
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I:I) ={(n«!l’ n.L'gl’”' ’ m ’ n| ’gl) € SI : Jnhvnlvglf”vm'nl I — I}
satisfying
Jml,nl,%v“'»m & ﬂ \]ml'vnrvgr oMy = @

for (m,n,&,,--,m,n, ), (M, Ny, &M, Ny, 60) € R with
(M Mgy, M0 8) # (M Ny 6o, M, 6,), and

Il(‘]c)
W = Z Il(‘]wh,slmm N )
(Mg eem N6 )eR (Mg eem Ny 6 )eR (17)
1
>, (1).
2h(h)
Therefore, by (16) and (17),
L(ANT) > Z LA nemna)
(Munem 06 )eR
1,(A)
> AV
> > pree (18)
(Munem 0y e )eR
>al, (1),
where o = M >0.
J
Now fix'e §)0 and choose a collection of non-interaction intervals { I, :1 € N} such that
A c U l, and Z|1(||) <I,(A)+e.
leN leN

Then, by (18), we have

2> L, nA) =D d (1) =al(A),

leN leN

which leadsto |,(A_)=0.

Lemma 2.2. Suppose J. is a non-degenerated interval. Let Ac J. be a measurable set and f eV,. If f
vanisheson A, then f vanishesontheset A .

Proof: Without the restriction of generality we can assume that f is nonnegative. We use the mathematical
induction to prove that f vanishes on A, for every | e N, . Thus f vanishes on the set A_. Obviously, f
vanishes on A, . Fix | € N, and suppose that f vanishes on A, . Then by (14) we get that f vanishes on
Ton.(A}) forevery (mn,&) €S. Thus f vanisheson Ay

According to Theorem 2.2 and Lemma 2.1 - Lemma 2.2 we can easily derive the next theorem.

Theorem 2.3. Suppose J,. isanon-degenerated interval. Let f € V_\ {0} . Then f iseither positive or negative
on J_ amost everywhere.
A direct application of Theorem 2.3 and Remark 2.3 is the next assertion.

Corollary 2.3. Suppose (12) and (13). Let f € V_\{O}. Then f is either positive or negative on J almost
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everywhere.
We get the following corollary by Theorem 2.3 when M = 2. This result has already shown in [14].

Corollary 2.4. In Theorem 2.3, suppose M =2. Assume that J_. is a non-degenerated interval. Let
f eV N\ {0 .Then f iseither positive or negative on J_. aimost everywhere.

3. THE SPACE VC

In this section we will determine the dimension of V_ for some special cases. Even in the case of (2), known
conditions characterizing the dimension of V_ are rather difficult to check [13]. We will not give conditions
characterizing the dimension of V.. But we present simple sufficient conditions for dimV, =0 and dimV_ =1.
Note that some of the conditions are the same

asin[14], for thecaseof M = 2.

Fix me{l..,M -3 .put S, ={(m,n,g) €S} . Let cardS,, be the number of the elementsof S_. For
aset Sc R, denoteby intS theinterior of S, by IS theclosureof S.

M-1

Remark 3.1. Suppose z cards,

m=1

<1.Then V, ={C}.

Proof: By (7), we get

= ardSm
ll(‘Jc) < Z |1(Tm,n,g (‘]c)) Z /1m Z )I (‘] )
(m,n,&)eS (m,n,&)eS m=1

M-1
Thus |,(J.) =0 since Z cards, < 1. Finaly, according to Theorem 2.2, V_ ={0} .

m=1

M-1

Remark 3.2. Suppose Z% <1.Then V., ={C}.

m=1

Proof: We will show that |,(J.) = 0. According to Remark 2.4 we can assume
Sn{(mnD,(m-n-D}=<d for me{l...M-,ne{-N_,...,N_}. (19)
Hence, by Remark 2.1, weget J, = —J . Using (7) and (19), we get

ll(‘]c) :Il( U Tm,n,l(‘]c)+ U Tm,—n,—l(_Jc))

(m,n,1)eS (m,—n,-1)eS
M-1 Ny M—12N +
SDIDIICMERES IS OH
m=1 n=— m=1
Since Z <1 weget |;(J,) =0. Finaly, according to Theorem 2.2, V_ ={C0} .

Accordnng to Theorem 1.1in[17], thefollowing two results can be easily derived.
Theorem 3.1. Suppose Z A "¢, logcy,, >0.Then V, ={C}.
(m,n,¢)eS

Theorem 32. Suppose . A°"ct, logc,, =0 but C;, | #1 for some (M,n, &) € S. Then V, ={C} .

.. (mn,£)eS .
In Theorem 3.2, it requires Cfm #1 for some (M, N, &) € S. If not, we have the following result.

