Multiplication lattice modules

F. Callialp¹ and U. Tekir²*

¹Department of Mathematics, Dogus University, Acıbadem, Istanbul, Turkey
²Department of Mathematics, Marmara University, Ziverbey-Goztepe, Istanbul, Turkey
E-mails: fcallialp@dogus.edu.tr, utekir@marmara.edu.tr

Abstract

Let M be a lattice module over the multiplicative lattice L. An L —module M is called a multiplication lattice module if for every element $N \in M$ there exists an element $a \in L$ such that $N = a 1_M$. Our objective is to investigate properties of prime elements of multiplication lattice modules.

Keywords: Multiplicative lattice; lattice modules; maximal element; prime element

1. Introduction

A multiplicative lattice L is a complete lattice in which there is defined a commutative, associative multiplication which distributes over arbitrary joins and has greatest element 1_L (least element 0_L) as a multiplicative identity (zero). For L a multiplicative lattice and $a \in L$, $L/a = \{b \in L : a \le b\}$ is a multiplicative lattice with multiplication $c \circ d = cd \lor a$. Multiplicative lattices have been studied extensively by E. W. Johnson, C.Jayaram, the current authors, and others, see, for example, [1-8].

An element $a \in L$ is said to be proper if a < 1. An element p < 1 in L is said to be prime if $ab \le p$ implies $a \le p$ or $b \le p$. An element m < 1 in L is said to be maximal if $m < x \le 1$ implies x = 1. It is easily seen that maximal elements are prime.

If a,b belong to L, (a:b) is the join of all $c \in L$ such that $cb \le a$. An element e of L is called meet principal if $a \land be = ((a:e) \land b)e$ for all $a,b \in L$. An element e of L is called join principal if $((ae \lor b):e) = a \lor (b:e)$ for all $a,b \in L$. $e \in L$ is said to be principal if e is both meet principal and join principal.

 $e \in L$ is said to be week meet (join) principal if $a \land e = e(a:e)$ ($a \lor (0_L:e) = (ea:e)$) for all $a \in L$. An element a of a multiplicative lattice L is called compact if $a \le \lor b_\alpha$ implies $a \le b_{\alpha_1} \lor b_{\alpha_2} \lor \dots \lor b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. If each element of L is a join of principal (compact) elements of L, then L is called a PG-lattice (CG-lattice).

*Corresponding author

Received: 13 April 2011 / Accepted: 23 July 2011

A multiplicative lattice L is called an r -lattice if it is modular, principally generated, compactly generated and has 1_L compact.

Let M be a complete lattice. Recall that M is a lattice module over the multiplicative lattice L, or simply an L-module in case there is a multiplication between elements of L and M, denoted by lB for $l \in L$ and $B \in M$, which satisfies the following properties:

(i) (lb)B = l(bB) ;

 $(ii) (V_{\alpha} l_{\alpha})(V_{\beta} B_{\beta}) = V_{\alpha,\beta} l_{\alpha} B_{\beta};$

 $(iii) \ 1_L B = B ;$

 $(iv) 0_L B = 0_M;$

for all l, l_{α}, b in L and for all B, B_{β} in M.

Let M be an L-module. If $N \in M$ and $b \in L$, (N:b) is the join of all $X \in M$ such that $bX \leq N$. An element $e \in L$ is said to be M-principal if $A \land eB = e((A:e) \land B)$ and $((eA \lor B):e) = A \lor (B:e)$ for all $A, B \in M$. If each element of L is a join of M-principal elements of L, then L is called M-principally generated [see, 9].

Let M be an L -module. If N, K belong to M, (N:K) is the join of all $a \in L$ such that $aK \le N$. An element N of M is called meet principal if $(b \land (B:N))N = bN \land B$ for all $b \in L$ and for all $B \in M$. An element N of M is called join principal if $b \lor (B:N) = ((bN \lor B):N)$ for all $b \in L$ and for all $N \in M$. N is said to be principal if it is both meet principal and join principal. In a special case an element N of M is called weak meet principal (weak join principal) if $(B:N)N = B \land N$ ($(bN:N) = b \lor (0_M:N)$) for all $B \in M$ and for all $b \in L$. N is said to be weak principal if N is both weak meet principal and weak join principal.

