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Abstract 

The purpose of this article is to use the classical sampling theorem, WKS sampling theorem, to derive 
approximate values of the eigenvalues of the Sturm-Liouville problems with eigenparameter in the boundary 
conditions. Error analysis is used to give estimates of the associated error. Higher order approximations are also 
drived, which lead to more complicated computations. We give some examples and make companions with 
existing results. 
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1. Introduction 

Throughout this paper we consider the differential 
equation  
 
ℓሺݕሻ ؔ െݕᇱᇱሺݔሻ   ሻݔሺݕሻݔሺݍ
ൌ ݔ				,ሻݔሺݕߣ א ሾ0,1ሿ,                                            (1) 
 
where ݍሺڄሻ is assumed to be real valued and 
continuous on ሾ0,1ሿ and ߣ א ԧ is an eigenvalue 
parameter, see [1]. We also consider the following 
two boundary conditions  
 
ܽଵݕሺ0ሻ  ܽଶݕᇱሺ0ሻ ൌ ሺܽଵᇱߣ ሺ0ሻݕ  ܽଶ

ᇱ  ᇱሺ0ሻሻ,        (2)ݕ
 
ܾଵݕሺ1ሻ  ܾଶݕᇱሺ1ሻ ൌ ሺ1ሻݕሺܾଵᇱߣ  ܾଶ

ᇱݕᇱሺ1ሻሻ,        (3) 
 
where ܽ, ܽ

ᇱ, ܾ, ܾ
ᇱ א Թ, ݅ ൌ 1,2 and  

 

det ൭
ܽଵ ܽଵᇱ

ܽଶ ܽଶ
ᇱ ൱  ݐ݁݀				,0 ൭

ܾଵᇱ ܾଵ
ܾଶ
ᇱ ܾଶ൱  0.            (4) 

 
Let ߶ఒሺڄሻ be a solution of (1) satisfying the 

following initial condition  
 
߶ఒሺ0ሻ ൌ ܽଶ െ ܽଶ

ᇱ ఒ߶				,ߣ
ᇱ ሺ0ሻ ൌ ܽଵᇱ ߣ െ ܽଵ.             (5) 

 
The eigenvalues of the problem (1)--(3) are the 

zeros of the function  
 
Δሺߣሻ:ൌ ሺܾԢଵߣ െ ܾଵሻ߶ఒሺ1ሻ  ሺܾԢଶߣ െ ܾଶሻ߶ఒ

ᇱ ሺ1ሻ. (6) 
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The function Δሺߣሻ is an entire function of ߣ of 
order one and type one. These zeros are real and 
simple. 

The famous classical sampling theorem (WKS) of 
Whittaker [2], Kotel'nikov [3] and Shannon [4] say 
that if ݂ሺݐሻ א ܲ ఙܹ

ଶ, that is, if ݂ሺݐሻ is entire in ݐ of 
exponential type ߪ ,ߪ  0, which belongs to ܮଶሺԹሻ 
where restricted to Թ, then ݂ሺݐሻ can be 
reconstructed via, see also [5],  
 

݂ሺݐሻ ൌ ∑ 	ஶ
ୀିஶ ݂ ቀ

గ

ఙ
ቁ sinc	ሺݐߪ െ ݐ				,ሻߨ݊ א ԧ.			 (7) 

 
Series (7) converges absolutely on ԧ and 

uniformly on Թ and on compact subsets of ԧ, see 

[2, 3, 4]. The points ቄ
గ

ఙ
ቅ
אԺ

 are called the sampling 

points and the functions  
 
sinc	ሺݐߪ െ ሻ:ൌߨ݊

ە
ۖ
۔

ۖ
ۓ
ୱ୧୬ሺఙ௧ିగሻ

ሺఙ௧ିగሻ
ݐ				, ്

గ

ఙ
,

ݐ																								,1 ൌ
గ

ఙ
,
																			                       (8) 

 
are called the sampling, reconstructing, functions. 
The series (7) is used extensively in approximating 
solutions and eigenvalues of boundary value 
problems, see [6, 7]. Since (7) involves the sine 
function, then (7)-based methods extensively are 
called sinc techniques, see [7]. Sinc techniques 
have been employed in computing eigenvalues of 
some boundary-value problems, see e.g. [8-18]. The 
associated error analysis in these articles is based 
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only on the truncation error related to the 
WKS'theorem. This error is established by 
Jaggerman, [19], as follows. For ܰ א Գ and 
݂ሺݐሻ א ܲ ఙܹ