Theorem 3.3. Suppose C;,, =1 foral (M,n,&) € S. Then:
Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010
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(i) V.={aX,} where X, denotesthe characteristic function of theset J;
iy dimV,=1ifandonlyif I,(J.)>0.

Proof: By (5), we get Mz’lcafdmsm _1- This jointly with (7) gives |, (T, (J.)NT,..(J.))=0 for

m A
(m',n',&"),(mn,g)eS with (M,n’,&") = (m,n,&). A smple calculation shows that XJC e V.. Thus by

N,

Theorem 2.1 and Theorem 2.2 we conclude the assertions (i) and (ii).
For M = 2, by Theorem 3.1 - Theorem 3.3, we have the following corollaries. These results are the same asin
[14].

Coroallary 3.1. In Theorem 3.1, assume M = 2. Suppose z ¢ logcs, >0- Then v_={0}.

(4,n,&)eS
Corollary 3.2. In Theorem 32, assume M =2. Suppose Z ¢ logci, =0 but ¢ #1 for some
(Ln,e)eS. Then V, ={0}. (Ln.e)es

Corollary 3.3. In Theorem3.3, assume M = 2. Suppose C/,, =1 forall (L n,&) € S. Then:
(i) V.={aX,} where X, denotes the characteristic function of theset J;
(i) dimV,=1ifandonlyif I,(J,)>0.

From Theorem 1.1 in [17] we can see that the condition |;(J.) > O of assertion (i) in Theorem 3.3 can be
replaced by the open-set condition, that is, there exists an open set U = J such that T, ,(U)cU and
Ton U)NT, (U)=D for (m,n,&),(M,n', &) €S with (m,n,&) = (M, N, &) From [18] it follows
that if 1,(J.) >0, then intd, #J and cl(intd ) =J_ . Asaresult, |,(J.) >0 if and only if the set intJ, is
nonempty and satisfies the open set condition. This, as well as (8), may sometimes be helpful for determining J c
(see [14] in the case of M =2). If J_ is not easy to determine, we can use the algorithm proposed in [18] to
calculate ,(J.) .

Inthecaseof > A7"c;, logch,, >0, we have Theorem 3.1-Theorem 3.3 to determine dimV,. We
(mn,e)eS . . .

do not know any applicable counterpart of those theorems for iterated function systems if
Z A""c,logcy, . <O. It turns out that in the latter case it is very difficult to find any formula for

(m,n,e)e

£)eS — . -
f € V_\ {0} . Therefore, we are limited to determine only dimV,,.
We give some denotes and four lemmas which will be used to prove the next theorem.
From now on, we make the following assumption.

¢t =0 foree{-13me{L...M -3,neR\{-N,...N},
M -1

(H) Z;l‘m(c;,k(lm_l)+c;j_mm+1))<1 vk eR, 20)
Pon =A"cy foral ee{-1,me{l..,M -3} ,neR.

Next we show the connection between the L*-solutions of (6) and the Grincevi C jus series. Let
(Q,.A, P) be aprobability space and let random variables L,U : Q — R satisfy

L0 ae, O< jQ|og|L(w)|dP(a))<+oo, 21)
U ()] .
jQ Iogmax{m,l}dP(w)<+ , 22)
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P(Lc-U =c)<1 fordlceR.
(23)

Fix a sequence {(&,,77,):NneN} of independent identicaly. distributed vectors of random variables
distributed as (1 Yy . It's shown that in [19] (also [13) that the Grincevi C jus series
L L

0

Znn]—[ & (24)

m=1

converges almost surely and its probability distribution function F is either absolutely continuous or purely
singular, and satisfies the functional-integral equation

F(X) = j F(L(w)x—U (@))dP(w) + j [1- F(L(w)x—U (w))dP(®)] . (25)

L>0 L<0
All theintegralsin (21)-(25) are L ebesgue-Stieltjes integrals.
Assume  L(Q)c{ed":ee{-18,me{l,...M-B}and U(Q)c{-N,..,N}.  Suppose
p;;n =P(L=eA"U=n) and C; ,=A"p;, for dl se{-1L, me{l..,M -1}, neR. We get

z z (pmn + pmn) 1 sinceP is a probability measure, it follows that (5) is satisfied. Obviously, (21) and (22)
m=1 n=—N

also hold. Condition (23) can be rewritten as (20). (25) now takes the form

N

F(x) = Z Z P F (A"X— n)+Z D Pl F(=A"x=n)]. (26)

m=1 n=— m=1 n=—N

The next Lemmaiis easily derived from [20].

Lemma 3.1. Suppose (H). Then (\ref{e38}) has exactly one solution in the class of al continuous probability
distribution functions. Moreover, this solution is either absolutely continuous or purely singular.