IJST (2011) A4: 309-313 310

Let M be an L-module. An element N in M is called compact if $N \leq V_{\alpha} B_{\alpha}$ implies $N \leq B_{\alpha_1} \vee B_{\alpha_2} \vee ... \vee B_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, ..., \alpha_n\}$. The greatest element of M will be denoted by 1_M . If each element of M is a join of principal (compact) elements of M, then M is called a PG-lattice (CG-lattice). M is called an R-lattice if it is modular, principally generated, compactly generated and has 1_M compact.

Let M be an L-module. An element $N \in M$ is said to be proper if $N < 1_M$. If $(0_M : 1_M) = 0_L$, M is called a faithful L-module. If $cm = 0_M$ implies $m = 0_M$ or $c = 0_L$ for any $c \in L$ and $m \in M$, M is called a torsion-free L-module.

For various characterizations of lattice modules, the reader is referred to [10 - 14].

2. The prime elements in lattice modules

Definition 1. Let M be an L —module. An element $N < 1_M$ in M is said to be prime if $aX \le N$ implies $X \le N$ or $a1_M \le N$, i.e. $a \le (N:1_M)$ for every $a \in L, X \in M$.

Let M be an L -module. If N is a prime element of L -module M, then $(N:1_M)$ is a prime element of L [11, *Proposition* 3.6].

Example 1. Let L be an L -module. If $p \in L$ is a prime element, then p is also a prime element as an L -module.

Example 2. Let M be an L -module. If $L = \{0_L, 1_L\}$ is a field, then every element of M is a prime element.

Definition 2. Let M be an L —module. An element $N < 1_M$ in M is said to be primary, if $aX \le N$ and $X \le N$ implies $a^k 1_M \le N$, for some $k \ge 0$ i.e $a^k \le (N:1_M)$ for every $a \in L$, $X \in M$.

Proposition 1. Let M be an L-module and $N < 1_M$ be an element of M. If $(N: 1_M)$ is a prime element of L and N is primary, then N is prime.

Proof: Let $aX \le N$ and $X \le N$ for $a \in L$ and $X \in M$. Since N is primary, $aX \le N$ and $X \le N$ implies $a^k 1_M \le N$, for some $k \ge 0$ i.e. $a^k \le (N:1_M)$. Since $(N:1_M)$ is a prime element of L, $a \le (N:1_M)$. Consequently, N is prime element of M. Let M be an L—module and $N \in M$. Then $M/N = \{B \in M: N \le B\}$ is an L—module with multiplication $c \circ D = cD \lor N$ for every $c \in L$ and for every $N \le D \in M$. Similarly, M/N is an $L/(N:1_M)$ -module with $a \circ N^* = aN^* \lor N$ for all $N \le N^* \in M$ and $(N:1_M) \le a$.

Theorem 1. Let M be an L -module and $N \in M$. Then N is a prime element if and only if M/N is a torsion-free $L/(N:1_M)$ -module.

Proof: Suppose that $N \in M$ is a prime element. For $(N:1_M) \le a$ in L and $N < N^*$ in M, if $a \circ N^* = aN^* \vee N = N$, we have $aN^* \le N$. Since N is prime, $a = (N:1_M)$. Conversely, suppose that M/N is a torsion-free $L/(N:1_M)$ -module. If $aX \le N$ and $X \le N$ for $a \in L$ and $X \in M$, then $(a \vee (N:1_M)) \circ (X \vee N) = N$. Since M/N is a torsion-free $L/(N:1_M)$ -module, $a \le (N:1_M)$.

Lemma 1. Let M be an L -module and let B be an element of M. If 1_M is weak principal, then there exists a lattice isomorphism $M/B \cong L/(B:1_M)$.

Proof: [see 11, Lemma 2.1].

Let M be an L—module. Recall that an element $N < 1_M$ of M is called a maximal element if for every element B of M such that $N \le B$, then either N = B or $B = 1_M$.

Proposition 2. Let M be an L -module and $N \in M$. Then.

