Archive of SID

Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A4 Printed in the Islamic Republic of Iran, 2010 © Shiraz University

$λ$ – STRONGLY SUMMABLE AND $λ$ – STATISTICALLY **CONVERGENT FUNCTIONS***

F. NURAY

Afyon Kocatepe University, Mathematics Department Afyonkarahisar, Turkey Email: fnuray@aku.edu.tr

Abstract – In this study, by using the notion of (V, λ) -summability, we introduce and study the concepts of λ strongly summable and λ-statistiacally convergent functions.

Keywords – Statistical convergence, strongly summable function

1. INTRODUCTION

The idea of statistical convergence which is closely related to the concept of natural density or asymptotic density of a subset of the set of natural numbers Գ, was first introduced by Fast [1]. The concept of statistical convergence plays an important role in the summability theory and functional analysis. The relationship between the summability theory and statistical convergence has been introduced by Schoenberg [2]. In [3], Borwein introduced and studied strongly summable functions.

Strongly summable number sequences and statistically convergent number sequences were studied in [4] and [5], respectively. In [6], λ -statistically convergent number sequences was defined. In this paper, by taking real valued functions $x(t)$ measurable (in the Lebesque sense) in the interval $(1, \infty)$ instead of sequences we will introduce λ –strongly summable and λ -statistically convergent functions and give some inclusion relations.

Let $\lambda = (\lambda_n)$ be a nondecreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + \lambda_n$ 1, $\lambda_1 = 1$. A denote the set of all such sequences. For a sequence $x = (x_k)$ the generalized de la Vallee Poussin mean is defined by

$$
t_n(x) = \frac{1}{n} \sum_{k \in I_n} x_k,
$$

where $I_n = [n - \lambda_n + 1, n]$.

 \overline{a}

A sequence $x = (x_k)$ is said to be (V, λ) - summable to a number l if $t_n(x) \to l$ as $n \to \infty$. If $\lambda_n = n$, then (V, λ) -summability reduces to $(C, 1)$ summability.

2 ࣅ**-STRONGLY SUMMABLE FUNCTIONS**

A real valued function $x(t)$, measurable(in the Lebesque sense) in the interval $(1, \infty)$, is said to be strongly summable to *l* if

$$
\lim_{n\to\infty}\frac{1}{n}\int_1^n|x(t)-l|dt=0.
$$

Received by the editor July 19, 2009 and in final revised form August 30, 2010

F. Nuray

[*W*] will denote the space of all strongly summable functions. Also, *W* will denote the space of $x(t)$ such that

$$
\lim_{n \to \infty} \frac{1}{n} \int_{1}^{n} x(t) dt = l.
$$

In this section we will introduce λ -strongly summable function.

Definition 2.1 Let $\lambda \in \Lambda$ and $x(t)$ be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, if

$$
\lim_{n\to\infty}\frac{1}{\lambda_n}\int_{n-\lambda_n+1}^n |x(t)-l|dt=0.
$$

Then we say that the function $x(t)$ is λ –strongly summable to *l.* In this case we write $[W, \lambda]$ – $\lim x(t) = l$ and

$$
[W, \lambda] := \{x(t) \colon \exists l = l_x, [W, \lambda] - \lim x(t) = l\}.
$$

If $\lambda_n = n$, then [W, λ] is the same as [W].

3 λ **-STATISTICALLY CONVERGENT FUNCTIONS**

 $x(t)$ is a real valued function which is measurable(in the Lebesque sense) in the interval (1, ∞), if for every ε > 0,

$$
\lim_{n \to \infty} \frac{1}{n} |\{t \le n: \ |x(t) - l| \ge \varepsilon\}| = 0
$$

then we say that the function $x(t)$ is statistically convergent to *l*. Where the vertical bars indicate the Lebesque measure of the enclosed set. In this case we write $S - \lim x(t) = l$ and

$$
S = \{x(t): \exists l = l_x, S - \lim x(t) = l\}.
$$

Definition 3.1. Let $\lambda \in \Lambda$ and $x(t)$ be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, if for every $\varepsilon > 0$,

$$
\lim_{n \to \infty} \frac{1}{\lambda_n} |\{t \in I_n: \ |x(t) - l| \ge \varepsilon\}| = 0
$$

then we say that the function $x(t)$ is λ -statistically convergent to *l*. In this case we write S_{λ} – $\lim x(t)$ = ݈ and

$$
(S,\lambda) := \{x(t): \exists l = l_x, S_{\lambda} \text{-} \lim x(t) = l\}.
$$

If $\lambda_n = n$, then (S, λ) is the same as S, the set of statistically convergent functions.

