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Abstract

The purpose of this article is to use the classical sampling theorem, WKS sampling theorem, to derive
approximate values of the eigenvalues of the Sturm-Liouville problems with eigenparameter in the boundary
conditions. Error analysis is used to give estimates of the associated error. Higher order approximations are also
drived, which lead to more complicated computations. We give some examples and make companions with

existing results.
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1. Introduction

Throughout this paper we consider the differential
equation

() = —y"(x) + q(x)y(x)
= ly(x), x€[01], (D

where q(-) is assumed to be real valued and
continuous on [0,1] and A € C is/ an eigenvalue
parameter, see [1]. We also consider the following
two boundary conditions

a:y(0) + a;y'(0) = A(ay(0) +azy’'(0)),  (2)
biy(1) + byy'(1) = Albry (1) + by’ (1)), (3)

where a;,aj, b;, b; ER, i = 1,2 and
a; a by by
det (az aé) >0, det (bé b2> > 0. 4)

Let ¢,(-) be a solution of (1) satisfying the
following initial condition

$2(0) = a; —a34, ¢;(0) = a11 — a,. )

The eigenvalues of the problem (1)--(3) are the
zeros of the function

A): = (b's4 = b)) (1) + (b'22 = b2) (D). (6)
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The function A(4) is an entire function of 4 of
order one and type one. These zeros are real and
simple.

The famous classical sampling theorem (WKS) of
Whittaker [2], Kotel'nikov [3] and Shannon [4] say
that if f(t) € PW,2, that is, if f(t) is entire in t of
exponential type g, o > 0, which belongs to L?(R)
where restricted to R, then f(t) can be
reconstructed via, see also [5],

f)=Yr—of (%n) sinc (ot —nm), t€C. (7)

Series (7) converges absolutely on C and
uniformly on R and on compact subsets of C, see

[2, 3, 4]. The points {%n} . are called the sampling
ne

points and the functions

sinc (ot — nm): =
sin(ot—nm) nm

(ot-nm) ’ g’

1 t="" ®

are called the sampling, reconstructing, functions.
The series (7) is used extensively in approximating
solutions and eigenvalues of boundary value
problems, see [6, 7]. Since (7) involves the sine
function, then (7)-based methods extensively are
called sinc techniques, see [7]. Sinc techniques
have been employed in computing eigenvalues of
some boundary-value problems, see e.g. [8-18]. The
associated error analysis in these articles is based
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only on the truncation error related to the
WKS'theorem. This error is established by
Jaggerman, [19], as follows. For N €N and
f(t) € PW2, let fy(t) be the truncated cardinal
series

fu(®:= Shey f () sinc (ot —nm). ©)

Jagerman proved that if A € R and, in addition
A¥F(A) € L?(R), for some integer k > 0, then for
N €N, |1] < Nm/o, we have

If (D) = fy)] < Ex(f)IsinoA| ( 1

n(n/o)k1-4=k \JNr/o-1
1 1
\/Nn/cr+l) (N+1)K’ AER, (10)
where
E(f):= .
{2, 22X f )12 de)? (11)

2. Preliminaries

Consider the eigenvalue problem studied in the
above section, with A = p?

=y" (e, 1) + q()y(x, 1)

=uwPy(xu), 0<x<1, (12)
aly(ot M) + aZy,(Oi M)
= p*[a'yy(0,p) + a’,y'(0, W], (13)
byy(1, 1) + by (1, 1)
= b y(1, 1) + b'2y' (1, w)]. (14)

Let y(-, 1) denote the solution of (12) satisfying
the following initial conditions

y(0,1) = a — a'yu?, y'(O,p0) = a'yp* — a;. (15)

Thus y(:, 1) satisfies the boundary condition (13).
The eigenvalues of the problem (12)--(14) are the
zeros of the function

AQw) = (b"yp* = b))y(1, 1)
+(b'21* = by)y'(1, ). (16)

The function A(u) is an entire function of p of
order one and type one. These zeros are real and
simple. We aim to approximate A(u) and hence its
zeros, i.e. the eigenvalues by use of the sampling
theorem. The idea is to split A(u) into two parts,
one is known and the other is unknown, but lies in a
Paley-Wiener space. We approximate the unknown
part to get the approximate A(u) and then compute
the approximate zeros. Using the method of

variation of constants, the solution y(x, i) satisfies
Volterra integral equation

y(x, 1) = (a; — a'pp*)cospx
’ sinux
—(ay — @' ) ==+ Tly) (e ), (17)

where T is the Volterra operator defined by

TylCew = f; =552 q@ybwde. (18)

Differentiating (17), we get

y' (1) = (a'2p4* — ap)usinpx +
(a'1u? — ay)cospx + T[y](x, ), (19)

where T is the Volterra operator

Ty ) = fycosu(x — GOy, wadt.  (20)
Define f(:, 1) and g(-, 1) to be

fOow: =Tyl w, g w:=Tyl(xp). (21)

In the following, we shall make use of the
estimates [20],
sinz

S _ ,|Imz|
< oelima, (22)

|cosz| < el™?l, .

where ¢, is some constant (we may take ¢, = 1.72
cf. [20]). For convenience, we define the constants

1
Tt:j lg®l dt, ¢ =laz| +colasl, ¢z = laz| + colasl, c3:=co,
0

C4i= €XpCs, Cs:= max{cy,cy, |b1| + |by|7, |by| + |by|T}.