- (i) If $(N: 1_M)$ is maximal in L, then N is prime in M
- (ii) If a is maximal in L and $a1_M < 1_M$, then $a1_M$ is prime in M.
- (iii) If N is maximal in M, then N is prime in M.
- **Proof:** (i) If $(N:1_M)$ is maximal in L, then $L/(N:1_M)$ is a field. Then M/N is a torsion-free $L/(N:1_M)$ module and hence N is prime in M by Theorem 1.
- (ii) Since $a \le (a1_M: 1_M) < 1_L$ and a is maximal in L, $a = (a1_M: 1_M)$. This implies that $a1_M$ is prime in M by (i).
- (iii) Let $aX \le N$ and $X \le N$ for $a \in L$ and $X \in M$. Since N is maximal, $N \lor X = 1_M$ and so $aN \lor aX = a1_M \le N$. This implies that $a \le (N:1_M)$.

Theorem 2. Let L be an r – lattice and M –principally generated, and M be an R- lattice L –module. If $p1_M$ is compact for every prime element $p \in L$, then every element in M is compact.

Proof: Let $\Omega = \{K \in M : K \text{ is not compact}\}$. Suppose that $\Omega \neq \emptyset$. Since 1_M is compact, Ω has a maximal element by the Zorn Lemma. Suppose that N is a maximal in Ω .

Let $p = (N: 1_M)$. We first show that p is prime. If p is not prime, there exists M-principal elements $a, b \in L$ such that $a \not \leq p$, $b \not \leq p$ and $ab \not \leq p$. Hence $N \lor n \lor n$ is a compact element of M. Since $(ab)1_M \not \leq n$, $b1_M \not \leq n$. Then $N \lor n \lor n$ is also compact. Since $N \lor n$ is compactly generated,

311 IJST (2011) A4: 309-313

then $N \vee a1_M = (\vee_{finite} C_\alpha) \vee a1_M$ and we have $N = (\vee_{finite} C_\alpha) \vee (a1_M \wedge N)$. Since a is an M-principal element of L, $a1_M \wedge N = a(N:a)$. Since (N:a) is the finite join of principal elements of M and a is M-principal element in L, a(N:a) is compact $[9, Proposition\ 1\ and\ Proposition\ 3]$. The finite join of compact elements is compact, so N is compact. This contradiction shows that p is prime.

Since 1_M is compact, 1_M is a join of finite principal elements K_i . Then $p = (N:1_M) = (N:V_{finite} K_i) = \Lambda_{finite}(N:K_i)$ and $p = (N:K_j)$ for some $K_j \leq N$, since p is prime. Hence $N < N \vee K_j$ is compact and as is shown in the preceding paragraph, $N = (V_{finite} C_\alpha) \vee (K_j \wedge N)$ and $K_j \wedge N = (N:K_j)K_j = pK_j$. Since $N = (V_{finite} C_\alpha) \vee pK_j \leq (V_{finite} C_\alpha) \vee p1_M \leq N$, $N = (V_{finite} C_\alpha) \vee p1_M$ is compact by hypothesis. This is a contradiction. Therefore, Ω is empty.

3. Multiplication lattice modules

In this section we study the concept of multiplication lattice module over a multiplicative lattice and generalize the important results for multiplication modules over commutative rings, obtained by Z. A. El-Bast and P. F. Smith [15], to the lattice modules over multiplicative lattices.

Definition 3. Let M be an L -module. If 1_M is a principal element in M, M is called a cyclic lattice module.

Definition 4. An L-module M is called a multiplication lattice module if for every element $N \in M$ there exists an element $a \in L$ such that $N = a1_M$.

Proposition 3. Let M be an L -module. Then M is a multiplication lattice module if and only if $N = (N: 1_M)1_M$ for all $N \in M$.

Proof: \Longrightarrow : Let M be a multiplication lattice L -module and $N \in M$. Then, $N = a1_M$ for some $a \in L$. Hence $a \le (N:1_M)$ and so $N = a1_M \le (N:1_M)1_M \le N$. Therefore $N = (N:1_M)1_M$. \leftrightharpoons : Clear.