Theorem 3.1. Let $\lambda \in \Lambda$ and $x(t)$ be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, then

(i) $[W, \lambda] \subset (S, \lambda)$ and the inclusion is proper.

(ii) If $x(t)$ is bounded and $S_2 - x(t) = l$ then $[W, \lambda] - \lim x(t) = l$ and hence $W - \lim x(t) = l$ provided $x(t)$ is not eventually constant.

(iii) If $x(t)$ is bounded then $(S, \lambda) = [W, \lambda]$.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010 **Autumn 2010**

<www.SID.ir>

ࣅ െ*Strongly summable and…*

Proof: (i) Let $\varepsilon > 0$ and $[W, \lambda] - \lim x(t) = l$. We write

$$
\int_{t \in I_n} |x(t) - l| dt \ge \int_{\substack{t \in I_n \\ |x(t) - l| \ge \varepsilon}} |x(t) - l| dt \ge \varepsilon |\{t \in I_n : |x(t) - l| \ge \varepsilon\}|.
$$

Therefore $[W, \lambda] - \lim x(t) = l$ implies S_{λ} - $\lim x(t) = l$. Define a function $x(t)$ by

$$
x(t) = \begin{cases} t, & n - (\lambda_n)^{\frac{1}{2}} + 1 \le t \le n \\ 0, & \text{otherwise.} \end{cases}
$$

Then $x(t)$ is not a bounded function and for every $\varepsilon(0 < \varepsilon \le 1)$,

$$
\lim_{n\to\infty}\frac{1}{\lambda_n}|\{t\in I_n\colon\ |x(t)-0|\geq \varepsilon\}|=\lim_{n\to\infty}\frac{(\lambda_n)^{\frac{1}{2}}}{\lambda_n}=0,
$$

i.e., S_{λ} -lim $x(t) = 0$. But

$$
\lim_{n\to\infty}\frac{1}{\lambda_n}\int_{n-\lambda_n+1}^n |x(t)-0|dt=\infty,
$$

i.e., $x(t) \notin [W, \lambda]$. Therefore, the inclusion is proper.

(ii) Suppose that S_{λ} -lim $x(t) = l$ and $x(t)$ be a bounded function, say $|x(t) - l| \leq M$ for all t. Given $\epsilon > 0$, we have that

$$
\frac{1}{\lambda_n} \int_{t \in I_n} |x(t) - l| dt = \frac{1}{\lambda_n} \int_{\substack{t \in I_n \\ |x(t) - l| \ge \varepsilon}} |x(t) - l| dt + \frac{1}{\lambda_n} \int_{\substack{t \in I_n \\ |x(t) - l| < \varepsilon}} |x(t) - l| dt
$$
\n
$$
\le \frac{M}{\lambda_n} |\{t \in I_n : |x(t) - l| \ge \varepsilon\}| + \varepsilon
$$

which implies that $[W, \lambda] - \lim x(t) = l$. Also, we have, since $\frac{\lambda_n}{n} \le 1$ for all n,

$$
\frac{1}{n} \int_{1}^{n} (x(t) - l) dt = \frac{1}{n} \int_{1}^{n - \lambda_{n}} (x(t) - l) dt + \frac{1}{n} \int_{t \in I_{n}} (x(t) - l) dt
$$

$$
\leq \frac{1}{n} \int_{1}^{n - \lambda_{n}} |x(t) - l| dt + \frac{1}{n} \int_{t \in I_{n}} |x(t) - l| dt
$$

$$
\leq \frac{2}{\lambda_{n}} \int_{t \in I_{n}} |x(t) - l| dt.
$$

Hence $[W] - \lim x(t) = l$, since $[W, \lambda] - \lim x(t) = l$. (iii) This follows from (i) and (ii).

