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1. INTRODUCTION 

 
In the domain  1010 ,);,( yyyxxxyxD   we consider the equation  
 
                                                ,feuducubuauuuL yxxyxxxxy                                           (1) 

 
where 
 

 ,,,,,, 21 DCfedcba   
 

special cases of the equation (1) are encountered during the investigation of the processes of moisture 
absorption by plants [8], where the class lkC  means the existence and continuity for all derivatives 
 

srsr yx  /  lskr ,...,0;,...0  . 
 

We will call the solution of the class as a regular. 
For this equation, we investigate the following: 

 
2. FORMULATION OF THE PROBLEM  

 
To find the function  
 

       QDCPDCDCu mnn   00,max12 21 , 
 

which is the solution of Equation (1) in D and satisfies the following conditions:  
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where 
 

   1010 ,,, xxQxyyPy  . 
 

Here, we consider the conditions of function coincidence for the right parts (2) and (3) on the 
boundary of their definitions (co-ordination conditions) as satisfied: 
 

   010 yx   ,    00 yx   , 
 

where 
 

   1010 ,,, xxQxyyPy   
 

here, we consider the conditions of function coincidence for the right parts (2) and (3) on the boundary of 
their definitions (co-ordination conditions) as satisfied. 
 

   010 yx   ,         00 yx   , 
 

where 
 

       xxyy 00 ,   . 
 

When 0,1,0 21  mnn  in this statement, the Goursat problem considered in [9] is obtained. We 
should note that the Goursat problem for (1) is the most investigated. The cases 0,1,2 21  mnn ; 

0,2,0 21  mnn ; 1,1,0 21  mnn ; 1,1,2 21  mnn  and 1,2,0 21  mnn are 
investigated in [3]. We will consider one of the variants through searching formulas for the definition of 
the boundary Goursat value. Our work is considered as a continuation of the results in [2-7]. More 
precisely, see in greater detail ([1] and [10]). 

In order not to exceedingly increase the size of this paper, we will mainly be defining conditions of 
equality and types for the initial values that provide the chance to calculate the boundary Goursat value. 
Thus, in the final formulation of the obtained result we should assume that the initial values are 
sufficiently smooth. However, these smoothness conditions can be formulated, checking carefully what 
smoothness is required by all the stages of the conducted considerations. 

Let us turn from the general statement to the one that is immediately studied in this paper. 
 

Problem: To find the function 
 

     QDCPDCDCu n   00012  
 

which in D is the solution of Equation (1), which satisfies conditions (2) and (3) when 
0,1, 21  mnnn .  

The proposed problem consists, probably, of finding )(y  in order to reduce to the Goursat problem. 
Let us first integrate Equation (1) with respect to y within the bounds from y  to ),( Pyyy   and then 
in the obtained relation, we direct y  to 0y : 
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Differentiating this relation (n-2) times with respect to x, we obtain: 
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Directing x  to 0x , we find: 
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The latter equation can be rewritten in the following form: 
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when )12(;  nii  are defined through the previous equation. 

Thus, 
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similarly, 
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the analysis of the formula (4) indicates that )( y  depends on )(),....(  ),( 21 yyy n , 
where 221 ,....  ,   nn  can be written through the following with the help of (5). It is clear that in the end, 
we obtain the integral equation with respect the )( y . In order to simplify the understanding of its 
construction in this paper, we will calculate the coefficient under )( y . 

Let us introduce the following notations: 
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after that, we write )(1 yln  through )(y , leaving only those addends that do not contain integrals. Then 
we obtain: 
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Taking into account the formula (5) we have: 
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It is clear that the substitution (5) should be continued until 1 jn . As a result we obtain: 
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Let us note that the index in the formulas of types (6) 121 ,, VSS  and others means that in the sum of 

the left part (6), the index with this number (for example, 21 , ii ) is used. Besides, )(1 yn  is changed at 
each step of this process and is simply introduced to facilitate the writing of this formula. 

Using the abbreviations (6), we write the last formula as: 
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Then, if we denote 
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the coefficient under )(y  can be written in the following form: 
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where p  can take the values of either 0 or 1, and  
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Then, we obtain: 
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it is clear that when j = 1, we obtain the formula (7). Thus, (8) is true for 1j . Substituting the obtained 
results in (4), we extract the coefficient under )(y  
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This formula can also be written as: 
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Based on the analysis (9) we determine 

 
Theorem: If the coefficients of the equation (1) belong to the class of the unknown (desired) solutions 
and, besides that, the coefficient under )(y  in the left part of (9) is different from zero, while 

)(, 1)2( PDCdb n   , then the problem (1) is reduced to the Goursat problem. The arbitrary constants 
are )(),...,(),( 00201 yyy n . 
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