It is clear that an L -module M is a multiplication lattice module if and only if 1_M is weak meet principal. If M is a cyclic lattice L -module, then M is a multiplication lattice L -module.

Proposition 4. Let M be a multiplication lattice L -module. If $p \in L$ is maximal and $p1_M < 1_M$, then $p1_M$ is maximal element in M.

Proof: Since p is maximal such that $p \le (p1_M:1_M) \ne 1_L$, $p = (p1_M:1_M)$. Let $p1_M \le B$. Then $p = (p1_M:1_M) \le (B:1_M)$. Since p is maximal, $p = (B:1_M)$ or $(B:1_M) = 1_L$. Therefore, $p1_M = (B:1_M)1_M = B$ or $(B:1_M)1_M = B = 1_M$. Consequently, $p1_M$ is maximal element in M.

Theorem 3. Let L be a multiplicative lattice with 1_L compact, and M be a non-zero multiplication PG —lattice L —module. Then M contains a maximal element.

Proof: There exists a non-zero principal element X in M. Let $p \in L$ be a maximal element such that $(0_M: X) \leq p$. We show that $p1_M < 1_M$. Suppose that $p1_M = 1_M$. Since M is a multiplication lattice L—module, $X = a1_M$ for some $a \in L$. Then $pX = ap1_M = a1_M = X$ and so $1_L = (pX: X) = p \lor (0_M: X) = p$. This is a contradiction. Since p is maximal and $p1_M < 1_M$, $p1_M$ is maximal in M by proposition 4.

Theorem 4. Let L be a PG-lattice with 1_L compact, and M be a PG-lattice L-module. Then M is a multiplication lattice L-module if and only if for every maximal element $q \in L$,

- (i) For every principal element $Y \in M$, there exists a principal element $q_Y \in L$ with $q_Y \nleq q$ such that $q_Y Y = 0_M$ or
- (ii) There exists a principal element $X \in M$ and a principal element $b \in L$ with $b \nleq q$ such that $b1_M \leq X$.

Proof: \Rightarrow : Let *M* be a multiplication lattice L -module. We have two cases.

Case 1. Let $q1_M = 1_M$ where q is a maximal element of L. For every principal element $Y \in M$, there exists an element $a \in L$ such that $Y = a1_M$. Then $Y = a1_M = aq1_M = qY$. Therefore, $1_L = (qY:Y) = q \lor (0_M:Y)$. Hence $(0_M:Y) \nleq q$. There exists a principal element q_Y such that $q_Y \leq (0_M:Y)$ and $q_Y \nleq q$. Consequently, $q_Y Y = 0_M$ and $q_Y \nleq q$.

Case 2. Let $q1_M < 1_M$. There exists a principal element $X \in M$ such that $X = j1_M \le q1_M$, with $j \in L, j \le q$. There exists a principal element $b \in L$ with $b \le j$ and $b \le q$. We obtain $b1_M \le j1_M = X$.

 \leftarrow : Let $N \in M$. Put $a = (N: 1_M)$. Clearly $a1_M = (N: 1_M)1_M \le N$. Take any principal element $Y \le N$. We will show that $(a1_M: Y) = 1_L$.

Suppose there exists a maximal element $q \in L$ such that $(a1_M: Y) \le q$. We have two cases.

Case 1. Suppose that (i) is satisfied. There exists a principal element $q_Y \in L$ with $q_Y \nleq q$ such that $q_Y Y = 0_M$ for every principal element $Y \in M$. Then $q_Y \leq (0_M: Y) \leq (a1_M: Y) \leq q$. This is a contradiction.

IJST (2011) A4: 309-313 312

Case 2. Suppose that (ii) is satisfied. There exists a principal element $X \in M$ and a principal element $b \in L$ with $b \nleq q$ such that $b1_M \leq X$. Then $bN \leq b1_M \leq X$ for any $N \in M$. Since X is a principal element of M, bN = (bN:X)X. Then $b(bN:X)1_M \leq (bN:X)X = bN \leq N$ and so $b(bN:X) \leq a = (N:1_M)$. Therefore, $b^2Y \leq b^2N = b(bN:X)X \leq aX \leq a1_M \implies b^2 \leq (a1_M:Y) \leq q$. Since q is maximal (and so, the prime) element of $L, b \leq q$. This is a contradiction.