It is easy to see that $(S, \lambda) \subset S$ for all λ , since $\frac{\lambda_n}{n} \leq 1$. Now we prove the following inclusion.

Theorem 3.2. $S \subset (S, \lambda)$ if and only if

338 *Archive of SID*

F. Nuray

$$
\liminf_{n \to \infty} \frac{\lambda_n}{n} > 0. \tag{*}
$$

Proof: For given $\varepsilon > 0$, we have

$$
\{t \le n: \ |x(t) - l| \ge \varepsilon\} \supset \{t \in I_n: \ |x(t) - l| \ge \varepsilon\}.
$$

Therefore,

$$
\frac{1}{n} |\{t \le n: \ |x(t) - l| \ge \varepsilon\}| \ge \frac{1}{n} |\{t \in I_n: \ |x(t) - l| \ge \varepsilon\}|
$$

$$
\ge \frac{\lambda_n}{n} \frac{1}{\lambda_n} |\{t \in I_n: \ |x(t) - l| \ge \varepsilon\}|.
$$

Hence by using (*) and taking the limit as $n \to \infty$, we get $x(t) \to l(S)$ implies $x(t) \to l(S, \lambda)$. Conversely, suppose that $\liminf_{n\to\infty} \frac{\lambda_n}{n} = 0$. We can choose a subsequence (n_j) such that $\frac{\lambda_n}{n_j}$ $\frac{\lambda_{nj}}{n_i} < \frac{1}{j}$. Define a function $x(t)$ by $x(t) = 1$ if $t \in I_{n_j}$, $j = 1,2, ...$ and $x(t) = 0$ otherwise. Then $x(t) \in [W]$ and hence $x(t) \in S$. But $x(t) \notin [W, \lambda]$ and Theorem 3.1(ii) implies that $x(t) \notin (S, \lambda)$. Hence (*) is necessary.

Finally, we conclude this paper with a definition which generalizes Definition 2.1 of Section 2 and two theorems related to this definition.

Definition 3.2. Let $\lambda \in \Lambda$, p is a real number and $x(t)$ be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, if

$$
\lim_{n\to\infty}\frac{1}{\lambda_n}\int_{n-\lambda_n+1}^n|x(t)-l|^pdt=0.
$$

Then we say that the function $x(t)$ is λp –strongly summable to *l.* In this case we write $[W_n, \lambda]$ – $\lim x(t) = l$ and

$$
[W_p, \lambda] \coloneqq \{x(t): \exists l = l_x, [W_p, \lambda] \cdot \lim x(t) = l\}.
$$

If $\lambda_n = n$, then [W_p , λ] is the same as [W_p], the set of strongly p-Cesaro summable functions.

Theorem 3.3. Let $1 \leq p < \infty$. If a function $x(t)$ is λp –strongly summable to *l*, then it is λ –statistically convergent to *l.*

The proof of the theorem is similar to that of Theorem 3.1.(i). So it was omitted.

Theorem 3.4. Let $1 \leq p < \infty$. If a bounded function $x(t)$ is λ –statistically convergent to *l*, then it is λp – strongly summable to *l.*

The proof of the theorem is similar to that of Theorem 3.1.(ii). So it was omitted.

REFERENCES

- 1. Fast, H. (1951). Sur la convergence statistique. *Colloq. Math*., *2*, 241-244.
- 2. Schoenberg, I. J. (1959). The integrability of certain functions and related summability methods. *Amer. Math. Monthly*, *66*, 361-375.
- 3. Borwein, D.(1965). Linear functionals with strong Cesaro summability. *Journal London Math.Soc., 40*, 628-634.
- 4. Maddox, I. J. (1967). *Space of strongly summable sequences*. Oxford(2), Quart. J. Math, 345-355.
- 5. Fridy, J. A. (1985). On statistical convergence. *Analysis, 5*, 301-313.
- 6. Mursaleen, M. (2000). λ -Statistical convergence. *Math. Slovaca*, $50(11)$, 111-115.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010 **Autumn 2010**