Assume (H), we denote by F. the unique probability distribution solution of (26). Just like the case of M=2 in
[13], we have the following result.

Lemma 3.2. Assume (H). dimV, =1 if and only if F. isabsolutely continuous.

Proof: If F is absolutely continuous, then it's density is a non-trivial L*-solution of (6). On the other hand, if
dimV, =1, fix f(x)eV,\ {0} . By Theorem 2.3, without loss of generality we can assume that f(X) is
nonnegative. Let a—JR f(X)dx. It is clear that a= 0. By a simple calculation we get F, (X) _EJ‘_OO f(t)dt.
Hence, F.(X) isabsolutely continuous.

Based on [21] (also [13]), we get the following lemmain asimilar way.

Lemma 3.3. Let F be a continuous probability distribution function. If F (2n7z) =0 for ne Z\ {0}, then F
isacontraction; in particular, F is absolutely continuous.

Lemma 3.4. Assume (H) and suppose that there exists nonnegative constants C;,m=1,...,M —1,& = £1 such
that

>0, =Co ¥V ee{-11,y€{0,.,A"-1, 27)

nezZ
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M-1
> amc,+Ch=1. (28)
m=1

Then F, isabsolutely continuous.

Proof: First, we show that under assumptions (5) and (27), (28) is necessary. Actually, by (27) and (5), we get

M-1 AM-1

Zﬂm(C1+C ) Zzzzpm/l’"my Z pm”_ '

m=1 m=1 e=t1 y=1 neZ (m,n,&)eS

According to Lemma 3.3, it's enough to prove that F. (2kz) =0 for every k e Z\ {0} .
Taking the Fourier-Stieltjes transform of F. in (26), we get

—ient

FO= 3 pe” FED). 29)

(m,n,&)eS

Fix ke Z\ {0} . Using (29) and (27), we get

—ien2kz

E@kn) = 3 pie (82“’5

(m,n,¢)eS

—ie2kyr

Y YR FE2 @)

m=1 g=t1 y=0 neZ

M — 2k am_1 7|.52ky7r
WA () )2,¢

m=1 e=%£1

am_1 —ie2yx

Since Ze A" =0, weget

Mg —ie2yx

F.(27) = ZZCE 82”

m=1 e=+1

And so does F. (-27)=0. Fix now | € Z" and suppose that |€(2k7z) =0 for any ke Z such that
O<|k < I.By (30), we obtain

m_g —|52Im

F(27)= ZZC‘F(EZI £y lm

m=1 e=+1 7=0

am_1 —ie2lyr
Fix me{L,..,M =3 .1f ™| |, thenwe obtain F(g2| )=0.1f A™ {1, then we get ze =0,

Hence, we get F.(217) = 0. By induction, we get F. (2kr) & 4% O forevery ke Z\ {0} . r=0
From Lemma 3.1 - Lemma 3.4, we can easily derive the following result.

Theorem 3.4. Assume (H) and suppose that there exists nonnegative constants D, ,m=1,...,M —1,& = +1 such that

ZC;I,/{mn+y = Drf1 Vg e{_ll}J/ E{Oa"-alm _j}a (31)
neZ
M -1
Y. (D, +D.)=1. 32)
m=1

Then dimV,_ =1.
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We derive the following corollary by Theorem 3.4 for M = 2. Thisresult has been proved in [13].

Corallary 3.4. In Theorem 3.4, assume M = 2. Suppose (H) and assume that there exists nonnegative constant
D;,D;* such that

ZC&“W:Df foral ece{-11,r<{0,1, (33)

neZ
D!+ D) =1. (34)
Then dimV,_ =1.

4. REMARKSAND EXAMPLES

We finish this paper with two remarks and two examples.

Remark 4.1. All the results mentioned in this paper, except Lemma 3.4 and Theorem 3.4, also hold if we replace the
integer A > 2 with arbitrary real 4 >1.

Remark 4.2.Lemma 3.1 - Lemma 3.4 and Theorem 3.4 aso hold when N — +o0 . In this case, we should add the
following condition:

M-1
Z z AMog |n|(c;,, +Cory) <00

m=1 |nj>A™

Examplel: Let M =2,4 =2, N =5. Then (6) takes the form
5
f)=[c,fx-m+cif(-2x-n)]
n=-5

If the nonnegative coefficients Cy, | satisfy

Gy +C <2 VkeR,
Zsz,W:Df foral &e{-11,r<{01},

neZ

D+D;t =1,

then by Corollary 34, dimV_=1. Paticulaly, we can choose D!=0.4082, D;'=0.5918. Select
Ciz = Cis =0.102, ci3 = Ci4 =0.3062, Cl‘é =0.0458, (:l‘l1 =0.3418, cl‘i =0.546, Cl_é =0.25 and Cﬁn =0 for
the rest of the coefficients. It is clear that the given coefficients satisfy (H)

and (33), (34). Thus, according to Corollary 3.4, dimV, =1. Moreover, for f € V_\ {0}, according to Theorem
2.3, T iseither positive or negative on JC almost everywhere. This example has aready been shown in [10].