Recall that a multiplicative lattice *L* is called local if it contains precisely one maximal element.

Corollary 1. Let L be a multiplicative lattice with 1_L compact. Let M be a multiplication PG —lattice L —module. If (L, p) is a local PG —lattice, then M is a cyclic L —module.

Proof: Suppose that $M \neq \{0_M\}$. First, assume that there exists a principal element $q_Y \in L$ with $q_Y \not \leq p$ such that $q_Y Y = 0_M$ for every principal element $Y \in M$. Since (L, p) is a local lattice, $q_Y = 1_L$. Then every principal element $Y = 0_M$. This is a contradiction.

Now assume that there exists a principal element $X \in M$ and a principal element $b \in L$ with $b \nleq p$ such that $b1_M \leq X$. Since $b \nleq p$, $b = 1_L$. Therefore, $1_M = X$ is principal.

Corollary 2. Let L be a PG-lattice with 1_L compact, and M be a PG-lattice and CG-lattice L-module. Suppose that $1_M = \bigvee_{i \in I} Y_i$ for some principal elements Y_i in M. Then M is a multiplication lattice L-module if and only if there exist $a_i \in L$ such that $Y_i = a_i 1_M$ for all $i \in I$.

Proof: \Rightarrow : Clear.

 \leftarrow : Suppose that there exist $a_i \in L$ such that $Y_i = a_i 1_M$ for all $i \in I$. Let q be a maximal element in L. We have two cases.

Case 1. Suppose that $a_i \leq q$ for all $i \in I$. Then $1_M = \bigvee_{i \in I} Y_i = \bigvee_{i \in I} \left(a_i 1_M\right) = \left(\bigvee_{i \in I} a_i\right) 1_M \leq q 1_M$. Hence $1_M = q 1_M$ and $Y_i = q Y_i$. Therefore, there exists a principal element $q_{Y_i} \nleq q$, with $q_{Y_i} Y_i = 0_M$ for all $i \in I$ as is shown in the theorem. Let X be any principal element in M. Since $X \leq 1_M = \bigvee_{i \in I} Y_i$ and X is principal, X is compact and so $X \leq \bigvee_{i=1}^n Y_i$ [13, Corollary 2.2]. Put $t = q_{Y_1} q_{Y_2} \dots q_{Y_n}$. Then $tX \leq t(\bigvee_{i=1}^n Y_i) = 0_M$ and $t \nleq q$. Since, finite product of principal elements is principal, t is principal. So M is a multiplication lattice L—module by theorem.

Case 2. Suppose that $a_j \le q$ for some $j \in I$. Then there exists a principal element $b_j \in L$ with $b_j \le a_j$ and $b_j \le q$ such that $b_j 1_M \le a_j 1_M = Y_j$. Therefore, M is a multiplication lattice L —module by theorem.

Theorem 5. Let L be a PG-lattice with 1_L compact, and M be a faithful multiplication PG-lattice L-module. Then the following conditions are equivalent.

- (i) 1_M is a compact element of M.
- (ii) If $a, c \in L$ such that $a1_M \le c1_M$, then $a \le c$.
- (iii) For each element N of M there exists a unique element a of L such that $N = a1_M$.
- (iv) $1_M \neq a 1_M$ for any proper element a of L.
- (v) $1_M \neq p1_M$ for any maximal element p of L.

Proof: (i) \Rightarrow (ii): Suppose 1_M is compact. Let a and c be elements of L such that $a1_M \le c1_M$. We will show that $(c:a) = 1_L$. Suppose that $(c:a) \ne 1_L$. Then there exist a maximal element p of L such that $(c:a) \le p$. We have two cases.

