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Abstract

The main goal of this paper is the study of the generalized Hyers-Ulam stability of the following functional
equation f(2x+y)+ f(2x—y)+(n-D(n-2)(n-3)f(y) = 2”’2[1‘ X+ y)+f(x-y)+6f (x)] where n=1234,
in non—-Archimedean spaces, by using direct and fixed point methods.
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1. Introduction

A classical question in the theory of functional
equations is the following: when is it true that a
function which approximately satisfies a functional
equation D must be close to an exact solution of
D?

If the problem accepts a solution, we say that the
equation Dis stable. The first stahility problem
concerning group homomorphisms was raised by
Ulam[1] in 1940.

In the next year, D. H. Hyers [2] gave a positive
answer to the above question for additive groups
under the assumption that the groups are Banach
spaces.

In 1978, Th. M. Rassias proved a generalization
of Hyers' theorem for additive mappings. The result
of Th. M. Rassias has influenced the development
of what is now called the Hyers-Ulam-Rassias
stability theory for functional equations.

Theorem 1. ([3]): Let f:E—E' be a mapping

from a normed vector space E into a Banach space
E' subject to the inequality

[N =100- (a0 ")

foral x,ye E whereg and pare constants
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with £ >0and 0< p<1. Thenthelimit

L(x) = lim &%)

n—m 2“

exists for all xeE and L:E — E'is the unique
additive mapping which satisfies

2
[109-L0d|= 554’

for all xe E. Also, if for each xe E the function
f (tx) iscontinuousin t € R, then L islinear.

In 1994, a generalization of Rassias’ theorem was
obtained by Gavruta [4] by replacing the bound

(|§|” +|y|") with a general control function

P(x,y).
Let X andY bevector spacesandlet f: X —>Y

be a mapping for each n =123, consider the
functional equation

f(2x+y)+f (2x-y)=

1
2 2[f (x+y)+f (x —y)+6f (x)] ()
Also, consider the functional equation
f(2x+y)+ f(2x-y)+6f(y) =4[ f (x+y)+ f(x—y) +6f (X)] (2)

For X=Y=R, the monomia f(x)=cx"is a
solution of (1) for each n=1,2,3 and the monomial
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f(x)=cx* is a solution of (2). It is easy to show
that, amapping f : X - Y sdtisfies (1) for n=1 if
and only if it aso satisfies the Cauchy functional
equation f(x+y)=Tf(x)+ f(y).

For n=2, in [5] it was shown that the equation

(1) is equivalent to the quadratic functiona
equation.

f(x+y)+ f(x=y)=2f(x)+2f(y).

In 2002, Jun and Kim [6] solved the functional
equation (1) for n =3. In 2003, Chung and Sahoo
[7] introduced the quartic equation

f(x+2y)+ f(x=2y)+6f(X)
=4[ (x+y)+ f(x—y)+6f(y)]

In [8], the equation (2) was shown to be
equivalent to the above equation.

In 1897, Hensel [9] introduced a normed space
which does not have the Archimedean property.

In this paper, the generalized Hyers-Ulam
stability of functional equation

©)

f(2x+y)+ f(2x-y)+(n=-)Y(n-2)(n-3) f(y) =

4
2"2[f (x+y)+ f(x—y) +6f(x)] @

will be investigated in non- Archimedean normed
space.

In [8], Bae and Park obtained the general solution
of the functional equation (4) and_proved the
generalized Hyers-Ulam stability of this functional
equation in Banach * -algebra.

