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Abstract

Let R be a commutative ring with identity. Let N and K be two submodules of a multiplication R-module M. Then
N=IM and K=JM for some ideals I and J of R. The product of N and K denoted by NK is defined by NK=IJM. In
this paper we characterize some particular cases of multiplication modules by using the product of submodules.
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1. Introduction

Throughout this paper R denotes a commutative
ring with identity and M denotes a unitary R-
module. Also, L(R) (resp. L(M)) denotes the lattice
of all ideals of R (resp. submodules of M).

For any two submodules N and K of M, the ideal
{a€RjaKEN} will be denoted by (IN:K).. Thus
(0:M) is the annihilator of M. A module'M is said
to be faithful if (0:M) is the zero ideal of R. We say
that a module M is a multiplication module [1] if
every submodule of M is of the form IM, for some
ideal I of R. A submodule N/of M is said to be a
multiple of M [2] if N=rM for some reR. If every
submodule of M is a multiple of M, then M is said
to be a principal.ideal multiplication module or PI-
multiplication module, for abbreviations (see [2]).

A proper submodule N of M is a prime
submodule, if for any rER and meM, rmeN implies
either meN or re(N:M).

It is well-known that maximal submodules and
prime submodules exist in multiplication modules
(for details, see [1]). It is also well-known that if M
is a multiplication R-module and P is a prime ideal
of R containing (0:M) such that M#PM, then PM is
a prime submodule of M and every prime
submodule of M is of the form PM for some prime
ideal P of R containing (0:M) (see [1, Corollary
2.11]).

Also, if M is a finitely generated multiplication
R-module and P is a prime ideal of R containing
(0:M), then PM is a proper prime submodule of M
(see Lemma 1.1(i), in the following).
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Further PM is minimal over a submodule N of M
if and only if P is minimal over the ideal (N:M) of
R.

Let M be a multiplication R-module. Then for
each submodule N of M, N=IM for some ideal I of
R. According to [3], I is said to be a presentation
ideal of N. Note that M is a multiplication R-
module if and only if every submodule of M has a
presentation ideal. Let N and K be submodules of a
multiplication module M. Suppose N=IM and
K=JM for some ideals I and J of R. The product of
N and K denoted by NK is defined by NK=IJM.
Observe that by [3, Theorem 3.4], the product of N
and K is independent of the presentations of N and
K. It should be mentioned that by [3, Proposition
3.5], the product is commutative and distributive
with respect to the sum on L(M).

We will use the product of submodules in
multiplication modules to find the connections
between some particular types of multiplication
modules, which will be introduced in the next
sections.

For the convenience of the reader, some results
from our references, which are used frequently in
this paper, have been gathered in the following
lemma.

Lemma 1.1. Let M be a non-zero R-module. Then

(1) [1, Theorem 3.1] Let M be a multiplication
module. Then M is finitely generated, if and only if
M#PM, for each maximal ideal P of R containing
(0:M), if and only if for any ideals A,B of R
containing (0:M), the inclusion AMSBM implies
that ACB.
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(i1) [1, Theorem 2.8] and [4, Proposition 4] If M is
multiplication and M (resp. R) has only finitely
many maximal submodules (resp. ideals), then M is
cyclic.

(ii1) [4, Proposition 5] Let M be a finitely generated
module. Then M is multiplication if and only if it is
locally cyclic.

(iv) [5, Lemma 6] If M is cyclic, then a submodule
N of M is cyclic if and only if N is a multiple of M.
For general background and terminology, the reader
is referred to [6] and [7].

2. The product of submodules in multiplication
modules

According to [8], a submodule N of M is called
quasi-cyclic  if  (BN(K:N))N=BNNK  and
(K+BN:N)=(K:N)+B for all ideals B of R and for
all submodules K of M.

Note that N is quasi-cyclic if and only if N is
finitely generated and locally cyclic if and only if N
is a finitely generated multiplication submodule (by
[8, Theorem 6] and Lemma 1.1(iii)).

An ideal I of R is called a quasi-principal ideal [6,
Exercise 10, Page 147] (or a principal element of
L(R) [9]) if I satisfies the identities (i)
(AN(B:1))I=AINB and (ii) (A+BL:D)=(A:)+B, for
all A, BEL(R).

An ideal I of R is quasi-principal if and only if it
is finitely generated and locally principal (see [9,
Theorem 2] or [10, Theorem 41])).

Lemma 2.1. Suppose M is a faithful quasi-cyclic
R-module. Let N; and N, be quasi-cyclic
submodules of M with (0: (N;: M)) = 0. If

(N1 + N,)(N; N N,) = N;N,, then (N, + N;) is
quasi-cyclic.

