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Abstract 

The main goal of this paper is the study of the generalized Hyers-Ulam stability of the following functional 

equation  )(6)()(2)()3)(2)(1()2()2( 2 xfyxfyxfyfnnnyxfyxf n    where 4,3,2,1n , 
in non–Archimedean spaces, by using direct and fixed point methods. 
 
Keywords: Hyers- Ulam stability; non -Archimedean normed space; p - adic field 

 
1. Introduction 

A classical question in the theory of functional 
equations is the following: when is it true that a 
function which approximately satisfies a functional 
equation D  must be close to an exact solution of 
D ? 

If the problem accepts a solution, we say that the 
equation D is stable. The first stability problem 
concerning group homomorphisms was raised by 
Ulam [1] in 1940. 

In the next year, D. H. Hyers [2] gave a positive 
answer to the above question for additive groups 
under the assumption that the groups are Banach 
spaces. 

In 1978, Th. M. Rassias proved a generalization 
of Hyers` theorem for additive mappings. The result 
of Th. M. Rassias has influenced the development 
of what is now called the Hyers-Ulam-Rassias 
stability theory for functional equations.  
 
Theorem 1. ([3]): Let EEf :  be a mapping 

from a normed vector space E into a Banach space
E  subject to the inequality  
 

)()()()(
pp

yxyfxfyxf    
 

for all Eyx ,  where  and p are constants 
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with 0  and .10  p  Then the limit 
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nn

f x
L x


  

 
exists for all Ex  and EEL : is the unique 
additive mapping which satisfies 
 

p
x

p
xLxf

22

2
)()(





 

 
for all Ex . Also, if for each Ex  the function 

)(txf is continuous in Rt , then L is linear. 

In 1994, a generalization of Rassias’ theorem was 
obtained by Gavruta [4] by replacing the bound

)(
pp

yx   with a general control function 

).,( yx  

Let X  and Y  be vector spaces and let YXf :  

be a mapping for each 1,2,3n  , consider the 
functional equation 
 

 2

(2 ) (2 )

2 ( ) ( ) 6 ( )n

f x y f x y

f x y f x y f x

   

   
                   (1) 

 
Also, consider the functional equation 
 

 (2 ) (2 ) 6 ( ) 4 ( ) ( ) 6 ( )f x y f x y f y f x y f x y f x          (2) 
 
For RYX  , the monomial ncxxf )( is a 

solution of (1) for each 3,2,1n  and the monomial 
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4)( cxxf   is a solution of (2). It is easy to show 

that, a mapping YXf :  satisfies (1) for 1n   if 

and only if it also satisfies the Cauchy functional 
equation )()()( yfxfyxf  .  

For 2n , in [5] it was shown that the equation 
(1) is equivalent to the quadratic functional 
equation. 
 

).(2)(2)()( yfxfyxfyxf   
 

In 2002, Jun and Kim [6] solved the functional 
equation (1) for 3n  . In 2003, Chung and Sahoo 
[7] introduced the quartic equation 
 

 .)(6)()(4

)(6)2()2(

yfyxfyxf

xfyxfyxf




                        (3) 

 
In [8], the equation (2) was shown to be 

equivalent to the above equation.  
In 1897, Hensel [9] introduced a normed space 

which does not have the Archimedean property.  
In this paper, the generalized Hyers-Ulam 

stability of functional equation 
 

 .)(6)()(2

)()3)(2)(1()2()2(
2 xfyxfyxf

yfnnnyxfyxf
n 




(4) 

 
will be investigated in non- Archimedean normed 
space. 

In [8], Bae and Park obtained the general solution 
of the functional equation (4) and proved the 
generalized Hyers-Ulam stability of this functional 
equation in Banach * -algebra. 
 
Remark 1. For convenience, for all yx, , let  
 

 2

( , ) (2 ) (2 )

( 1)( 2)( 3) ( )

2 ( ) ( ) 6 ( )

n
f

n

x y f x y f x y

n n n f y

f x y f x y f x

     
   

   

. 

2. Preliminaries 

Definition 1. By a non-Archimedean field, we 
mean a field K  equipped with a function 
(valuation): ),0[ K such that for all ,, Ksr   

the following conditions hold: 
0)( ri if and only if 0r  

 .,max)(

)(

srsriii

srrsii




 

 
Definition 2. Let X be a vector space over a scalar 
field K  with a non–Archimedean non-trivial 
valuation. A function RX :.  is a non–

Archimedean norm (valuation) if it satisfies the 
following conditions: 

0)( xi  if and only if 0x  

),()( XxKrxrrxii   

)(iii the strong triangle inequality (ultra-metric), 

namely 
  Xyxyxyx  ,.,max  

Then  .,X  is called a non- Archimedean space. 