Remark 1. For convenience, for dl x,y , let

Ql(x,y)=f (2x+y)+f (2x-y)+
(n=-D(n-2)(n-3f (y)-
272 [f (x +y)+f (x —y)+6f (x)]

2. Preliminaries

Definition 1. By a non-Archimedean field, we
mean a field K equipped with a function
(valuation): K —[0,)such that for al r,seK,
the following conditions hold:
@(i)|r|=0if and only if r =0

(lrs =l
(iib)|r +9/< max{Jr|,)3 |

Definition 2. Let X be a vector space over a scalar
field K with a non-Archimedean non-trivial

valuation. A function |||:X >R is a non-

Archimedean norm (valuation) if it satisfies the
following conditions:

(i) ||x|| =0 ifandonly if x=0

(i) [rx| = |r||x|(r € K, x & X)

(iii) the strong triangle inequality (ultra-metric),
namely

[x+ v < mad. vk xyex

Then (X,[|) is called anon- Archimedean space.
Dueto the fact that

Hxn—mesmax{‘le—xjH;msj<n} (n>m)

Definition 3. A sequence {Xn} is Cauchy if and

only if {Xml - Xn} converges to zero in a non—

Archimedean space. By a complete non—
Archimedean space, that is, .one in which every
Cauchy segquence is convergent.

The most important examples of non-
Archimedean spaces are p— adic numbers. A key

property of p—-adic numbers is that they do not
satisfy the Archimedean axiom: for al x,y>0,
there exists an integer nsuch that x< ny.

Example 1. Fix a prime number p. For any
nonzero rational number X, there exists a unique

integer N, € Z suchthat x :Sp"x where aand
bare integers not divisble by p. Then

|x|p = p ™™ defines a non-Archimedean norm on

Q . The completion of Q with respect to the
metric d(x, y):|x—y|pis denoted by Q, which is

called the p —adic number field. In fact, Qp isthe
set of all forma series x =) " a p“ where

la|<p-1 are integers. The addition and
multiplication between any two elements of Q,, are

defined naturally. The norm ‘Z:Zn a p“

=p™
P
is a non-Archimedean norm on Q, and it makes
Q, alocally compact filed.

Definition4. Let X be a set. A function
d: X x X — [0,»] is called a generalized metric on
X if d satisfies the following conditions:
(i)d(x,y)=0 if and only if x=y, for dl
X,y eX;

@i)d(x,y)=d(y,x) foral x,y e X;
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@iii)d(x,z)<d(x,y)+d(y,z) for all
X,¥,zeX

Note that the only substantial difference of the
generalized metric from the metric is that the range
of generalized metric includes the infinity.

Theorem 2. Let (X ,d) be a complete generalized

metric space and J:X — X be a drictly
contractive mapping with Lipschitz constant L <1.
Then, for all X e X ; either

d(@"x,J""*x) =
for al nonnegative integers N or there exists a
positive integer N, such that
(i)d(@"x,d"x) <o foral N>ny;
(ii) the sequence {J“x} converges to a fixed
point Y of J;
(i) y* is the unique fixed point of J in the set
Y ={y eX :d(J”°x,y)<oo};

(iv)d(y,y*)sﬁd(y,\]y) foral yeY.

3. Non-Archimedean stability of functional
equation (4): direct method

Throughout this section, we assume that G “is an

additive semi-group and X is a complete non—
Archimedean space.

Remark 2. For convenience, for each n =1,2,3,4,
let

_ |(n-D(n—2)(n-3)|
|2+ (n-1)(n-2)(n-3)—2""

Theorem 3. For each n =1,2,3,4, let
G, G’ > [0’ +0) be afunction such that

lim ¢, (2"x2"y)

m— +oo |2| mn 0 Q

foral X,yeG. Letforeach Xe G thelimit

Q(x) = lim max {gn(f}f,()) , a*‘glnl(g’o); 0<k< m} (6)
m—o 2 2

exists. Suppose that f :G — X be mapping
satisfying the inequality

2% (x )] < £, 06 v) ™
for al X,y € G. Then thelimit

f (2"x)
2mn

J(x) = lim

exists for adl XeG and 9(x):G - X is a
mapping satisfying

If (x) - 900)] < l—;lﬂ(x) ®)

foral Xxe G. Moreover, if

k.
lim lim mac| <22 .0 a"g”(o'o);j <k <m+1}_0

j o mow ‘Z‘k" : ‘2‘k"

Then $(X) is the unique mapping satisfying (8).
Proof: Letting x =y =0 in(7) , we get

$.(0,0)
2+(-D(n-2)(n-3-2""

It @< ©)

Putting y =0 in (7), we get
H2f (2¥) + (N=1((n—-2)(n-3) F (0) - 2™ f (x)H <¢,(x0) (10)

for dl x eG . By the above two inequalities, we
have

Jof (29 -2 1 (x| = [2 (29 + ("-D(n- (-3 £ (0) - 2" f ()]
< max{HZf (2¥)+(n-1)(n-2)(n-3) f (0) - 2" f (X)H

J(n-D(n-2-31 O}

< max{¢,(x0),a,¢,(0.0)}.