Proof: Assume that (N + N,)(Ny N N,) = N, N,.
Since M is _a finitely generated faithful
multiplication R-module, it follows that (N;: M)
and (N,: M) are the presentation ideals of N; and
N,. Now, N;N, = N;(N; N N,) + N,(N; N N,). As
(N; N N,) € N; and N; is quasi-cyclic, we have
(N; N N,) =1IN,; for some [ € L(R). So N;N, =
N1 (IN;) + Na(INy).

Then NyN, = (N;: M)(N,: MM =

(Ny: M)I(Ny: MYM + I(Ny: MY(Ny: MM,

thus by Lemma 1.1(iii)), (N;:M)(Np:M) =
(Ni: M)(I(N;: M) + I(N,: M)). By [11, Lemma
1.4], (N;: M) is quasi-principal and (N;: M) has
zero annihilator. Therefore (N;: M) is a cancellation
ideal, so (N,: M) = I(Ny: M) + I(N,: M) and hence
N, = IN; +IN,. As N, is quasi-cyclic, we have
R = ((IN; +IN,):N,) =1+ (IN;: N;). Let P be a
maximal ideal of R. As Ry is local, it follows that
Rp =1Ip or Rp = (IN;:Ny)p. If Rp=1Ip, then
(Np)p E(N,)p since IN; EN,. If Rp=

(INy:Ny)p, then (Ny)p S (N;)p. In any case,
(N; + Ny)p is cyclic in Mp. Therefore N; + N, is
locally cyclic and hence N; + N, is quasi-cyclic.
This completes the proof of the lemma.

The following lemma studies the behavior of the
product of submodules under the localization.

Lemma 22. Let M be a finitely generated
multiplication R-module and let P be a maximal
ideal of R. Then

(i) For every N,K € L(M), NpKp = (NK)p.

(i1) For every N € L(M) and any positive integer
m, (Np)™ = (N™)p.

Proof: (i) Since the Rp-module M, is a
multiplication module, by definition, (Np: Mp) and
(Kp: Mp) are presentation ideals of Np and Kp in
Mp, respectively. So
NpKp = (Np: Mp)(Kp: Mp)Mp. ‘As M is finitely
generated, (Np:Mp) = (N:M)p, and (Kp:Mp) =
(K:M)p. Hence NpKp = (N:M)p(K:M)pMp =
((N:M)(K:M)M)p = (NK)p, since (N:M) and
(K:M) are presentation ideals of N and K
respectively.

(i) The assertion follows from (i).

Recall that a module M is said to be distributive if
the lattice L(M) is a distributive lattice. Also, M is
said to be a valuation module if any two
submodules of M are comparable.

Lemma 2.3. [12, Theorem 2.16] Suppose M is an
R-module. Then the following statements are
equivalent.

(i) M is a distributive module.

(i1) M is a locally valuation module.

Theorem 2.4. Suppose M is a multiplication R-
module such that (0: M) is a prime ideal. Then the
following statements are equivalent.

(1) M is a distributive module.

(i1) R/(0: M) is a priifer domain.

(iii) For every N,K,L € L(M), N(KNnL)=NKn
NL.

(iv) For every N,K,L € L(M), (N+ K)(NNK) =
NK.

Proof: According to [1, Proposition 3.4], if
PM # M, for any minimal prime ideal P over
(0: M), then M is finitely generated. Hence if we
put R" = R/(0: M), then M is a finitely generated
faithful multiplication R’-module.

(i) = (ii) Note that Mp = R’p, for each prime ideal
P of R". Now the proof follows from Lemma 2.3((i)

= (ii)).
(1) = (i) By Lemma 2.3, any two submodules are
locally comparable. Therefore Np(Kp NLp) =
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NpKp N NpLp for every maximal ideal P of R'. So
by Lemma 2.2, (N(KNL))p=(NKNNL)p, for
any maximal ideal P of R'. Therefore (iii) holds.

(iii) = (iv) We have NK 2 (N +K)(NNK) =
((N+ K)N)n ((N + K)K) 2 NK. Therefore (iv)
holds.

@iv) = (i) By Lemma 2.1, every finitely generated
submodule is quasi-cyclic and hence M is a
distributive module.

The proof of the following lemma is easy and it
left to the reader.

Lemma 2.5. Let M be an R-module and N = IM #
M, where I € L(R). Then

(1) If M is a multiplication module and [ is a
maximal ideal of R, then N is a maximal submodule
of M.