Due to the fact that 
 

  )(;max 1 mnnjmxxxx jjmn  
 

 
Definition 3. A sequence  nx  is Cauchy if and 

only if  nn xx 1  converges to zero in a non–

Archimedean space. By a complete non–
Archimedean space, that is, one in which every 
Cauchy sequence is convergent. 

The most important examples of non–
Archimedean spaces are p adic numbers. A key 

property of p adic numbers is that they do not 

satisfy the Archimedean axiom: for all 0, yx , 

there exists an integer n such that nyx  . 
 
Example 1. Fix a prime number p . For any 

nonzero rational number x , there exists a unique 

integer znx   such that xna
x p

b
  where a and 

b are integers not divisible by p . Then 

: xn

p
x p   defines a non–Archimedean norm on 

Q . The completion of Q  with respect to the 

metric 
p

yxyxd ),( is denoted by pQ which is 

called the p  adic number field. In fact, pQ  is the 

set of all formal series 
x

k
kk n

x a p



  where 

1ka p   are integers. The addition and 

multiplication between any two elements of pQ  are 

defined naturally. The norm x

x

nk
kk n p

a p p
 


  

is a non–Archimedean norm on pQ  and it makes 

pQ  a locally compact filed. 

 
Definition4. Let X  be a set. A function 

  ,0: XXd  is called a generalized metric on 

X if d  satisfies the following conditions: 
( ) ( , ) 0i d x y   if and only if x y , for all 

,x y X ; 

( ) ( , ) ( , )ii d x y d y x  for all , ;x y X  
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( ) ( , ) ( , ) ( , )iii d x z d x y d y z   for all 

, ,x y z X  

Note that the only substantial difference of the 
generalized metric from the metric is that the range 
of generalized metric includes the infinity. 
 
Theorem 2. Let  ,X d  be a complete generalized 

metric space and :J X X be a strictly 
contractive mapping with Lipschitz constant 1L . 
Then, for all Xx ; either  
 

1( , )n nd J x J x    
 

for all nonnegative integers n  or there exists a 

positive integer 0n such that  
1( ) ( , )n ni d J x J x    for all ;0nn   

)(ii the sequence  nJ x  converges to a fixed 

point y of J ; 
yiii)(  is the unique fixed point of J  in the set 

 0: ( , )nY y X d J x y    ;  

1
( ) ( , ) ( , )

1
iv d y y d y Jy

L
 


 for all Yy . 

3. Non–Archimedean stability of functional 
equation (4): direct method  

Throughout this section, we assume that G  is an 

additive semi-group and X is a complete non–
Archimedean space. 
 
Remark 2. For convenience, for each 1,2,3,4,n   
let 
 

1

( 1)( 2)( 3)

2 ( 1)( 2)( 3) 2
n n

n n n
a

n n n 

  


    
 

 
Theorem 3. For each 1,2,3,4,n   let 

 )0: ,
2 Gn be a function such that  

 

0
2

)2,2(lim


 mn

mm
n yx

m


                                  (5) 

 
for all Gyx , . Let for each Gx  the limit 
 

(2 ,0) (0,0)
( ) lim max , ; 0

2 2

k
n n n

kn knm

x a
x k m

 


      
  

(6) 

 
exists. Suppose that :f G X be mapping 
satisfying the inequality 
 

),(),( yxyx n
n
f                                        (7) 

 
for all Gyx , . Then the limit 
 

(2 )
( ) : lim

2

m

mnm

f x
x


  

 
exists for all Gx  and ( ) :x G X  is a 

mapping satisfying 
 

1
( ) ( ) ( )

| 2 |
f x x x                                       (8) 

 
for all Gx . Moreover, if  
 

(2 ,0) (0,0)
lim lim max , ; 0

2 2

k
n n n

kn knj m

x a
j k m j

 
 

      
  

 

 
Then )(x is the unique mapping satisfying (8). 