(11)
foral x eG.So
Hf (zznx) - (X)HS |;q max (¢, (x,0).3,£,(0,0)} (12)

for dl x eG . Replacing Xby 2"x and dividing
both sidesby |2|™ in (12), we get
(13)

f (2™t f(2m 1 "
H ;mmnX)‘ (2 nnX)HS\z\‘m*””” max {¢,(2"x,0),a,£,(0,0)}

for dl x eG. It follows from (5) and (13) that

sequence {f (sznx)} is a Cauchy sequence in
m>1

complete non-Archimedean spaceX , and so is
convergent. Set
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f (2"x)
2mn

9(x) = lim

Using induction on M, one can easily see that

(14)
}

Hf(z X) Ct

<max{‘2‘“) —¢,(2%,0), ‘2‘(k 1) — et 86,(0,0); 0<k<m

By taking M to approach infinity in (14) and
using (6) one obtains (8). To show 9(x) satisfies
(4), replace X and y by 2"x and 2"y,
respectively, in (7) and divideby 2™, we obtain
Hime(zm“H 2ny)+ f(2™x=2"y) + (n-D)(n-2)(n-J f (2")|

- 2"’2[f 2"x+2"y)+ f(2"x—2"y) + 61 (2"¥)] |
ré 2(2"x2"y)
foral X,y € G andal me N . Taking the limit
as M— oo, wefind that J(X) satisfies (4) for all
X,yeG.

To prove the uniqueness of the mapping J(X) .
Let 77 be another mapping satisfying (8), then for
xe G, weget

909 =03, =tim{2 ™" 32! - (2' ¥,

< |im\2\”“ max{ |9@%- @ x|, |1@%- 1@ x)H}

<4Im¥@wmwwm

< , j€k<m+]
Gl BT }

=0.

Therefore, ¥ = 77. This completes the proof.

Corollary 1. For each n=1234, Ilet
17:[0,00) — [0,00) be a function satisfying

n(|2t)<n(2) n)(t=0), n(j2)<[2"
Let 6>0and f :G - X beamapping satisfying

for al x,y eG. Then there exists a unique
mapping $:G — X such that

o7 (x.y), <8 (n(Ix[)+n(y[)

||f (x)-9(x )||X <

Proof: Defining ¢, :G? >[0,) by

¢ (oy)=6(n(x|)+n(|y])). since |2 5(|2)) <1,
then we obtain that for all x,y €G

im S (27%.2Y) ,,m[ |(| I)J £ y)=0

m—w |2|mn m—o

Also,
sxw=|m1ma{§(?xm,@§(om o<k<m}
o 2 2"
= max {£,(x,0),a,£,(0,0)}
and,
i S 200 e

Applying Theorem 3, the desired result is obtained.

Theorem 4. For each n=1234, Ile
¢, :G? —[0,400) beafunction such that

|im2m“gn[l,lj=o (15)

foral X,y € G. Let for each X € G, thelimit

Q(x) = Imimmax{\z\k“gn(zk—’il,oj,\z\“‘ ac,(0,0);,0<k< m}(16)

exists. Suppose that f :G — X be a mapping
satisfying the inequality

[ (v < £, (x ) an

forall X,y € G. Then the limit

N H mn L
G(x):=lim2™f [2’"}

m—o

exists for al xeG and 3(x):G—>X is a
mapping satisfying

If (x)=39(x)||< 2 |Q(x) (18)

forall x eG . Moreover, if

lim lim maX{\Z\ 4[2“1 j,\Z\*"ancn(o,O);jsk<m+1}=o

Then 9(x) is the unique mapping satisfying (18).