ଶ, let ே݂ሺݐሻ be the truncated cardinal 
series  
 

ே݂ሺݐሻ: ൌ ∑ 	ே
ୀିே ݂ ቀ

గ

ఙ
ቁ sinc	ሺݐߪ െ  ሻ.               (9)ߨ݊

 
Jagerman proved that if ߣ א Թ and, in addition 
ሻߣ݂ሺߣ א ݇ ଶሺԹሻ, for some integerܮ  0, then for 
ܰ א Գ, |ߣ| ൏   we have ,ߪ/ߨܰ
 

|݂ሺߣሻ െ ே݂ሺߣሻ| 
ாೖሺሻ|ୱ୧୬ఙఒ|

గሺగ/ఙሻೖඥଵିସషೖ
൬

ଵ

ඥேగ/ఙିఒ


ଵ

ඥேగ/ఙାఒቁ
ଵ

ሺேାଵሻೖ
ߣ				, א Թ,                                   (10) 

 
where  
 
:ሺ݂ሻܧ ൌ

൛ 	
ஶ
ିஶߣ

ଶ|݂ሺߣሻ|ଶ	݀ݐൟ
భ
మ																																								       (11) 

2. Preliminaries 

Consider the eigenvalue problem studied in the 
above section, with ߣ ൌ   ଶߤ
 

െݕᇱᇱሺݔ, ሻߤ  ,ݔሺݕሻݔሺݍ  ሻߤ
ൌ ,ݔሺݕଶߤ 0				ሻ,ߤ  ݔ  1,                                  (12) 
 
ܽଵݕሺ0, ሻߤ  ܽଶݕᇱሺ0,  ሻߤ
ൌ ,ሺ0ݕଶሾܽԢଵߤ ሻߤ  ܽԢଶݕԢሺ0,  ሻሿ,                          (13)ߤ
 
ܾଵݕሺ1, ሻߤ  ܾଶݕᇱሺ1,  ሻߤ
ൌ ,ሺ1ݕଶሾܾԢଵߤ ሻߤ  ܾԢଶݕԢሺ1,  ሻሿ.                          (14)ߤ
 

Let ݕሺڄ,  ሻ denote the solution of (12) satisfyingߤ
the following initial conditions  
 
,ሺ0ݕ ሻߤ ൌ ܽଶ െ ܽԢଶߤଶ,				ݕԢሺ0, ሻߤ ൌ ܽԢଵߤଶ െ ܽଵ. (15) 
 

Thus ݕሺڄ,  .ሻ satisfies the boundary condition (13)ߤ
The eigenvalues of the problem (12)--(14) are the 
zeros of the function  
 
Δሺߤሻ ؔ ሺܾᇱଵߤଶ െ ܾଵሻݕሺ1,  ሻߤ
ሺܾԢଶߤଶ െ ܾଶሻݕԢሺ1,  ሻ.                                       (16)ߤ
 

The function Δሺߤሻ is an entire function of ߤ of 
order one and type one. These zeros are real and 
simple. We aim to approximate Δሺߤሻ and hence its 
zeros, i.e. the eigenvalues by use of the sampling 
theorem. The idea is to split Δሺߤሻ into two parts, 
one is known and the other is unknown, but lies in a 
Paley-Wiener space. We approximate the unknown 
part to get the approximate Δሺߤሻ and then compute 
the approximate zeros. Using the method of 

variation of constants, the solution ݕሺݔ,  ሻ satisfiesߤ
Volterra integral equation  
 
,ݔሺݕ ሻߤ ൌ ሺܽଶ െ ܽᇱଶߤଶሻcosݔߤ 

െሺܽଵ െ ܽԢଵߤଶሻ
ୱ୧୬ఓ௫

ఓ
 ܶሾݕሿሺݔ,  ሻ,                      (17)ߤ

 
where ܶ is the Volterra operator defined by  
 

ܶሾݕሿሺݔ, ሻߤ ൌ  	
௫


ୱ୧୬ఓሺ௫ି௧ሻ

ఓ
,ݐሺݕሻݐሺݍ	  (18)           .ݐሻ݀ߤ

 
Differentiating (17), we get  

 
,ݔᇱሺݕ ሻߤ ൌ ሺܽᇱଶߤଶ െ ܽଶሻߤsinݔߤ  
ሺܽԢଵߤଶ െ ܽଵሻcosݔߤ  ෨ܶሾݕሿሺݔ,  ሻ,                       (19)ߤ
 
where ෨ܶ  is the Volterra operator  
 
෨ܶ ሾݕሿሺݔ, ሻߤ ൌ  	

௫
 cosߤሺݔ െ ,ݐሺݕሻݐሺݍ	ሻݐ  (20)     .ݐሻ݀ߤ

 
Define ݂ሺڄ, ,ڄሻ and ݃ሺߤ   ሻ to beߤ

 
݂ሺݔ, :ሻߤ ൌ ܶሾݕሿሺݔ, ,ݔ݃ሺ				ሻ,ߤ :ሻߤ ൌ ෨ܶሾݕሿሺݔ,  ሻ.  (21)ߤ
 

In the following, we shall make use of the 
estimates [20],  
 

|cosݖ|  ݁|ூ௭| ,								ቚ
ୱ୧୬௭

௭
ቚ 

బ
ଵା|௭|

݁|ூ௭|,            (22) 

 
where ܿ is some constant (we may take ܿ ؆ 1.72 
cf. [20]). For convenience, we define the constants  
 