Case 1. Suppose that $1_M = p1_M$. Then Y = $a'1_M = a'p1_M = pa'1_M = pY$ for any principal element $Y \in M$. Then $1_L = (pY:Y) = p \lor (0_M:Y)$ for all principal elements $Y \in M$. Since 1_M is a compact element of M, $1_M = \bigvee_{i=1}^k Y_i$ for some principal elements Y_i of M. For any principal elements $Y_i(1 \le i \le k), \quad 1_L = (pY_i: Y_i) = p \vee$ $(0_M: Y_i)$ and so $(0_M: Y_i) \le p$. Therefore, there exist $q_{Y_i} \leq (0_M : Y_i)$ such that $q_{Y_i} \leq p$ for all $i \in$ $\{1,2,\ldots,k\}.$ Hence $q_{Y_i}Y_i=0_M$ $(\prod_{i=1}^k q_{Y_i})1_M = 0_M$. Since M is a faithful L -module, $\prod_{i=1}^k q_{Y_i} = 0_L \le p$, and p is a prime element of L, so $q_{Y_i} \le p$ for some $i \in \{1, 2, ..., k\}$. This is a contradiction.

Case 2. Suppose that $p1_M < 1_M$. There exists a principal element $X \in M$ and a principal element $s \in L$ with $s \nleq p$ such that $s1_M \leq X$.

Suppose that α is any principal element of L such that $\alpha \leq a$. Then, $\alpha 1_M \leq a 1_M \leq c 1_M$. Therefore, $s\alpha X \leq s\alpha 1_M \leq sa 1_M \leq sc 1_M \leq cX$. Since X is a principal element of M, $s\alpha \vee (0_M:X) = (s\alpha X:X) \leq (cX:X) = c \vee (0_M:X)$. Hence $s^2\alpha \vee s(0_M:X) \leq sc \vee s(0_M:X)$. But $s(0_M:X) = 0_L$. Indeed, let $r \leq (0_M:X)$. Since $s1_M \leq X, rs1_M \leq rX = 0_M$ and so $rs \leq (0_M:1_M)$. Since M is faithful, $(0_M:1_M) = 0_L$. This implies that $s(0_M:X) = 0_L$. Then $s^2\alpha \leq sc \leq c$ for any principal element $\alpha \leq a$ and so $s^2a \leq c$. Then $s^2 \leq (c:a) \leq p$. Since p is a prime element of $L, s \leq p$. This is a contradiction.

- $(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v)$: Clear.
- (v) \Longrightarrow (i): Suppose $1_M \ne p1_M$ for every maximal element p of L. Let q be a maximal element of L. Since $q1_M < 1_M$, there is a principal element $Y_q \ne q1_M$. Since M is a multiplication lattice L—module, $(Y_q:1_M) \ne q$. There is not a maximal element such that $V_{q max}(Y_q:1_M) \le q$. This implies that $V_{q max}(Y_q:1_M) = 1_L$. Since 1_L is compact, we have finitely maximal elements q_i

313 IJST (2011) A4: 309-313

such that $1_L = \bigvee_{i=1}^k (Y_{q_i}: 1_M)$. Since $Y_{q_i} = (Y_{q_i}: 1_M)1_M$, $1_M = \bigvee_{i=1}^k Y_{q_i}$.

Theorem 6. Let L be a PG-lattice with 1_L compact and M be a PG-lattice L-module. Let M be a multiplication lattice L-module. Suppose that p is a prime element in L with $(0_M:1_M) \le p$. If $aX \le p1_M$ where $a \in L, X \in M$, then $X \le p1_M$ or $a \le p$.

Proof: We may suppose that X is principal in M. Suppose that $aX \le p1_M$ with $a \le p$. We will show that $(p1_M: X) = 1_L$. Suppose that there exists a maximal element $q \in L$ such that $(p1_M: X) \le q$. We have two cases.