 
Proof: Letting 0x y   in (7) , we get 
 

1

(0,0)
(0)

2 ( 1)( 2)( 3) 2
n

n
f

n n n





    

              (9) 

 
Putting 0y   in (7), we get 
 

)0,()(2)0()3)(2)((1()2(2 1 xxffnnnxf n
n   (10) 

 
for all x G . By the above two inequalities, we 
have 
 




 .)0,0(),0,(max

)0()3)(2)(1(,

)(2)0()3)(2)(1()2(2max

)(2)0()3)(2)(1()2(2)(2)2(2

1

11

nnn

n

nn

ax

fnnn

xffnnnxf

xffnnnxfxfxf












(11) 
 
for all x G . So 
 

 1

(2 ) 1
( ) max ( ,0), (0,0)

2 2
n n nn n

f x
f x x a    (12) 

 
for all x G . Replacing x by 2m x  and dividing 

both sides by | 2 |mn  in (12), we get 
 

 
1

( 1) 1( 1)

(2 ) (2 ) 1
max (2 ,0), (0,0)

2 2 2

m m
m

n n nm nm n mn

f x f x
x a 



   
(13) 

 
for all x G . It follows from (5) and (13) that 

sequence 
1

(2 )

2

m

mn

m

f x



 
 
 

is a Cauchy sequence in 

complete non-Archimedean space X , and so is 
convergent. Set 
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(2 )
( ) : lim

2

m

mnm

f x
x


  

 
Using induction on m , one can easily see that 

 

( 1) 1 ( 1) 1

(2 ) 1 1
( ) max (2 ,0), (0,0); 0 .

2 2 2

m
k

n n nk n k nmn

f x
f x x a k m    

      
  

(14) 

 
By taking m  to approach infinity in (14) and 

using (6) one obtains (8). To show ( )x  satisfies 

(4), replace x  and y  by xm2  and ym2 , 

respectively, in (7) and divide by mn2 , we obtain 
 

 
)2,2(

2

1

)2(6)22()22(2

)2()3)(2)(1()22()22(
2

1

2

11

yx

xfyxfyxf

yfnnnyxfyxf

mm
nmn

mmmmmn

mmmmm
mn











 
for all Gyx ,  and all Nm . Taking the limit 

as m , we find that )(x  satisfies (4) for all 

Gyx , . 

To prove the uniqueness of the mapping )(x . 

Let   be another mapping satisfying (8), then for 

Gx , we get 
 

 
( ) ( ) lim 2 (2 ) (2 )

lim 2 max (2 ) (2 ) , (2 ) (2 )

(2 ,0) (0,0)1
lim lim , ;

2 2 2

0.

jn j j

x Xj

jn j j j j

j

k
n n n

kn knj m

x x x x

x f x x f x

x a
j k m j

   

 

 









 

  

  

      
  



 
 

Therefore,   . This completes the proof. 
 
Corollary 1. For each ,4,3,2,1n  let

   ,0),0:  be a function satisfying  

       2 2 ( ) 0 , 2 2 .
n

t t t       

Let 0  and :f G X  be a mapping satisfying 
 

    ( , )n
f X

x y x y      

 
for all ,x y G . Then there exists a unique 

mapping :G X  such that  
 

     
2X

x
f x x


   

 
Proof: Defining 2: 0, )n G    by 

      , :n x y x y     , since  2 2 1
n 

 , 

then we obtain that for all ,x y G  

 

   2 ,2 2
lim lim ( , ) 0

2 2

m
m m

n

nmn nm m

x y
x y

 


 

 
  
 
 

 

 
Also, 
 

 

(2 ,0) (0,0)
( ) lim max , ; 0

2 2

max ( ,0), (0,0)

k
n n n

kn knm

n n n

x a
x k m

x a

 

 



      
  



 

 
and,  
 

(2 ,0) (0,0)
lim lim , ; 0.

2 2

k
n n n

kn knj m

x a
j k m j

 
 

      
  

 

 
Applying Theorem 3, the desired result is obtained. 
 
Theorem 4. For each 4,3,2,1n , let

  ,0: 2Gn  be a function such that  
 

0
2

,
2

2lim 







 mmn
mn

m

yx                               (15) 

 
for all Gyx , . Let for each Gx , the limit 
 

1
( ) lim max 2 ,0 , 2 (0,0);0

2

kn kn

n n nkm

x
x a k m 

       
  

(16) 

 
exists. Suppose that XGf : be a mapping 

satisfying the inequality 
 

),(),( yxyx n
n
f                                      (17) 

 
for all Gyx , . Then the limit 
 

( ) : lim 2
2

mn
mm

x
x f



   
 

 

 
exists for all x G  and ( ) :x G X   is a 

mapping satisfying 
 

1
( ) ( ) ( )

2
f x x x                                      (18) 

 
for all x G . Moreover, if  
 

1
lim lim max 2 ,0 , 2 (0,0); 0

2

kn kn

n n nkj m

x
a j k m j  

        
  

 

 
Then ( )x is the unique mapping satisfying (18). 