(i1) If N is a maximal submodule of M, then (N: M)
is a maximal ideal of R. The converse is correct if
M is a multiplication module.

The following result will give us a condition
under which a maximal submodule of a finitely
generated valuation module is cyclic.

Proposition 2.6. Let M be a non-zero finitely
generated valuation R-module, where R is a local
ring. Suppose N is a maximal submodule such that
N # N2. Then N is cyclic.

Proof: By hypothesis, M is cyclic, and by Lemma
2.5(i1), (N: M) = P is the maximal ideal of R. Note
that N2 = P?M # N = PM, thus P%+ (0: M) C P.
Choose a € P\P? + (0: M). Then aM €N and
aM £ N?. As M is cyclic and'aM is a multiple of
M, by Lemma 1.1(iv) aM is cyclic and so aM = Rx
for some x € M. We show that N.= Rx. Clearly,
Rx = aM <€ N. If Rx # N, then choose an element
y € N\Rx. Thus Rx € Ry, and so Rx = I(Ry) for
some proper ideal [ € L(R). Hence aM = Rx =
I(Ry) € IN = IPM € P?M = N?, which is a
contradiction. Therefore, N = Rx and hence N is
cyclic.

The following lemma is a key result for proving
the main theorem of this paper (Theorem 2.10).

Lemma 2.7. Let M be a non-zero Noetherian cyclic
R-module, where R is a local ring with maximal
ideal P. Suppose N is a maximal submodule of M.
If N is cyclic, then every non-zero submodule of M
is a power of N.

Proof: Note that N = PM. So by [13, Proposition
4.6, page 390, N N*=n (P"M)=0. Let
n=1 n=1

0 # K € L(M). Then there exists a positive integer
m such that K € N™ and K £ N™*1, As M and N

are cyclic, Lemma 1.1(iv) implies that N is a
multiple of M, and so N™ is a multiple of M and
consequently again by Lemma 1.1(iv), N™ is
cyclic. Now as K S N™ and N™ is multiplication
(cyclic), it follows that K = IN™ for some ideal [
of R. If ISP, then K=IN™=]P"MC
pMHipM = N™+1 g contradiction.  Therefore
K = N™, and so, K is cyclic.
Let N,K€L(M). We denote [N,K]={LE€
L(M)|N € L € K}. Also, it is defined as rad N =n
{K € Spec M|N < K}. If no prime submodule of M
contains N, then it is defined as rad N = M.

If N € L(M) is primary and rad N = L is a prime
submodule, then we say that N is an L-primary
submodule of M (see [14]).

Lemma 2.8. Let M be a non-zero Noetherian cyclic
R-module, where R is a local ring with maximal
ideal P. Suppose N is a maximal submodule of M.
Then the following statements are equivalent.

(i) M is a valuation module.

(ii) [N?, N] is totally ordered.

(i is cyclic.

(iv) There are no submodules strictly between N
and N2.

Proof: (i) = (i1) The proof is obvious.
n

(i) — (i) Let N=1Y Rx; for some
i=1

n
Xy, Xz, , %X, €E N. Then N = Y, (Rx; + N?), so by
i=1

(i), N = Rx; + N2, for some x; E N. As N = PM,
we have N2 = P?2M = PN, and thus N = Rx; +
PN, so by Nakayama's Lemma, N = Rx; and hence
(iii) holds.

(iii) = (iv) The assertion follows from Lemma 2.7.

(iv) = (i) Note that N = PM. If N = N2, then
N =PN, so by Nakayama's Lemma, N =0.
Consequently, M is a valuation module. Now
assume that N # N2. Then by (iv), N = Rx +
N2 =Rx +PN for some x € N\N2. So by
Nakayama's Lemma, N = Rx. Therefore N is
cyclic. Now the result follows from Lemma 2.7.

A well-known result states that if I is a maximal
ideal of a ring R, then for every positive integer k,
each ideal of R between I and I* is an I-primary
ideal. Part (i) and (ii) of the following lemma is the
module version of this result.

Lemma 2.9. Suppose M is a non-zero finitely
generated multiplication R-module and N is a
maximal submodule of M with (N: M) = P. Then
(i) N* is N-primary for all positive integers k.

(i) For every positive integer k and for any
L € [N¥,N], L is N-primary.

(iii) If K € L(M) is N-primary, then K = (Kp)°.
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(iv) For any N € L(M), the interval [N2,N] in
L(M) is totally ordered if and only if the interval
[(N?)p, Np] in L(Mp) is totally ordered.