(23)

From (17) and (21), we get

flow = LXSHW(MLO Q(tl) [(az —a’yu?)cosut — (a; — a'yu?) Sir;ﬂt] dt
+ J w aOF & p) d.
24)

Lemma 2.1. For 0 < x <1, u € C, the following
estimates hold

csca(citeall®) | |rmulx
< =22l e u
o) < Sterralid, ©3)
and
g0 ) < Tc3c4(c1+l:2|#|2)e|1my|x (26)
= 1+|u| '
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Proof: We divide f(:, 1) into two parts, f; (-, u) and
f2(, 1), estimate each of them. Indeed, for x €
[0,1] and u € C we have

inpu(x-0) , , ot
Gl = |7 20 g(0) (@ - @a?Icosut = (@ — a'yu?) 2] e
|mplx (% Co(x—t)

< elimeds [ g (6)| 2020

< el [ la(lla] + 1’11l + (las] + 1a's[l1l)eot] dr

cot

< E""““*ﬁf; la®lllaz| + 1a"2]lul + (lai] + la's[11l*)cot] de.
27)
Moreover, 0 < x <1, u € C,

el = fos"‘”(#Lt)

q(®)f (¢, ) dt
¥ oco(x—1t)
Ty 1+ |ul(x—t)
< coeltmutx [ emalt |g o)) dt
° (28)
Combining (27) and (28), we obtain, 0 < x < 1,
uecC

Co
1+ |ul

X
eqelmite [ emimutt g )17 de
0

IfCom] < elmek

(29)

Applying Gronwall's inequality, cf. e.g. [21, p.
51], yields, u € C

1 x
eI £ (x, )] S[%OML Iq(f)\IIazI+Ia'zII#IZ+(Ia1I+Ia'i\IuIZ)Cntldt]eXP(fafo la@®)] de)

o (! - PR t
< [m"; la@®llazl + 1a5 11k + (las] + 1d's1111)eot] dt] EXP(CoJ:7 lg(®)1 de),

from which we get

st [Collaal + 102l + (| + 1a's 1o}

el < Tl

_ csca(er + co|ul?) elimulx
T+ ul

Then from (21) and (25), we obtain the estimate
(26).
3. Themethod and error estimates

This section contains the method and the associated
error analysis. First we decompose A(u) into two
parts, one is known and the other is unknown.
Indeed, let

Ap) = G(w) +S(w) (30)

where G (1) is known part

64D = (¥ = bo)[(@; = aau)cosur = (@ = ) 5] (31
+(b'2p® = by)[(a'20* — az)psing + (a'ypu* — ag)cosy],

and S(u) is unknown part

S(u) = (bll,uz —b)f(1,u)
+(b'1* — by)g(1, ). (32)

[laal + 1a2llul? + Q] + la'yll0f?) 125

M=t g ()| |f (¢, )| dt

1
f la@®lllaz] +la’2]lul? + (lau] + la's||ul*)eot] dt
0

1 1
e dt] e [ 1a(o] do)
0 0

Then, from Lemma 2.1 we have the following
lemma.

Lemma 3.1. The function S(p) is entire in p and
the following estimate holds

< c3cacs(1+[u]?)? 1|
I5()] < Sl (33)

Proof: Since

S < (D4 1Ipl? + by DIF A, ] + (1D [ ul?
+1b2D1g (L 1],

then from (25) and (26) we get (33).
Let 6 € (0,1) and m € Z*, m = 4 be fixed. Let
Fo.m(A) be the function

sinfu

" ) S, 1ec. (34)

Fom(): = (

The number 6 will be specified later. The number
4 is the smallest positive integer that suites our
investigation, as‘is seen in the next lemma.