Proof: By (12), we have
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[f (2x)-2"t (x)H max{¢£, (x,0),a,£, (0,0)} (19)

]
Replacing x by zx_m in (19), we obtain

2 g i]—z"“f i) <
2m71 2m "

for adl Xe G and al non-negative integer m. It
follows from (15) and (20) that the sequence

(20)

2 max{qn [2—2,0]@;”(0,0)}

{Zm”f(zimj} isaCauchy in X foral xeG.

Since X mzlls complete, the sequence

{2’“” f[zimj}:_lconverg&c for dlx eG. On the

other hand, it follows from (20) that

SERAE) itagleRalc)
o) 13

. émax{\z\ Q(W'O]v\z\k"%én(oyo)z psk<q},

p£k<q—1}

for al x eG and al non-negative integers p,q
with q>p>0. Letting p=0 and passing the
limit @ — o in the last inequality and using (16);
we obtain (18).

The rest of the proof is similar to the proof of
Theorem 3.

Corollary 2. For each “n=1234, et
1:[0,00) - [0,0) beafunction satisfying

n(127t)<n(127) n) e =0 n(j2™) <2
Let 0 > 0and f :G = X isamapping satisfying

|7 0y <o (u(x D+ a0y )

for all x,y eG . Then there is a uniqgue mapping
3:G — X suchthat

on(|2
It )-8, < |’7|ﬁ'+1')

Proof. Defining ¢, :G* —[0,%0) by
&, (x,y)=8(u(1x )+ u(y 1)), thenwe obtain

: mn Xy
lim2 é —,— |=0.
m—eo n(zm 2mj

Also,

Q(x) = ||mmax{\2\ <, (2‘“1 j,\Z\k"ahg“n(0,0);Osk<m}
e
<[2" eu(X)

And

I|m wmax{\z\ {[ )‘zkﬂ“—%g (0,0); j<k<m+1}

4. Non- Archimedea stability of functional
equation (4): fixed point method

Throughout this section, assume that X is a non-
Archimedean normed vector space and that Y is a
non- Archimedean Banach space. In the rest of the
present paper,let |2}~ 1.

Theorem 5. For n=12,34, {,:X —[0,») bea
function such that there existsan L <1 with

Ca(2x2y) <[2" LS (%, y) (21)

for al x,y eX . Let f :X —Y be a mapping
satisfying

Tuy) <6 y) (22)

foral x,y € X . Then there is a unique mapping
C:X —Y suchthat

|2| (1— L)

Proof: By (12), we have
||2f (2x) - 2" (x)|| < max{Z,(x,0), 3,£,(0,0)). (24)
foral x e X . Consider the set

S={g:X 5Y}
and the generalized metric d in S defined by
d(f,g) =inf {ue R":|g() - h(x)] < max{¢, (x,0,8,¢,(0,0)} . ¥xe X},

where inf ¢ = +o0. It is easy to show that (S,d)is

complete. Now, we consider a linear mapping
J :S — S such that

Jh(x)::zinh(ZX)
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for al xeX. Let g,heSbe such that
d(g,h)=¢.Then

lg(x)=h(x)] < emax{¢, (x,0),a,¢, (0,0}

foral x eX. So

[99(x) = In(x)| =

1 1
— g(2X) ——h(2x
2ng( ) o (2x)

< é maX{(n(ZX,O),anfn(O: 0)}
1

< Wg\z\” Lmax {¢,(x,0),a,£,(0,0)}

for x e X. Thus d(g,h) =& impliesthat
d(Jg,Jh) <Le¢, thismeansthat
d(Jg,Jh)<Ld(g,h) foral g,heS. Itfollows
from (24) that d (f ,Jf )sﬁ.
2

By Theorem 2, there exists a mapping
C : X —Y satisfying thefollowing :

(i) C isafixed point of J,thatis, foral x € X,
C(2x) =2"C(x) (25)

(i) the mapping C isaunique fixed point of J in
theset Q={h eS:d(g,h) <}. Thisimpliesthat
C isaunique mapping satisfying (25) such that
there exists u e (0,0) satisfying

[f (x)-C (x)||< umax{¢, (x,0),a,,(0,0)} , for
al x eX .