߬ ؔ න  
ଵ


ଵܿ				,ݐ݀	|ሻݐሺݍ| ؔ |ܽଶ|  ܿ|ܽଵ|,				ܿଶ ؔ |ܽଶ

′ |  ܿ|ܽଵ
′ |,				ܿଷ: ൌ ܿ߬,

ܿସ: ൌ expܿଷ,				ܿହ:ൌ maxሼܿଵ, ܿଶ, |ܾଵ|  |ܾଶ|߬, |ܾଵ
′ |  |ܾଶ

′ |߬ሽ.
 

                                                                            (23) 
 

From (17) and (21), we get  
 
݂ሺݔ, ሻߤ ൌ න 	

௫



sinߤሺݔ െ ሻݐ
ߤ

ሻݐሺݍ	 ሺܽଶ െ ܽᇱଶߤଶሻcosݐߤ െ ሺܽଵ െ ܽԢଵߤଶሻ
sinݐߤ
ߤ

൨ ݐ݀	

																								න 	
௫



sinߤሺݔ െ ሻݐ
ߤ

,ݐሻ݂ሺݐሺݍ	 .ݐ݀	ሻߤ
 

                                                                            (24) 
 
Lemma 2.1. For 0  ݔ  ߤ ,1 א ԧ, the following 
estimates hold  
 

݂ሺݔ, ሻߤ 
యరሺభାమ|ఓ|మሻ

ଵା|ఓ|
݁|ூఓ|௫                          (25) 

 
and  
 

݃ሺݔ, ሻߤ 
ఛయరሺభାమ|ఓ|మሻ

ଵା|ఓ|
݁|ூఓ|௫.                        (26) 
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Proof: We divide ݂ሺڄ, ,ڄሻ into two parts, ଵ݂ሺߤ  ሻ andߤ
ଶ݂ሺڄ, ݔ ሻ, estimate each of them. Indeed, forߤ א
ሾ0,1ሿ and ߤ א ԧ we have  
 
| ଵ݂ሺݔ, |ሻߤ ൌ ቚ 	

௫



ୱ୧୬ఓሺ௫ି௧ሻ

ఓ
ሻݐሺݍ	 ቂሺܽଶ െ ܽԢଶߤଶሻcosݐߤ െ ሺܽଵ െ ܽԢଵߤଶሻ

ୱ୧୬ఓ௧

ఓ
ቃ ቚݐ݀	

 ݁|ூఓ|௫  	
௫


|ሻݐሺݍ|

బሺ௫ି௧ሻ

ଵା|ఓ|ሺ௫ି௧ሻ
ቂ|ܽଶ|  |ܽԢଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽԢଵ||ߤ|ଶሻ

బ௧

ଵା|ఓ|௧
ቃ ݐ݀	

 ݁|ூఓ|௫ బ௫

ଵା|ఓ|௫
 	
௫


|ሻ|ሾ|ܽଶݐሺݍ|  |ܽԢଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽԢଵ||ߤ|ଶሻܿݐሿ	݀ݐ

 ݁|ூఓ|௫ బ
ଵା|ఓ|

 	
ଵ


|ሻ|ሾ|ܽଶݐሺݍ|  |ܽԢଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽԢଵ||ߤ|ଶሻܿݐሿ	݀ݐ.

  

                                                                            (27) 
Moreover, 0  ݔ  ߤ ,1 א ԧ,  

 

| ଶ݂ሺݔ, |ሻߤ ൌ ቤන 	
௫



sinߤሺݔ െ ሻݐ
ߤ

,ݐሻ݂ሺݐሺݍ	 ቤݐ݀	ሻߤ

 න 	
௫



ܿሺݔ െ ሻݐ
1  ݔሺ|ߤ| െ ሻݐ

݁|ூఓ|ሺ௫ି௧ሻ	|ݍሺݐሻ||݂ሺݐ, ݐ݀	|ሻߤ

 ܿ݁|ூఓ|௫ න 	
௫


݁ି|ூఓ|௧	|ݍሺݐሻ||݂ሺݐ, .ݐ݀	|ሻߤ

				 

                                                                            (28) 
 

Combining (27) and (28), we obtain, 0  ݔ  1, 
ߤ א ԧ  
 
|݂ሺݔ, |ሻߤ  ݁|ூఓ|௫ ܿ

1  |ߤ|
න  
ଵ


|ሻ|ሾ|ܽଶݐሺݍ|  |ܽ′ଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽ′ଵ||ߤ|ଶሻܿݐሿ	݀ݐ

				ܿ݁|ூఓ|௫ න  
௫


݁ି|ூఓ|௧	|ݍሺݐሻ||݂ሺݐ, .ݐ݀	|ሻߤ

 

