
Arc
hive

 of
 S

ID

 
 
 

IJST (2011) A1: 33-38 
Iranian Journal of Science & Technology  

http://www.shirazu.ac.ir/en  

 
Application of the multistage homotopy perturbation  

method to some dynamical systems 
 

M. H. Alnasr1 and G. H. Erjaee2* 
 

1Mathematics & Physics Department, Qatar University, Doha, Qatar 
2Mathematics Department, Shiraz University, Shiraz, Iran 

Email: modialnasr@qu.edu.qa, erjaee@shirazu.ac.ir 
 

Abstract 

In this article, we demonstrate an analytic-numeric solution for some dynamical systems using the multistage 
homotopy perturbation method. The method yields results that are in complete agreement with their numerical 
counterparts. 
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1. Introduction 

In studying non-linear dynamical systems, 
researchers usually use software packages to find 
sensitive bifurcation points since the corresponding 
analytical solutions either do not exist or are 
extremely difficult to find. The Homotopy 
Perturbation Method (HPM) was first introduced by 
J. -H. He [1-4] in 1998. This method has been 
applied to a number of mathematical and 
engineering problems; e.g., cf. [2-6] and the 
references therein. The goal of this paper is to apply 
the HPM to dynamical systems. Specifically, we 
find approximate analytic-numeric solutions for 
some dynamical systems by using the Multistage 
Homotopy Perturbation Method (MHPM). Some 
researchers have attempted to use HPM to find 
analytic-numeric solutions for systems of ODEs in 
general, or to find chaotic solutions in specific 
cases [5-14]. Other analytic-numeric solution 
methods such as Adomian decomposition [15], 
have also been applied to some chaotic systems 
[16-17]. However, our attempt is more general in 
applying MHPM to dynamical systems and 
determining their various bifurcation solutions.  

We begin this article by briefly describing the 
MHPM. We then apply the method to the 
Helmholtz and Sprott-S dynamical systems to 
determine their steady state, unsteady state, and 
periodic and chaotic solutions for differing system 
parameters. 

We then demonstrate the complete agreement 
between our MHPM analytic-numeric solutions and 
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fourth-order Runge-Kutta solutions. We conclude 
with some final remarks.  

2. Multistage homotopy perturbation method 

J.-H. He established the general HPM [1] by 
introducing a homotopy parameter [0,1]p   into an 

ordinary differential equation such that, if 0p  , 

then the equation takes its simplest possible form. 
As p  varies from 0 to 1, we obtain a sequence of 

equations in which the solution at any stage is close 
to solutions at nearby stages. When 1p  , we have 

the original form of the equation, so if we can solve 
this sequence of deformation equations from the 
first stage when p=0, then at the end, when the 
parameter 1p  , the procedure provides us the 

desired solution. Although the HPM yields a 
solution series which converges very rapidly in 
most linear and nonlinear equations, in the case of a 
large time interval t it may produce a large error. 
However, in this case we can subdivide the interval 
and apply the HPM algorithm on each subinterval 
to obtain a more accurate solution. Note that each 
subinterval will require new initial values 
determined by the solutions at the end point of the 
previous subinterval. This technique is called 
MHPM [6]. 

To be precise, consider a system of dynamical 
systems, 
 

1 2( , , , , , )i
i n

dx
f t x x x

dt
                              (1) 
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where  is a bifurcation parameter, ni ,,2,1  , 

and the corresponding initial values are  
 

i 0 ix (t ) c  for i 1, 2, , n.                                (2) 
 
Rewriting system (1) in operator form we get the 
system 
 

0),,,,,()( 2  niii xxxtNxL  ,            (3) 
 
with the corresponding initial condition (2), where 
L d dt is a linear operator and iN  is a nonlinear 

operator for each 1,2, ,i n  . To apply the MHPM 

we first construct a homotopy for system (3) as 
follows: 
 

2

( ) ( ) ( )

( , , , , , ) 0

i i i

i i n

L x L v pL v

PN t x x x 

  

                       (4) 

 
where [0,1]p   is the homotopy parameter, iv is 

an initial approximation satisfying the given initial 

values for 1,2, ,i n   and 1[ , )j jt t t
 , the jth 

subinterval of 0[ , ]t t , for some 1, 2, ,j m  . As 

noted above, if the parameter p  is zero in (4), then 

the system will be a simple linear system, and if 
1p   the system will be equivalent to the original 

system (1) with t t  . 
To proceed to the next step in MHPM, assume 

 
2

,0 ,1 ,2

3
,3

( ) ( ) ( ) ( )