Lemma 3.2. Fgn(w) is an entire function of p
which satisfies the estimates

cscacscd A+ ul®? g 1+mo
|Fom@] < el CUD elimulimo) - (35)

Moreover, u™ *Fy . (1) € L*(R) and

Ems(Fom) = Jf_"; =4 g ()2 dp <
V2c3¢4c5¢8 Vo, (36)

where

Vo:

_ Jan@m = 1) + 462)r[2m + 21 + 144m(am? — 1)6%(2806T[2m — 7] + 2062I[2m — 5] + [[2m - 3])

m(4m? — 1)I[2m + 21927+

Proof: Since S(u) is entire, then Fq,, (1) is also
<

inz

entire in A. Combining the estimates
—0_plmz| gnd (33), we obtain

1+|z|

|T9,m(#)| <

m 2y2
Co |Imu|mo €3€4Cs(1+|p]%) |Impu|
(1+e|u|) € 1+|u| € » HEC (37)

leading to (35). Therefore

cacaCscq ™t A+ pI?)?
(1+6|um*t ’

[0 FomW)| < HER, (38)

ie. u™*Fy (1) € L*(R). Moreover

oo ™ F g ()12 dpt <
2,.2,202m (@ WETTEAHKDY L
C3C4C5Ch f_oo (1+8]|u[)2m+2 d”_

2c2c2c2ci™v2. (39)
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What we have just proved is that Fy ,,, (1) belongs
to the Paley-Wiener space PW,?2 with ¢ = 1 + m#.
Hence, Fy ., (1) can be recovered from its values at

the points ,un=%n, n €7 via the sampling
expansion

Fom():= Lo Fom () sinc (ou — nm). (40)

Let N € Z*, N > m and approximate Fg ,, (i) by
its truncated series Fg , y (1), where

Fomn(): = The_y Fom () sinc (ou —nm).  (41)

Since ™ *Fy ., (1) € L*(R), the truncation error
. . Nt
is given for |u| < - by

|Fom (1) = Fomn ()] < Ty (), (42)
where

- Em—4(Fo,m) |sinoy| 1 1
TN (#) - /‘1_4—m+4 n(n/a’)m‘4 (N+1)m—4 l {_M_# + _@1(43)

inf
Let (0= 6 () + (35) " Fo (). Then
(42) implies

sm9u|

Aw) = Ay ()| < Tv(u), el <=5 (44)

and 6 is chosen sufficiently small for which
|8u| < m.
Let u*% be an eigenvalue, that is A(u*) =G (u*) +

. w\ =M
(S‘;‘zf ) Fom(u?) = 0. Then it follows that
. sinfu*\"" .
6w+ () Fomn®)

_ (sin@u*

= o
(sin@u*
ou*

-m
) TG,m,N (H*)

)" Fomtu)

and so

. sinfu*™\"" .
60+ () Fomn)

sinfu*|™™
< u

Ty (u®).
Since G(u*) + (Sme# ) Fomn(™) is given
and, %| Ty(pn™) has computable upper

bound, we can define an enclosure for u*, by
solving the following system of inequalities

296
singu*|”™ "
[ Tour Ty(w) <
0 .
G(u) + (S”‘ )" Fomu () <
sinfu*
o | v (45)

Its solution is an interval containing u*, and over

which the graph G(u*) + (Smeu ) Fomn(u) is
singu*|”™ N
trapped between the graphs — o Ty (™)

sinfu*

and
ou*

-m
| Ty (p™). Use the fact that

:FB,m,N (/,L) - TB,m(:“)

converges uniformly over any compact set, and
since y* is a simple root, we obtain for large N

il sinfuy" "
£<G(u)+( o) Te,m,N(u))aeo

in a neighborhood of u*. Hence the graph of
G(w + (Sme”) Fo m,n (1) intersects the graphs

6
— [ " Ty and

points  with abscissae a_(u*,N) < a,(u*,N) and
the solution of the system of inequalities (45) is the
interval

ino -m
M| Ty(u) at two

In(u):= la_(u", N), a,.(u", N)]

and in particular, u* € Iy(¢*). Now, we summarize
the above idea in the following lemma, see [22].

Lemma 3.3 For any eigenvalue p*?
1. there exists Ny such that u* € Iy(u*) for N > Ny;
2. [a-(W" N),ay(u',N)] > {p"}as N — oo.

Proof: Since all eigenvalues are simple, then for N
large enough we have

(G( )+ (SmG”) T@,m,zv(ll)) >0 say, in a
nelghborhood of u*. Now we choose N, such that

sinfu\" "
6w +(gr)  Fomm®
sinfu|™™
=+ T

has two distinct solutions which we denote by
a_(u*,Ny) < a,(u*,Ny). The decay of Ty(u) » 0
as N — oo will ensure the existence of the solutions
a_(u*,N) and a,(u*,N) as N — oo. For the second
point we recall that Fg., () = Fom(u) as
N — oo. Hence by taking the limit we obtain

G(a, (W, o)) +

ingu*\~m .
() Fomlan (o)) =0,
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Gla_(W', ) +

ingu*\~M .
(525) " Fomla () =0,
that is, A(a,) =A(a_) =0. This leads us to
conclude that a, = a_ = u*, since yu* is a simple

root.