                                                                            (29) 
 

Applying Gronwall's inequality, cf. e.g. [21, p. 
51], yields, ߤ א ԧ  
 
݁ି|ூఓ|௫|݂ሺݔ, |ሻߤ  ቈ

ܿ
1  |ߤ|

න 	
ଵ


|ሻ|ሾ|ܽଶݐሺݍ|  |ܽԢଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽԢଵ||ߤ|ଶሻܿݐሿ	݀ݐ expሺܿ න 	

௫


ሻݐ݀	|ሻݐሺݍ|

 ቈ
ܿ

1  |ߤ|
න 	
ଵ


|ሻ|ሾ|ܽଶݐሺݍ|  |ܽԢଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽԢଵ||ߤ|ଶሻܿݐሿ	݀ݐ expሺܿ න 	

ଵ


,ሻݐ݀	|ሻݐሺݍ|

 

 
from which we get  
 
|݂ሺݔ, |ሻߤ  ݁|ூఓ|௫ ቈ

ܿሾ|ܽଶ|  |ܽԢଶ||ߤ|ଶ  ሺ|ܽଵ|  |ܽԢଵ||ߤ|ଶሻܿሿ

1  |ߤ|
න 	
ଵ


ݐ݀	|ሻݐሺݍ| expሺܿ න 	

ଵ


ሻݐ݀	|ሻݐሺݍ|

ൌ
ܿଷܿସሺܿଵ  ܿଶ|ߤ|ଶሻ

1  |ߤ|
݁|ூఓ|௫.

 

 
Then from (21) and (25), we obtain the estimate 

(26).  

3. The method and error estimates 

This section contains the method and the associated 
error analysis. First we decompose Δሺߤሻ into two 
parts, one is known and the other is unknown. 
Indeed, let 
 
Δሺߤሻ ൌ ሻߤሺܩ  ܵሺߤሻ                                          (30) 

 
where ܩሺߤሻ is known part  
 
ሻߤሺܩ ൌ ሺܾԢଵߤଶ െ ܾଵሻ ቂሺܽଶ െ ܽԢଶߤଶሻcosݔߤ െ ሺܽଵ െ ܽԢଵߤଶሻ

ୱ୧୬ఓ௫

ఓ
ቃ

ሺܾԢଶߤଶ െ ܾଶሻሾሺܽԢଶߤଶ െ ܽଶሻߤsinߤ  ሺܽԢଵߤଶ െ ܽଵሻcosߤሿ,
(31) 

 
and ܵሺߤሻ is unknown part  
 
ܵሺߤሻ ൌ ሺܾᇱଵߤଶ െ ܾଵሻ݂ሺ1,  ሻߤ
ሺܾԢଶߤଶ െ ܾଶሻ݃ሺ1,  ሻ.                                        (32)ߤ

Then, from Lemma 2.1 we have the following 
lemma.  
 
Lemma 3.1.  The function Sሺμሻ is entire in μ and 
the following estimate holds  
 

|ܵሺߤሻ| 
యరఱሺଵା|ఓ|మሻమ

ଵା|ఓ|
݁|ூఓ|.                            (33) 

 
Proof: Since  
 
ܵሺߤሻ  ሺ|ܾԢଵ||ߤ|ଶ  |ܾଵ|ሻ|݂ሺ1, |ሻߤ  ሺ|ܾԢଶ||ߤ|ଶ

 |ܾଶ|ሻ|݃ሺ1,  ,|ሻߤ
 
then from (25) and (26) we get (33). 
Let ߠ א ሺ0,1ሻ and ݉ א Ժା, ݉  4 be fixed. Let 
࣠ఏ,ሺߣሻ be the function  
 

࣠ఏ,ሺߤሻ: ൌ ቀ
ୱ୧୬ఏఓ

ఏఓ
ቁ

ܵሺߤሻ,				ߣ א ԧ.                    (34) 

 
The number ߠ will be specified later. The number 

4 is the smallest positive integer that suites our 
investigation, as is seen in the next lemma.  
 
Lemma 3.2.  ࣠,୫ሺμሻ is an entire function of μ 
which satisfies the estimates  
 

ห࣠ఏ,ሺߤሻห 
యరఱబ

ሺଵା|ఓ|మሻమ

ሺଵାఏ|ఓ|ሻశభ ݁|ூఓ|ሺଵାఏሻ.        (35) 
 
Moreover, ߤିସ࣠ఏ,ሺߤሻ א   ଶሺԹሻ andܮ
 

ିସሺ࣠ఏ,ሻܧ ൌ ට  
ஶ
ିஶ ߤ|

ିସ࣠ఏ,ሺߤሻ|ଶ	݀ߤ 

√2ܿଷܿସܿହܿ
ߥ,                                                    (36) 

 
where  
 
:ߥ

ൌ ඨ
ሺ݉ሺ2݉ െ 1ሻ  ଶሻΓሾ2݉ߠ4  2ሿ  144݉ሺ4݉ଶ െ 1ሻߠସሺ280ߠସΓሾ2݉ െ 7ሿ  ଶΓሾ2݉ߠ20 െ 5ሿ  Γሾ2݉ െ 3ሿሻ

݉ሺ4݉ଶ െ 1ሻΓሾ2݉  2ሿߠଶାଵ . 