( )

i i i i

i

x t u t pu t p u t

p u t

   



  

 
,       (5) 

 
for 1, 2, ,i n   and initial values  
 

i,0 0 i 0 i 0 iu (t ) v (t ) x (t ) c   .                       (6) 
 

To find the unknown functions *
, ( )i ku t  

for 1,2, ,i n  , 1, 2,k    and 1[ , )j jt t t
 , we 

substitute (5) into (4) and rearrange the coefficients 
of the powers of p to get 
 

i,1 i i 1,0 2,0 n,0L(u ) L(v ) N (u ,u , , u , ) 0    ,   (7) 
 
for the zeroth power of p with the initial values as in 
(6) for 1, 2, ,i n  . For other powers of p  we get,  
 

i,k i 1,k 1 2,k 1 n,k 1L(u ) N (u ,u , ,u , ) 0     ,       (8) 
 
with the initial values , 0i ku   for 1, 2, ,i n   

and any 2k  . Here, we again note that in the first 

subinterval 0 1[ , )t t , when 1k  , the initial value is 

given by (6), and for the rest of the systems, 
when 2k  , the initial values are all zero. Then, in 
the next subinterval, say 1 2[ , )t t , when 1k  the 

initial values are the approximation values of 

1( )ix t  for 1,2, ,i n  , and for 2k  , the initial 

values are zero. Finally, the MHPM approximate 
solution for K  solution terms of the systems (6-8) 
is given as follows  
 







1

0
, )()(

K

k
kii tutx ,                                             (9) 

 
for 1,2, ,i n  . 

3. Examples involving dynamical systems 

In this section we apply the MHPM to two different 
dynamical systems and find their solutions for 
varying values of the system parameters. Then we 
compare our results with those found by Runge-
Kutta order 4.  

First, we consider the second order Helmholtz 
equation in ODE form. This equation often arises in 
the study of physical problems involving partial 
differential equations. This equation, in the form of 
a second order ODE, results from separating the 
variables in the original equation [18]. This 
equation, as a dynamical system with the 
bifurcation parameter , can be written in the form 
 

2z (t) z(t) z (t) 0     ,                               (10) 
 
subject to initial values 1(0)z c and 2(0)z c  .  

Converting this equation to a system of first order 
ODEs yields  
 

1 2

2
2 1 1

x (t) x (t)

x (t) x (t) x (t),

 
    

                                (11) 

 
with initial conditions 1 1(0)x c  and 2 2(0)x c .  

We apply the first step of MHPM to express 
system (11) as  

 

1 1 1 2

2
2 2 2 1 2

x (t) v (t) pv (t) p[ x (t)] 0

x (t) v (t) pv (t) p[x (t) x (t)] 0,

      
        

   (12) 

 
with  
 

1 1 1

2 2 2

( ) (0)

( ) (0) .

v t x c

v t x c

 
  

                                           (13) 

 
For the second step of MHPM, we let  
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2 3
1 1,0 1,1 1,2 1,3

2 3
2 2,0 2,1 2,2 2,3

x (t) u (t) pu (t) p u (t) p u (t)

x (t) u (t) pu (t) p u (t) p u (t) .

     


    




 (14) 

 
Note that for simplicity we use t  instead of t  . 

Then substituting (14) into (12) and rearranging the 
coefficients of the same power of p , we get 
 

1,1 1 2,0

2
2,1 2 1,0 1,1

u (t) v (t) u (t) 0

u (t) v (t) u (t) u 0

   
      

              (15) 

 
with initial values  
 

1,0 1 1

2,0 2 2

u (0) v (t) x (0) a

u (0) v (t) x (0) b.

  
   

                          (16) 

 
We again note that the starting initial values in 

the first interval are the same as the original values, 
namely 1a c , 2b c  and the initial values in the 

jth interval 1[ , )j jt t  are the approximate solutions 

at the endpoint of the ( 1)j  th interval; viz. 

1 1( )ja x t   and 2 1( )jb x t  . 