 
Proof: By (12), we have 
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 1
(2 ) 2 ( ) max ( ,0), (0,0)

2
n

n n nf x f x x a  

        

(19) 

 

Replacing x  by 
2m

x
 in (19), we obtain 

 

( 1) 1( 1)
1

2 2 2 max ,0 , (0,0)
2 2 2

n mm n mn
n n nm m m

x

x x x
f f a  



               
      

(20) 

 
for all Gx  and all non-negative integer m . It 
follows from (15) and (20) that the sequence 



















12
2

m
m

mn x
f  is a Cauchy in X  for all Gx . 

Since X  is complete, the sequence 


















12
2

m
m

mn x
f converges for all x G . On the 

other hand, it follows from (20) that 
 

1
( 1)

1

( 1)
1

1

2 2 2 2
2 2 2 2

max 2 2 ; 1
2 2

1
max 2 ,0 , 2 (0,0); ,

2 2

q
pn qn k n kn

p q k k
k p

k n kn
k k

kn kn

n n nk

x x x x
f f f f

x x
f f p k q

x
a p k q 












                
       

            
    

      
  


 

 
for all x G  and all non–negative integers ,p q  

with 0q p  . Letting 0p   and passing the 

limit q   in the last inequality and using (16), 

we obtain (18). 
The rest of the proof is similar to the proof of 

Theorem 3. 
 
Corollary 2. For each 1,2,3,4,n   let 

   : 0, 0,     be a function satisfying 
 

     1 1 1
2 2 ( ) ( 0), 2 2

n
t t t          

 
Let 0 and :f G X  is a mapping satisfying 
 

    ( , ) | | | |n
f X

x y x y      

 
for all ,x y G . Then there is a unique mapping 

:G X   such that  
 

1

( 2 )
( ) ( )

2
nx

f x x


    

 
Proof. Defining  2: 0,n G    by

    ( , ) : | | | |n x y x y     , then we obtain  
 

lim 2 , 0.
2 2

mn
n m mm

x y


   
 

 

 

Also, 
 

 

1
( ) lim max 2 ,0 , 2 (0,0);0

2

,0
2

2

kn kn

n n nkm

n

n

x
x a k m

x

x

 









       
  

   
 



 

 
And 
 

1
lim lim max 2 ,0 , 2 (0,0); 0.

2
kn kn

n n nkj m

x
a j k m j  

        
  

 

4. Non- Archimedea stability of functional 
equation (4): fixed point method 

Throughout this section, assume that X is a non- 
Archimedean normed vector space and that Y is a 
non- Archimedean Banach space. In the rest of the 
present paper, let | 2 | 1 . 
 
Theorem 5. For 1,2,3,4,n   : 0,n X    be a 

function such that there exists an 1L   with 
 

),(2)2,2( yxLyx n
n

n                                     (21) 
 

for all ,x y X . Let :f X Y be a mapping 

satisfying 
 

),(),( yxyx n
n
f                                           (22) 

 
for all ,x y X . Then there is a unique mapping 

:C X Y  such that  
 

 
)1(2

)0,0(),0,(max
)()(

1
L

ax
xCxf

n
nnn


 



           

(23) 

 
Proof: By (12), we have 
 

 .)0,0(),0,(max)(2)2(2 1
nnn

n axxfxf  

 
(24) 

 
for all x X . Consider the set  
 

 : :S g X Y   
 
and the generalized metric d  in S  defined by 
 

  ( , ) inf : ( ) ( ) max ( ,0), (0,0) , ,n n nd f g R g x h x x a x X          

 
where inf .    It is easy to show that ( , )S d is 

complete. Now, we consider a linear mapping 
:J S S such that 

 
1

( ) : (2 )
2n

Jh x h x  
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for all .x X  Let ,g h S be such that 

( , )d g h  . Then 
 

 ( ) ( ) max ( ,0), (0,0n n ng x h x x a     
 

for all .x X  So 
 

 

 

1 1
( ) ( ) (2 ) (2 )

2 2

max (2 ,0), (0,0)
2

1
2 max ( ,0), (0,0)

2

n n

n n nn

n

n n nn

Jg x Jh x g x h x

x a

L x a

  

  

  





 

 
for .x X  Thus ( , )d g h   implies that 

( , )d Jg Jh L , this means that 

( , ) ( , )d Jg Jh Ld g h  f or all , .g h S  It follows 

from (24) that 
1

1
( , )

2
n

d f Jf  .  