 
Proof: Since ܵሺߤሻ is entire, then ࣠ఏ,ሺߤሻ is also 

entire in ߣ. Combining the estimates ቚ
ୱ୧୬௭

௭
ቚ 

బ
ଵା|௭|

݁|ூ௭| and (33), we obtain  
 
ห࣠ఏ,ሺߤሻห 

ቀ
బ

ଵାఏ|ఓ|
ቁ

݁|ூఓ|ఏ ڄ

యరఱሺଵା|ఓ|మሻమ

ଵା|ఓ|
݁|ூఓ|,				ߤ א ԧ,    (37) 

 
leading to (35). Therefore  
 
หߤିସ࣠ఏ,ሺߤሻห 

యరఱబ
|ఓ|షరሺଵା|ఓ|మሻమ

ሺଵାఏ|ఓ|ሻశభ , ߤ א Թ,								(38) 
 
i.e. ߤିସ࣠ఏ,ሺߤሻ א   ଶሺԹሻ. Moreoverܮ
 
  
ஶ
ିஶ ߤ|

ିଵ࣠ఏ,ሺߤሻ|ଶ	݀ߤ 

ܿଷ
ଶܿସଶܿହ

ଶܿ
ଶ   

ஶ
ିஶ

|ఓ|మషఴሺଵା|ఓ|మሻర

ሺଵାఏ|ఓ|ሻమశమ ߤ݀	 ൌ

2ܿଷ
ଶܿସଶܿହ

ଶܿ
ଶߥ

ଶ.                                                   (39) 
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What we have just proved is that ࣠ఏ,ሺߤሻ belongs 
to the Paley-Wiener space ܲ ఙܹ

ଶ with ߪ ൌ 1 ݉ߠ. 
Hence, ࣠ఏ,ሺߤሻ can be recovered from its values at 
the points ߤ ൌ

గ

ఙ
, ݊ א Ժ via the sampling 

expansion  
 

࣠ఏ,ሺߤሻ: ൌ ∑  ஶ
ୀିஶ ࣠ఏ, ቀ

గ

ఙ
ቁ 	sinc	ሺߤߪ െ  ሻ. (40)ߨ݊

 
Let ܰ א Ժା, ܰ  ݉ and approximate ࣠ఏ,ሺߤሻ by 

its truncated series ࣠ఏ,,ேሺߤሻ, where  
 
࣠ఏ,,ேሺߤሻ:ൌ ∑  ே

ୀିே ࣠ఏ, ቀ
గ

ఙ
ቁ sinc	ሺߤߪ െ  (41)					ሻ.ߨ݊

 
Since ߤିସ࣠ఏ,ሺߤሻ א  ଶሺԹሻ, the truncation errorܮ

is given for |ߤ| ൏
ேగ

ఙ
 by  

 
ห࣠ఏ,ሺߤሻ െ ࣠ఏ,,ேሺߤሻห  ேܶሺߤሻ,                        (42) 
 
where  
 

ேܶሺߤሻ:ൌ
ாషర൫࣠ഇ,൯

√ଵିସషశర	గሺగ/ఙሻషర

|ୱ୧୬ఙఓ|

ሺேାଵሻషర 
ଵ

ටಿഏ

ିఓ
 ଵ

ටಿഏ

ାఓ
.(43) 

 

Let Δேሺߤሻ:ൌ ሻߤሺܩ  ቀ
ୱ୧୬ఏఓ

ఏఓ
ቁ
ି

࣠ఏ,,ேሺߤሻ. Then 

(42) implies  
 

|Δሺߤሻ െ Δேሺߤሻ|  ቚ
ୱ୧୬ఏఓ

ఏఓ
ቚ
ି

ேܶሺߤሻ,				|ߤ| ൏
ேగ

ఙ
 (44) 

 
and ߠ is chosen sufficiently small for which 
|ߤߠ| ൏  .ߨ
Let כߤଶ be an eigenvalue, that is Δሺכߤሻ ൌ ሻכߤሺܩ 

ቀ
ୱ୧୬ఏఓכ

ఏఓכ
ቁ
ି

࣠ఏ,ሺכߤሻ ൌ 0. Then it follows that  
 

ሻכߤሺܩ  ൬
sinכߤߠ

כߤߠ
൰
ି

࣠ఏ,,ேሺכߤሻ

ൌ ൬
sinכߤߠ

כߤߠ
൰
ି

࣠ఏ,,ேሺכߤሻ

െ ൬
sinכߤߠ

כߤߠ
൰
ି

࣠ఏ,ሺכߤሻ 

 
and so  
 

ቤܩሺכߤሻ  ൬
sinכߤߠ

כߤߠ
൰
ି

࣠ఏ,,ேሺכߤሻቤ

 ฬ
sinכߤߠ

כߤߠ
ฬ
ି

ேܶሺכߤሻ. 