For powers of p greater than 1 we get  
 

1,k 2,k 1

2
2,k 1,k 1 1,k 1

u (t) u (t) 0

u (t) u (t) u (t) 0,



 

  
     

                   (17) 

 
for 2k   and zero initial values for both sets of 
components 1,ku  and 2,ku . Now integrating 

systems (15) and (17) from t   to t  with their 
corresponding initial values we obtain 
 

*
1,1

2
2,1

u (t) b(t t )

u (t) (a a )(t t )
  


    
                      (18) 

 
and 
 

t

1,k 2,k 1

t

t
2

2,k 1,k 1 1,k 1

t

u (t) u ( )d

u (t) u ( ) u ( ) d







 


  



         





              (19) 

 
for 2k  . It is clear that in integrating (19) for 
each k , the functions 1, 1( )ku t and 2, 1( )ku t  are 

known from the previous stage. In this example we 
calculate these functions for 0, 1, 2, 3, 4k  , 

yielding the approximate analytical solutions for the 
Helmholtz equation (11) as  
 

4

1 1,
0

2 2 3

2 2 4

2 2 6

( ) ( ) ( )

1
0.5( )( ) ( )

6
1 1

      ( ) ( )
12 24

        ( ) ( )
120





 





   

    

       

  

 k
k

x t u t a b t t

a a t t b t t

b a b t t

a b t t



 

 

             (20) 

 
and 
 

4
2 2

2 2,k
k 0

2 2 3 4

2 2 2 5 2 * 7

2 3
3 8 4 9

x (t) u (t) b (a b )(t t ) 0.5b(t t )

1 1 1
b (a b ) (t t ) b(t t )

3 6 24

1
(a b ) b (t t ) b (t t )

20 60 252

b (t t ) b (t t ) .
288 1296

 



 



 

       

           
            

 
   



 (21) 

 
Our next step is to determine the solutions 1( )x t  

and 2 ( )x t  for different values of the bifurcation 

parameter   and compare those with their 
numerical counterparts found by Runge-Kutta of 
order 4. Here, in our MHPM solutions (20-21) we 
choose  0, 10t   and divide this interval to 100 

subintervals with 0.001t  for all subintervals. 
The solutions of (20) and (21) for differing values 
of  are illustrated in Figures 1(a) to 1(e). Figures 
1(a) and 1(b) show the periodic solutions for the 
small value 0.01   and the larger value 

0.25  , respectively. These solutions are in 
complete agreement with those found by using the 
numerical Runge-Kutta method of order 4. Indeed, 
the maximum difference between these two sets of 
solutions through the entire interval [0, 10] is less 

than 310 . The same situation exists for the steady 
state solutions if, for example, the bifurcation 
parameter is 1   , (see Fig. 1(e)).  

For some other positive or negative values of   
for which unsteady state solutions exist, the MHPM 
and Runge-Kutta methods continue to show very 
similar behavior and the difference between the two 
solutions in some reasonable interval, say [0, 4], is 

again less than 310 . 
For our next example we consider the well-

known Sprott-S dynamical system, with its rich 
dynamics and its variety of solutions, from steady 
state to the strange attractor, for different values of 
the system parameter [19 & 20]. 
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Fig. 1. The solutions of Helmholtz equation using 
MHPM for different values of bifurcation parameter . 
(a) and (b) show the periodic solutions for 0.01   and 

0.25  , respectively. (c) and (d) show the unsteady 

state solutions for 1   and 1.2   , respectively. (d) 

shows the steady state solution for 1   . 
 

In 3-dimensional space, and with  as its 
bifurcation parameter, this system can be defined 
by 
 

1 1 2

2
2 1 3

3 1

x x 4x

x x x

x x ,

   
   
    

                                              (22) 

 
with initial values 
 

1 1

2 2

3 3

x (0) c

x (0) c

x (0) c .


 
 

                                                     (23) 

 
Constructing the homotopy for this system yields  

 

1 1 1 1 2

2
2 2 2 1 3

3 3 3 1

u v p(v u 4u ) 0

u v p(v u u ) 0

u v p(v u ) 0,

      
       
       

                          (24) 

 
with its initial approximation as 
 

1 1 1 1

2 2 2 2

3 3 3 3

u (0) v (t) x (0) c

u (0) v (t) x (0) c

u (0) v (t) x (0) c .