Example2. Let M =3,4 =2, N = 2. Then (6) takes the form

f(x)= 22: [l fx=m)+cnf(-2x—n) |+ 22: (&, F(4x=1)+ G} f (~4x—n) |

n=-2 n=

If the nonnegative coefficients C;, | satisfy
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_(clk+ )+ (023k+02,1_5k)<1 vk eR,
(Dll+D1‘1+D§+D2)=L
D.C ., =D YMe{12},6e{-13,7€{0,...2" -1,

neZ
. 1
then by Theorem 3.4, dImV =1. Especially, we can choose D; = D;' =D," = D} == Select

14 ,
Ci—zzcll,ozcll,z 1 C11 C.Ll Cll C.Ll ClO c%O_CZl Czo C2 :Zde?n:OforthereSt
of the coefficients. We can easily get (H) and (31), (32) in this case. Thus,

according to Theorem 3.4, we get dimV_ =1. Moreover, by Corollary 2.3, f is either positive or negative
onJ=[-2,2] for f eV _\{O}.

REFERENCES

1. Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Series in Applied Math, Vol 61, SIAM,
Philadel phia.

2. Daubechies, I. (1988). Orthonormal basis of compactly supported wavelet. Comm. Pure and Appl. Math., 41,
909-996.

3. Chui, C. K. & Wang, J. Z. (1992). On compactly supported spline wavelets and a duality principle. Trans. Amer.
Math. Soc., 330, 903-915.

4. Daubechies, |. & Lagarias, J. C. (1991). Two-scale difference equation |. Existence and global regularity of
solutions. SSAM J. Math. Anal., 22, 1388-1410.

5. Daubechies, I. & Lagarias, J. C. (1991). Two-scale difference equation Il. Local regularity, infinite products of

matrices and fractal. SAM J. Math. Anal., 23, 1031-1079.

Chui, C. K. (1992). An introduction to wavelet. New Y ork, Academic Press.

Dekel, S. & Dyn, N. (2002). Poly-scale refinability and subdivision. Appl. Comput. Harmon. Anal., 13, 35-62.

Sun, Q. Y. (2005). Local dual and poly-scale refinability. Proc. Amer. Math. Soc.,133, 1175-1184.

Yang, S. Z. (2006). Poly-scale refinable functions and their properties. Appl. Math. Mech., 27, 1477-1485.

10. Yang, S. Z. & Li, Y. F. (2007). Two-direction refinable functions and two-direction wavelets with high
approximation order and regularity. Sci. China Ser. A, 50, 1687-1704.

11. Yang, S. Z. (2006). Biorthogona two-direction refinable function and two-direction wavelet. Appl. Math.
Comput., 182, 1717-1724.

12. Yang, S. Z. & Li, Y. F. Two-direction refinable functions and two-direction wavelets with dilation factor m.
Appl. Math. Comput., 188, 1908-1920.

13. Kapica, R. & Morawiec, J. (2009). Refinement type equations and Grincevi cjus series. J. Math. Anal. Appl.,
350, 393-400.

14. Morawiec, J. (2009). On L"-solutions of atwo-direction refinement equation. J. Math. Anal. Appl., 354, 648-656.

15. Yang, S. Z. & Xue, Y. M. (2009). Two-direction poly-scale refinability. Comp. Math. Appl., 58, 119-127.

16. Hutchinson, J. E. (1981). Fractals and self-similarity. Indiana Univ. Math. J., 30, 713-747.

17. Ngai, S. M. & Wang, Y. (2005). Self-similar measures associated to |FS with non-uniform contraction ratios.
Asian J. Math., 9, 227-244.

18. Ngai, S. M. & Wang, Y. (2001). Hausdorff dimension of self-similar sets with overlaps. J. London Math. Soc.,
63, 655-672.

19. Grincevi'cjus, A. K. (1974). On the continuity of the distribution of a sum of dependent variables connected with
independent walks on lines. Teor. Veroyatn. Primen., 19, 163-168 (in Russian); English trandation: Theory
Probab. Appl., 19, 163-168.

20. Kapica, R. & Morawiec, J. (2008). Probability distribution functions of the Grincevi cjus. J. Math. Anal. Appl.,

© © N o

Autumn 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4


www.SID.ir

334 S.Yang/J. Lin

342, 1380-1387.
21. Protasov, V. (2000). Refinement equations with nonnegative coefficients. J. Fourier Anal. Appl., 6, 55-78.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010


www.SID.ir