Case 1. If there exists a principal element $q_X \in L$ with $q_X \le q$ such that $0_M = q_X X$, then $q_X \le$ $(0_M: X) \le (p1_M: X) \le q$. This is a contradiction. Case 2. If there exists a principal element $Y \in M$ and a principal element $b \in L$ with $b \nleq q$ such that $b1_M \le Y$, then $bX \le b1_M \le Y$. Since Y is principal, bX = (bX: Y)Y. Put (bX: Y) = s. Then abX = asY. Since Y is join principal, $(asY:Y) = as \lor (0_M:Y)$. Since Y is meet principal, abX = (abX: Y)Y. Put c = (abX: Y). Since $cY = abX \le bp1_M \le pY$, $c \lor abX \le bp1_M \le bp1$ $(0_M: Y) = (cY: Y) \le (pY: Y) = p \lor (0_M: Y)$. Since $b(0_M:Y)1_M = (0_M:Y)b1_M \le (0_M:Y)Y = 0_M,$ $b(0_M:Y) \le (0_M:1_M) \le p$. Hence $bc \lor b(0_M:Y) \le$ $bp \lor b(0_M: Y) \le p$. Therefore, $bc \le p$. On the $c = (abX:Y) = (asY:Y) = as \lor$ hand, $(0_M: Y)$ and so $abs \le abs \lor b(0_M: Y) = bc \le p$. If $b \le p$, then $b \le p \le (p1_M: X) \le q$. This is a contradiction. Therefore $b \le p$. Since p is prime, $s \le p$. Therefore, $bX = sY \le pY \le p1_M$ and so $b \le (p1_M: X) \le q$. This is a contradiction.

Corollary 3. Let L be a PG-lattice with 1_L compact. Let M be a multiplication PG —lattice L —module and $N < 1_M$. Then the following conditions are equivalent.

- (i) N is a prime element in M_{i}
- (ii) $(N: 1_M)$ is a prime element in L,
- (iii) There exists a prime element p in L with $(0_M: 1_M) \le p$ such that $N = p1_M$.

The authors wish to thank the referee for his assistance in making this paper accessible to a broader audience.

References

- [1] Jayaram, C. & Johnson, E. W. (1995). Some results on almost principal element lattices, Period. *Math.Hungar*, 31, 33-42.
- [2] Jayaram, C. & Johnson, E. W. (1995). s-prime elements in multiplicative lattices, Period. *Math. Hungar*, *31*, 201-208.
- [3] Jayaram, C. & Johnson, E. W. (1997). Dedekind lattices. Acta. Sci. Math. (Szeged), 63, 367-378.
- [4] Jayaram, C. & Johnson, E. W. (1997). Strong compact elements in multiplicative lattices. *Czechoslovak Math. J.*, 47(122), 105-112.
- [5] Jayaram, C. & Johnson, E. W. (1998). *σ* —elements in multiplicative lattices. *Czechoslovak Math. J.*, 48(123), 641-651.
- [6] Jayaram, C. (2002). Prime elements in multiplicative lattices. *Algebra Universalis*, 48, 117-127.
- [7] Jayaram, C. (2003). Laskerian lattices. *Czechoslovak Math. J.*, 53(128), 351-363.
- [8] Jayaram, C. (2004). Almost π-lattices. *Czechoslovak Math. J.*, *54*(129), 119-130.
- [9] Johnson, E. W. & Johnson, J. A. (2003). Lattice Modules over Principal Element Domains. *Comm. in Algebra*, 7, 3505-3518.
- [10] Scott Culhan, D. (2005). Associated Primes and Primal Decomposition in modules and Latice modules, and their duals, Thesis, University of California Riverside.
- [11] Al-Khouja, E. A. (2003). Maximal Elements and Prime elements in Lattice Modules. *Damascus University for Basic Sciences*, 19, 9-20.
- [12] Nakkar, H. M. (1974). Localization in multiplicative lattice modules, *Mat. Issled*, 2(32), 88-108.
- [13] Nakkar, H. M. & Al-Khouja, I. A. (1989). Multiplication elements and Distributive and Supporting elements in Lattice Modules. R. J. of Aleppo University, 11, 91-110.
- [14] Nakkar, H. M. & Al-Khouja, I. A. (1985). Nakayama's Lemma and the principal elements in Lattice Modules over multiplicative lattices. R. J. of Aleppo University, 7, 1-16.
- [15] El-Bast, Z. A. & Smith, P. F. (1985). Multiplication modules. *Comm. Algebra*, 16, 755-799.