 

Since ܩሺכߤሻ  ቀ
ୱ୧୬ఏఓכ

ఏఓכ
ቁ
ି

࣠ఏ,,ேሺכߤሻ is given 

and, ቚ
ୱ୧୬ఏఓכ

ఏఓכ
ቚ
ି

ேܶሺכߤሻ has computable upper 

bound, we can define an enclosure for כߤ, by 
solving the following system of inequalities  

െ ቚ
ୱ୧୬ఏఓכ

ఏఓכ
ቚ
ି

ேܶሺכߤሻ 

ሻכߤሺܩ  ቀ
ୱ୧୬ఏఓכ

ఏఓכ
ቁ
ି

࣠ఏ,,ேሺכߤሻ 

ቚ
ୱ୧୬ఏఓכ

ఏఓכ
ቚ
ି

ேܶሺכߤሻ.                                               (45) 
 

Its solution is an interval containing כߤ, and over 

which the graph ܩሺכߤሻ  ቀ
ୱ୧୬ఏఓכ

ఏఓכ
ቁ
ି

࣠ఏ,,ேሺכߤሻ is 

trapped between the graphs െ ቚ
ୱ୧୬ఏఓכ

ఏఓכ
ቚ
ି

ேܶሺכߤሻ 

and ቚ
ୱ୧୬ఏఓכ

ఏఓכ
ቚ
ି

ேܶሺכߤሻ. Use the fact that  
 

࣠ఏ,,ேሺߤሻ ՜ ࣠ఏ,ሺߤሻ 
 
converges uniformly over any compact set, and 
since כߤ is a simple root, we obtain for large ܰ  
 

∂
ߤ∂

ቆܩሺߤሻ  ൬
sinߤߠ
ߤߠ

൰
ି

࣠ఏ,,ேሺߤሻቇ ് 0 

 
in a neighborhood of כߤ. Hence the graph of 

ሻߤሺܩ  ቀ
ୱ୧୬ఏఓ

ఏఓ
ቁ
ି

࣠ఏ,,ேሺߤሻ intersects the graphs  

 െ ቚ
ୱ୧୬ఏఓ

ఏఓ
ቚ
ି

ேܶሺߤሻ and ቚ
ୱ୧୬ఏఓ

ఏఓ
ቚ
ି

ேܶሺߤሻ at two 

points with abscissae ܽିሺכߤ, ܰሻ  ܽାሺכߤ, ܰሻ and 
the solution of the system of inequalities (45) is the 
interval  
 

ሻ:ൌכߤேሺܫ ሾܽିሺכߤ, ܰሻ, ܽାሺכߤ, ܰሻሿ 
 
and in particular, כߤ א  ሻ. Now, we summarizeכߤேሺܫ
the above idea in the following lemma, see [22].  
 
Lemma 3.3 For any eigenvalue μכଶ  
1. there exists ܰ such that כߤ א ܰ ሻ forכߤேሺܫ  ܰ;  
2. ሾܽିሺכߤ, ܰሻ, ܽାሺכߤ, ܰሻሿ ՜ ሼכߤሽ as ܰ ՜ ∞.  
 
Proof: Since all eigenvalues are simple, then for ܰ 
large enough we have 
ப

பఓ
ቀܩሺߤሻ  ቀ

ୱ୧୬ఏఓ

ఏఓ
ቁ
ି

࣠ఏ,,ேሺߤሻቁ  0 say, in a 

neighborhood of כߤ. Now we choose ܰ such that  

ሻߤሺܩ  ൬
sinߤߠ
ߤߠ

൰
ି

࣠ఏ,,ேబሺߤሻ

ൌ േ ฬ
sinߤߠ
ߤߠ

ฬ
ି

ேܶబሺߤሻ 

has two distinct solutions which we denote by 
ܽିሺכߤ, ܰሻ  ܽାሺכߤ, ܰሻ. The decay of ேܶሺߤሻ ՜ 0 
as ܰ ՜ ∞ will ensure the existence of the solutions 
ܽିሺכߤ, ܰሻ and ܽାሺכߤ, ܰሻ as ܰ ՜ ∞. For the second 
point we recall that ࣠ఏ,,ேሺߤሻ ՜ ࣠ఏ,ሺߤሻ as 
ܰ ՜ ∞. Hence by taking the limit we obtain  
ሻሻ∞,כߤሺܽାሺܩ  

ቀ
ୱ୧୬ఏఓכ

ఏఓכ
ቁ
ି

࣠ఏ,ሺܽାሺכߤ,∞ሻሻ ൌ 0, 
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ሻሻ∞,כߤሺܽିሺܩ  

ቀ
ୱ୧୬ఏఓכ

ఏఓכ
ቁ
ି

࣠ఏ,ሺܽିሺכߤ,∞ሻሻ ൌ 0, 

that is, Δሺܽାሻ ൌ Δሺܽିሻ ൌ 0. This leads us to 
conclude that ܽା ൌ ܽି ൌ  is a simple כߤ since ,כߤ
root.  