  
   
   

                          (25) 

 
Substituting the same power series of p  as in 

(14) for the three functions 1 2( ), ( )x t x t and 

3( )x t into (24) and collecting like terms, we get 
 















,0)(

0)()(

0)()(

30,3

20,2

10,1

vtu

tvtu

tvtu

 

1,1 1 1,0 2,0

2
2,1 2 1,0 3,0

3,1 3 1,0

u (t) v (t) u (t) 4u (t) 0

u (t) v (t) u (t) u (t) 0

u v (t) u (t) 0,

    

    

      
       (26) 

 
with initial values  
 

1,0

2,0

3,0

u (t ) a

u (t ) b

u (t ) c







 
 




         and       

1,1

2,1

2,1

u (t ) 0

u (t ) 0

u (t ) 0,







 
 




             (27) 

 
corresponding to the powers zero and one of p , 

respectively. Note that here t  is zero in the first 

interval 1[0, )t , and for the jth interval, 1jt t
 . 

So in the first interval 1[0, )t , 1 2,a c b c   

and 3c c . These initial values in the jth interval are 

equal to the approximate solutions of 1 2,x x  and 
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3x which have to be evaluated at the 

point 1jt t
 through the procedure. The terms 

corresponding to the powers 2k  of p are 

determined by 
 

1,k 1,k 1 2,k 1

2
2,k 1,k 1 3,k 1

3,k 1 1,k 1

u (t) u (t) 4u (t) 0

u (t) u (t) u (t) 0

u (t) u (t) 0,

 

 

 

   

   

   
           (28) 

 
with all initial values zero. Now integrating the 
systems (26) for 0, 1k   and (28) for 2, 3, 4k   

over the interval ( , )t t , and adding all five terms 

together yields the approximate analytical solutions 
for 1 2,x x  and 3x  as  
 

4
2 2

1 1,k
k 0

2 3 2

4 2 5 2 6

2
x (t) u (t) a (a 4b)(t t ) ( a 2b 2c )(t t )

3

1 7 1 3
( a 10b 2c )(t t ) (4 a 14b 6c )

3 2 12 2
1 1

.(t t ) ( a) (t t ) (a 4c )(t t ) ,
15 30

 





  

         

        

       


 (29) 

 
4

2 2
2 2,k

k 0

2 2 3

4 2 5

x (t) u (t) b (a c )(t t ) 0.5(a 4b)(t t )

1 3 1
( a) a 2b 2c (t t ) (2a 8b)

3 2 12

1 1
.(t t ) (a 4b) ( a) (t t )

25 15

 





 

       

           
         



 (30) 

 
and  
 

 

4
2

3 3,k
k 0

2 3 2

4 2 5

x (t) u (t) c ( a)(t t ) 0.5(a 4b)(t t )

1 3 1 7 2
( a 2b 2c )(t t ) ( a 2b c )

3 2 4 6 3
1

. t t ( a) (t t ) .
12

 





 

        

       

    



(31) 

 
In order to compare our solutions with the 

numerical solution found by Runge-Kutta of order 
4, we choose the interval [0,50]  with 0.001t   

in each subinterval with length 0.1. The results are 
illustrated in Figures 2(a) to 2(e) for various values 
of  .  
 

 

 

 

 

 
 
Fig. 2. The solutions of Sprott-S equation using MHPM 
for different values of system parameter . (a) and (b) 
are the study state solutions for 0.0   and 0.1  , 
respectively. (c) shows the periodic solution for 0.6   
and (d) shows double periodic solution for 0.75  . The 
chaotic solution is in (e) for parameter value 1  . 
 

We can see in Figures 2(a) and 2(b) that, for 
values 0   and 0.1, the solutions will be steady 
state after some fluctuation. As we can see in 
Figures 2(c) and 2(d), different periodic solutions 
appear for larger values of   in the interval (0.4, 
0.8). The double periodic solution in Figure 2(d) is 
an indication of a chaotic solution which occurs 
for 1  . This chaotic solution is illustrated in 
Figure 2(e). All these solutions are in complete 
agreement with those numerical solutions found by 
other software packages, such as PHASER [21], 
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and by other numerical schemes. Some of these 
results can be found in [19-20 and 22]. 

4. Conclusion 

The MHPM can be applied to various dynamical 
systems to determine their analytical solutions in 
the form of power series. As we have seen in this 
article, these solutions are very useful and exhibit 
sufficient accuracy to analyze the numerical 
bifurcation of the systems. As discussed elsewhere, 
the closed form of the solutions can be found by 
using MHPM for some differential equations [2-4, 
23 & 24]. Nevertheless, in the case at hand of 
highly nonlinear terms in the systems, the MHPM 
gives very complicated and long series solutions 
which may create large computational error in 
evaluating the solution at a specific point in the 
given interval. 
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