(iii)d(@™ ,C) > 0asm —> . Thisimpliesthe

equality, lim 2 ) 2 (xY, forall x e X .

2mn 4

(v)d(f ,C) g%with f €Q,which

impliesthe inequality d (f ,C)s%.
12" @-L)

Thisimplies that the inequality (23) holds.

Corollary 3. Let #>0and p bearea number
with O<p <1 Let f :X Y beamapping
satisfying

o )| <ol +1y[P)

foral X,y e X. Then, thelimit
f (2"x)

2mn

existsfor all Xe X and

C(x)=Ilim
C:X —T\?ooisaunique mapping such that
2" olx|”
2 (12" -12")

If (x)-C(x)|<

foral x e X .

Proof: The proof follows from Theorem 5 by
teking, (x,y) = 0(|x|” +[y[" ). for al

X,y € X. Infact, if wechoose L = ||22||np we get

the desired result.

Theorem 6. For n=12,34, let £, : X —[0,») be
afunction such that there existsan L <1 with

L

ca(x,y)<
2

—¢n(2x,2y)
foral x,y e X. Let f :X —»Y beamapping
satisfying

[ (x ) < £, y)

foral x,y € X. Then there isaunique mapping
C : X —Y such that

L max{¢, (x,0,8,6,0.0} (o
|2|n+1 (1_ L)

[f )-C(x)| <

Proof: By (11), we have

nel X
‘f(x)—z f[EJ

foral x e X . Let (S,d) be the generalized metric

space defined as in the proof of Theorem 5, we
consider a linear mapping J:S —S such that

sﬁmax{q{g,O}an:n<o,0)} 27)

Jh(x)::2"h(XEj foral x eX .Let g,heS be

such that d(g,h)y=¢. Then

[g(x)-h(x)|<emax{¢,(x,0),a,£,(0,0} for al
X eX. So
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99 (<) = In(x)]| =

ol

<2 ,smax{{n (XE,OJ,%G (010)}

L
12

< \2\” £

—max {¢, (x,0),a,£,(0,0)}

foral x e X. Thusd(g,h) =¢ impliesthat
d(Jg,Jh)<Leg, thismeansthat
d(Jg,Jh)<Ld(g,h) fordl g,heS. Itfollows
from (27) that d (f ,J )sﬁ.

2

By Theorem 2, there exists a mapping
C: X Y sdtisfying thefollowing:

(@) C isafixed pointof J ,thatis

X 1
C|—=|==—C(x 28
(2} o (x) (28)
foral x e X.

(b) The mapping C isaunique fixed point of Jin
theset Q={heS:d(g,h) <} . Thisimplies C
iS a unique mapping satisfying (28) such that there
exists u e (0, ) satisfying

It x)-C ()] < umax{¢,,(x,0),3,¢,(0,0)} , for
adl xeX.

(c)d(@™ ,C) > 0asm — oo, thisimplies the

equality lim2™f (Zx—mj:qx) forall x e X .

(d) d(f ,C)s%with f e Q, whichimplies
.

|2|n+1 (1—'.) .
Thisimplies that the inequality (26) holds.

Therest of the proof is similar to the proof of
Theorem 5.

theinequality d (f;,C) <

Corollary 4. Let >0 and p bearea number
with p>1.Let f : X —Y beamapping
satisfying

Jor oy <ol +1yI)

foral x,y e X .Then, the limit

C(x) = lim 2™f (Zx—mj existsfor al xe X, and

m—oo

C: X — Y isamapping such that

24" olx|”

[ eo-coals 5
(12" 12"

|2

foral x e X .

Proof: The proof follows from Theorem 6 by
taking ¢, («,y) = 0([x|" +[y[ )

2

2

foral x,y e X . Infagct, if wechoose L =

we get the desired result.
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