By Theorem 2, there exists a mapping 
:C X Y satisfying the following : 

 
( )i C  is a fixed point of J , that is, for all ,x X  
 

(2 ) 2 ( )nC x C x                                                 (25) 
 
( )ii the mapping C is a unique fixed point of J  in 

the set  : ( , ) .h S d g h      This implies that 

C  is a unique mapping satisfying (25)  such that 
there exists (0, )    satisfying 

 ( ) ( ) max ( ,0), (0,0)n n nf x C x x a    , for 

all x X . 
( ) ( , ) 0 .miii d J f C as m  This implies the 

equality,  
(2 )

lim ( )
2

m

mnm

f x
C x


 , for all x X . 

( , )
( ) ( , )

1

d f Jf
iv d f C

L



with f  , which 

implies the inequality 
1

1
( , ) .

2 (1 )
n

d f C
L




 

This implies that the inequality (23) holds. 
 
Corollary 3. Let 0  and p be a real number 

with 0 1.p   Let :f X Y  be a mapping 

satisfying 
 

 ( , )
p pn

f x y x y    

 

for all ., Xyx   Then, the limit 

(2 )
( ) lim

2

m

mnm

f x
C x


  exists for all Xx and 

:C X Y is a unique mapping such that  
 

 1

2
( ) ( )

2 2 2

np p

n np n

x
f x C x




 


 

 
for all x X . 
 
Proof: The proof follows from Theorem 5 by 

taking  ( , )
p p

n x y x y   , for all 

, .x y X  In fact, if we choose 
2

2

n

np
L   we get 

the desired result. 
 
Theorem 6. For ,4,3,2,1n let   ,0: Xn  be 

a function such that there exists an 1L  with 
 

( , ) (2 ,2 )
2

n nn

L
x y x y   

 
for all , .x y X  Let :f X Y  be a mapping 

satisfying 
 

),(),( yxyx n
n
f   

 
for all , .x y X  Then there is a unique mapping 

:C X Y such that  
 

 
1

max ( ,0), (0,0)
( ) ( )

2 (1 )

n n n

n

L x a
f x C x

L

 
 


       

(26) 

 
Proof: By (11), we have 
 






















 )0,0(,0,

2
max

2

1

2
2)( nnn

n a
xx

fxf      (27) 

 
for all x X . Let ( , )S d be the generalized metric 

space defined as in the proof of Theorem 5, we 
consider a linear mapping :J S S  such that 

( ) : 2
2

n x
Jh x h

   
 

 for all x X . Let ,g h S  be 

such that ),( hgd . Then 

 ( ) ( ) max ( ,0), (0, 0n n ng x h x x a     for all 

.x X  So 
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  

( ) ( ) 2 2
2 2

2 max ,0 , (0,0)
2

2 max ,0 , (0,0)
2

n n

n

n n n

n

n n nn

x x
Jg x Jh x g h

x
a

L
x a

  

  

        
   

     
  



 

 
for all .x X  Thus ( , )d g h   implies that 

( , )d Jg Jh L ,  this means that 

( , ) ( , )d Jg Jh Ld g h  for all , .g h S  It follows 

from  (27) that 
1

( , )
2

n

L
d f Jf  . 

By Theorem 2, there exists a mapping 
:C X Y  satisfying the following: 

 
(a) C  is a fixed point of J , that is 
 

1
( )

2 2n

x
C C x
   
 

                                              (28) 

 
for all .x X  

(b) The mapping C is a unique fixed point of J in 

the set  : ( , )h S d g h     . This implies C  

is a unique mapping satisfying (28) such that there 
exists (0,   ) satisfying 

 ( ) ( ) max ( ,0), (0,0)n n nf x C x x a    , for 

all .x X  

(c) ( , ) 0md J f C as m  , this implies the 

equality lim 2 ( )
2

mn
mn

x
f C x



   
 

 for all .x X  

(d) 
( , )

( , )
1

d f Jf
d f C

L



with ,f   which implies 

the inequality 
1

( , )
2 (1 )

n

L
d f C

L



. 

This implies that the inequality (26) holds.  
The rest of the proof is similar to the proof of 

Theorem 5. 
 
Corollary 4. Let 0   and p be a real number 

with 1p  . Let :f X Y  be a mapping 

satisfying 
 

 ( , )
p pn

f x y x y    

 

for all , .x y X Then, the limit 

( ) lim 2
2

mn
mm

x
C x f



   
 

 exists for all ,Xx  and 

YXC : is a mapping such that 
 

 1

2
( ) ( )

2 2 2

np p

n n np

x
f x C x




 


 

 
for all x X . 
 
Proof: The proof follows from Theorem 6 by 

taking  ( , )
p p

n x y x y    

for all , .x y X  In fact, if we choose 
2

2

np

n
L  , 

we get the desired result. 
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