4. Examples 

In this section, the above theory is illustrated by 
looking at two simple examples where eigenvalue 
enclosures are obtained. We also indicate the effect 
of the parameters ݉ and ߠ by several choices. Both 
numerical results and the associated figures prove 
the credibility of the method. In the following 
examples, ߤ,ே is considered to be the k	௧ root of 

ሻߤሺܩ  ቀ
ୱ୧୬ఏఓ

ఏఓ
ቁ
ି

࣠ఏ,,ேሺߤሻ ൌ 0. Also, in the 

following examples, we observe that ߤ,ே and the 
exact solution ߤ are all inside the interval ሾܽି, ܽାሿ.  
 
Example 4.1. Consider the boundary value problem  
 
െݕԢԢሺݔ, ሻߤ െ ,ݔሺݕ ሻߤ ൌ ,ݔሺݕଶߤ 0				ሻߤ  ݔ  1, (46) 
 
,ሺ0ݕ ሻߤ ൌ ,Ԣሺ0ݕଶߤ ,Ԣሺ1ݕ				,ሻߤ ሻߤ ൌ ,ሺ1ݕଶߤ  ሻ.    (47)ߤ
 
This problem is a special case of the problem when 
ݍ ൌ െ1, ܽଶ ൌ ܽଵԢ ൌ ܾଵ ൌ ܾଶԢ ൌ 0 and ܽଵ ൌ ܽଶԢ ൌ
ܾଵԢ ൌ ܾଶ ൌ 1. The characteristic determinant of the 
problem is  
 
Δሺߤሻ ൌ ሺ1 െ ଶߤସሻcosඥߤ  1 

െሺ2ߤଶ  ସሻߤ
ୱ୧୬ඥఓమାଵ

ඥఓమାଵ
.                                        (48) 

After some calculations it is found that  
 
ሻߤሺܩ ൌ ሺ1  ଶሻ൫ሺ1ߤ െ ߤଶሻcosߤ െ   (49)							൯.ߤsinߤ
 
Tables [1-2] and Figures [1-2] indicate the 
application of our technique to this problem. 
 
Example 4.2. Consider the boundary value problem  
 
െݕԢԢሺݔ, ሻߤ  ,ݔሺݕݔ ሻߤ ൌ ,ݔሺݕଶߤ 0			ሻߤ  ݔ  1,(50) 
 
,ሺ0ݕ ሻߤ  ,Ԣሺ0ݕ ሻߤ ൌ ,ሺ0ݕଶሺെߤ ሻߤ  ,Ԣሺ0ݕ  ሻሻ,  (51)ߤ
 
െݕሺ1, ሻߤ  ,Ԣሺ1ݕ ሻߤ ൌ ,ሺ1ݕଶሺߤ ሻߤ  ,Ԣሺ1ݕ  ሻሻ.  (52)ߤ
 
 In this case ݍሺݔሻ ൌ ଵܽ ,ݔ ൌ ܽଶ ൌ ܽଶԢ ൌ ܾଶ ൌ
ܾଶԢ ൌ ܾଵԢ ൌ 1 and ܾଵ ൌ ܽଵԢ ൌ െ1. The 
characteristic determinant of the problem is 
 
Δሺߤሻ ൌ

1
ሺ݁݉݅ݎܲ݅ܣݕݎ݅ܣሾ1 െ ଶሿߤሾെ݅ܤݕݎ݅ܣଶሿߤ െ ሾ1݁݉݅ݎܲ݅ܤݕݎ݅ܣሿߤሾെ݅ܣݕݎ݅ܣ െ ଶሿሻߤ
ൈ ሾെሺ1  ሾ1݅ܣݕݎ݅ܣଶሻߤ െ ଶሿሺሺ1ߤ  ଶሿߤሾെ݅ܤݕݎ݅ܣଶሻߤ െ ሺെ1  ଶሿሻߤሾെ݁݉݅ݎܲ݅ܤݕݎ݅ܣଶሻߤ
െሺെ1  ሾ1݁݉݅ݎܲ݅ܣݕݎ݅ܣଶሻߤ െ ଶሿሺሺ1ߤ  ଶሿߤሾെ݅ܤݕݎ݅ܣଶሻߤ െ ሺെ1  ଶሿሻߤሾെ݁݉݅ݎܲ݅ܤݕݎ݅ܣଶሻߤ
ሺሺ1  ଶሿߤሾെ݅ܣݕݎ݅ܣଶሻߤ െ ሺെ1  ሾ1݁݉݅ݎܲ݅ܣݕݎ݅ܣଶሻߤ െ ଶሿሻሺሺ1ߤ  ሾ1݅ܤݕݎ݅ܣଶሻߤ െ ଶሿߤ
ሺെ1  ሾ1݁݉݅ݎܲ݅ܤݕݎ݅ܣଶሻߤ െ ,ଶሿሿߤ