4, Examples

In this section, the above theory is illustrated by
looking at two simple examples where eigenvalue
enclosures are obtained. We also indicate the effect
of the parameters m and 6 by several choices. Both
numerical results and the associated figures prove
the credibility of the method. In the following
examples, {1,y is considered to be the k " root of

i -m
G + (%) Fomn(@) =0. Also, in the

following examples, we observe that u; y and the
exact solution y, are all inside the interval [a_, a,].

Example 4.1. Consider the boundary value problem
=y"(ow) —y(op) = wPy(op) 0<x<1,(46)
y(0,1) =p?y'O,p), ¥y(A,w)=p*y(Lp. @7

This problem is a special case of the problem when
q=-1,a,=0a,"=b;=b,=0and q; =a,' =
b," = b, = 1. The characteristic determinant of the
problem is

Aw) = (1 — p*)cosyp? +1
(2 + ity (48)

After some calculations it is found that
G(w) = (1 +u®)((1 — p?)cosp — psinp).  (49)

Tables [1-2] and Figures [1-2] indicate the
application of our technique to this problem.

Example 4.2. Consider the boundary value problem
=y (6 1) +xy(x, 1) = 1Py(x,p) 0 <x < 1,(50)
y(0,1) +¥'(0, ) = p?(=y(0, 1) +y'(0, ), (51)
-yALw+y L w =AW +y'(Q,u). (52)

In this case q(x)=x, a;=a,=a, =b,=
b,)=b,/'=1 and by =a," =-1. The
characteristic determinant of the problem is

1
(AiryAiPrime[1 — p?)AiryBi[—u?] — AiryAi[—u]AiryBiPrime[1 — u?])
X [=(1 + g)AiryAi[1 — p2)((1 + u2)AiryBi[—p?] — (—1 + p?)AiryBiPrime[—u*])

Aw) =

—(=1+ p®)AiryAiPrime([1 — p?]((1 + p®)AiryBi[—p?] — (=1 + p?)AiryBiPrime[—u?])
(1 + D) AiryAi[—2] — (=1 + D) AiryAiPrime[1 — p2])((1 + u2)AiryBi[1 — u2]
+(=1+ pu?)AiryBiPrime[1 — u?]],

(53)

where AiryAi[z] and AiryBi[z] are Airy functions
Ai(z) and Bi(2), respectively, and

AiryAiPrime[z] and AiryBiPrime[z] are
derivatives of Airy functions. The function G (u)
will be

2u(1—p*)cosp+(ub—3u*—p?-1)sinu
G(w) = - . (54)

Tables [3-4] and Figures [2-4] indicate the
application of our technique to this problem.
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Table 1. y;, v and the exact solution i, are all inside [a_, a,],
1

whereN=4—0,m=8,9=3—2,

Ey(Fom) = 2.69987 x 1015

Exact

0.4828692021748485
1.9663180523504247
4.827089429919572
7.919684444168381

0.4793063473441252
1.9658893932751713
4.8270824332214
7.919682641882104

0.48646645601871363

1.9667354276372926
4.827096026486742
7.919686429100161

0.48287973117971406
1.9663129864196962
4.827089230117779
7.919684535484135

Table 2. u, v and the exact solution p, are all inside [a_, a],

where N = 40,m = 14,0 = —, E;9(Fom) = 2.83057 x 10%*

Exact p;
0.4828692021748485 0.482836191137082 0.4829022140937972 0.48286920219626944
1.9663180523504247 1.9663174453361767 1.9663186593505408 1.9663180523488202
4.827089429919572 4.827089226021884 4.827089633819908 4.827089429920899

7.919684444168381

7.919684430472341

7.919684457864718

7.919684444168529

Table 3. yy, v and the exact solution i, are all inside [a_, a.],

where N = 40,m = 10,0 = —, Eg(Fg,n) = 1.25034 x 1018

1
0

Exact

0.5829673818446196

1.8189332937112266

3.8046187863352188
6.63563219383198

0.5828163858485008
1.818921178705338
3.8046179490207503
6.63563216621949

0:5831083879812755
1.8189482961554078
3.804620104016852

6.635632256635445

0.5829623977579995
1.8189347380634264
3.804619026520858
6.635632211427473

Table 4. y, v and the exact solution p, are all inside [a_, a,],

where N = 40, m =15,8.==_, E;;(Fom) = 2.23046 X 105

Exact py

0.5829673818446196

1.8189332937112266

3.8046187863352188
6.63563219383198

0:5829644938415554
1.8189332114883874

3.8046187823511173
6.635632192367194

0.5829702688272004
1.818933376024228
3.8046187903286928
6.635632195290339

0.5829673813399913
1.8189332937563671

3.8046187863399052
6.635632193828767
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