 

                                                                (53) 
 

where ݅ܣݕݎ݅ܣሾݖሿ and ݅ܤݕݎ݅ܣሾݖሿ are Airy functions 
 ሻ, respectively, andݖሺ݅ܤ ሻ andݖሺ݅ܣ

 ሿ areݖሾ݁݉݅ݎܲ݅ܤݕݎ݅ܣ ሿ andݖሾ݁݉݅ݎܲ݅ܣݕݎ݅ܣ
derivatives of Airy functions. The function ܩሺߤሻ 
will be  
 

ሻߤሺܩ ൌ
ଶఓሺଵିఓరሻୡ୭ୱఓାሺఓలିଷఓరିఓమିଵሻୱ୧୬ఓ

ఓ
.             (54) 

 
Tables [3-4] and Figures [2-4] indicate the 
application of our  technique to this problem. 
 

 
  
Fig 1. Δሺߤሻ, Δேሺߤሻ with ܰ ൌ 40, ݉ ൌ 8 and ߠ ൌ 1/32.  
 

 
 
Fig 2. Δሺߤሻ, Δேሺߤሻ with ܰ ൌ 40, ݉ ൌ 14 and ߠ ൌ 1/26. 
 

 
 
Fig 3. Δሺߤሻ, Δேሺߤሻ with ܰ ൌ 40, ݉ ൌ 10 and ߠ ൌ 1/30.  
 

 
 
Fig 4. Δሺߤሻ, Δேሺߤሻ with ܰ ൌ 40, ݉ ൌ 15 and ߠ ൌ 1/25. 
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Table 1. ߤ,ே and the exact solution ߤ are all inside ሾܽି, ܽାሿ,  

where ܰ ൌ 40, ݉ ൌ ߠ ,8 ൌ
ଵ

ଷଶ
ସሺ࣠ఏ,ሻܧ   , ൌ 2.69987 ൈ 10ଵହ  

  
Exact ߤ 

0.4828692021748485 0.4793063473441252 0.48646645601871363 0.48287973117971406 
1.9663180523504247 1.9658893932751713 1.9667354276372926 1.9663129864196962 
4.827089429919572 4.8270824332214 4.827096026486742 4.827089230117779 
7.919684444168381 7.919682641882104 7.919686429100161 7.919684535484135 

 
Table 2. ߤ,ே and the exact solution ߤ are all inside ሾܽି, ܽାሿ,  

where ܰ ൌ 40, ݉ ൌ ߠ ,14 ൌ
ଵ

ଶ
ଵሺ࣠ఏ,ሻܧ   , ൌ 2.83057 ൈ 10ଶସ 

 
Exact ߤ 

0.4828692021748485 0.482836191137082 0.4829022140937972 0.48286920219626944 
1.9663180523504247 1.9663174453361767 1.9663186593505408 1.9663180523488202 
4.827089429919572 4.827089226021884 4.827089633819908 4.827089429920899 
7.919684444168381 7.919684430472341 7.919684457864718 7.919684444168529 

 
Table 3. ߤ,ே and the exact solution ߤ are all inside ሾܽି, ܽାሿ,  

where ܰ ൌ 40, ݉ ൌ ߠ ,10 ൌ
ଵ

ଷ
ሺ࣠ఏ,ሻܧ   , ൌ 1.25034 ൈ 10ଵ଼ 

 
Exact ߤ 

0.5829673818446196 0.5828163858485008 0.5831083879812755 0.5829623977579995 
1.8189332937112266 1.818921178705338 1.8189482961554078 1.8189347380634264 
3.8046187863352188 3.8046179490207503 3.804620104016852 3.804619026520858 
6.63563219383198 6.63563216621949 6.635632256635445 6.635632211427473 

 
Table 4. ߤ,ே and the exact solution ߤ are all inside ሾܽି, ܽାሿ,  

where ܰ ൌ 40, ݉ ൌ ߠ ,15 ൌ
ଵ

ଶହ
ଵଵሺ࣠ఏ,ሻܧ   , ൌ 2.23046 ൈ 10ଶହ 

  
Exact ߤ 

0.5829673818446196 0.5829644938415554 0.5829702688272004 0.5829673813399913 
1.8189332937112266 1.8189332114883874 1.818933376024228 1.8189332937563671 
3.8046187863352188 3.8046187823511173 3.8046187903286928 3.8046187863399052 
6.63563219383198 6.635632192367194 6.635632195290339 6.635632193828767 
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