Proof: (i) Note that (N¥:M)M = Nk = PkM =
(P* 4+ (0:M))M, and hence by Lemma 1.1(iii),
(N*:M) = P¥ + (0: M). We have /(NK:M) =
P¥ + (0: M) = P, and by Lemma 2.5(ii), P is a
maximal ideal, consequently N¥* is primary.
According to [15, Theorem 3], if M is a finitely
generated multiplication module and (0: M) S ] €
L(R), then rad(IM)=+IM. Thus rad N¥ =
rad(P*M) = rad((P¥ + (0: M))M) =

JP¥+ (0: M)M = PM = N and hence N* is an N-
primary submodule.

(ii) Suppose L € [N*, N], for some positive integer
k. As M is a multiplication module, we have
L=IM for some I€L(R). Since (P*+
(0:M)M =P¥M =N*¥c L=IM = (I +

(0: M))M € N = PM and M is a non-zero finitely
generated multiplication R-module, Lemma 1.1(iii)
implies that P¥ + (0: M) €I + (0: M) S P. Hence
I+ (0: M) =P and P is a maximal ideal of R, so
I+ (0:M) is a P-primary ideal. Consequently
L=+ (0:M))M is an N-primary submodule,
similar to the proof of part (i).

(ii1) Let K € L(M) be N-primary. By [15, Theorem
3, VIK:M)M =rad((K:M)M) =rad K =N =
PM. So by Lemma 1.1(iii), /(K: M) = Pand P is a
maximal ideal. Therefore K is a primary submodule
with \/(K: M) = P, which implies that K = (Kp)°.
(iv) Suppose the interval [N2, N].in L(M) is totally
ordered, and consider K, L € [(N%)p, Np]. Then by
part (iii), K€ L € [((N*)p)S (Np)] = [N?,N],
and hence by hypothesis, K¢ € L or L¢ € K°€. So
K= (K)p S (L)p =L or L=(L)p S (K)p =
K. Therefore, the interval [(N?)p, Np] in L(Mp) is
totally ordered.

Conversely, assume that the interval [(N2)p, Np]
in L(Mp) is totally ordered. Suppose A,B €
[N2,N]. Then evidently Ap,Bp € [(N?)p,Np], so
either Ap € Bp or Bp € Ap. By (ii), A and B are N-
primary submodules, and so by (iii), either A =
(4p)° € (Bp)* =B or B=(Bp)° S (4p)° = A.
Therefore the interval [N%,N] in L(M) is totally
ordered.

Definition 1. An R-module M is said to be a
general quasi-cyclic module if every submodule of
M is quasi-cyclic.

Recall that an R-module M is called a cyclic
submodule module (CSM), if every submodule of
M is cyclic.

Evidently every CSM is a general quasi-cyclic
module. But the converse is not true since in a ring

R, quasi-principal ideals need not be principal
ideals.

It is well-known that R is a general ZPI-ring if
and only if every ideal is quasi-principal [16,
Theorem 2.2]).

General ZPI-rings are examples of general quasi-
cyclics, particularly consider R = M = Z[v/=5]. So
M is a general quasi-cyclic R-module, but it is not a
CSM, as R is not a principal ideal ring.

Theorem 2.10. Suppose M is a non-zero finitely
generated multiplication R-module. Then the
following statements are equivalent.

(1) M is a locally PI-multiplication module.

(i) M is distributive’ and locally Noetherian
module.

(iii) M is a locally CSM.

(iv) M is locally Noetherian and for every maximal
submodule N of M, the interval [N?,N] is totally
ordered.

(v) M is locally Noetherian and for every maximal
submodule N of M, there are no submodules strictly
between N2 and N.

(vi)-M isa locally general quasi-cyclic module.

Proof: (i) = (ii) Let N € L(M). Since M is locally
cyclic, by Lemma 1.1(iv), N is locally cyclic, so by
[4, Proposition 6] M is distributive and a locally
Noetherian module.

(i1) = (iii) The assertion follows from Lemma 2.3
and [4, Proposition 6].

(iii) = (iv) The proof follows from Lemma 2.8.

>iv) = (v) Suppose N is a maximal submodule of
M. Then N = PM for some maximal ideal P of R.
Suppose N?2CLCEN for some L €L(M).
Consider the Rp-module Mp. By Lemma 2.9, the
interval [(N?)p, Np] in L(Mp) is totally ordered. So
by Lemma 2.7 and Lemma 2.8, L, = (N™), for
some positive integer m. Again by Lemma 2.9, L
and N™ are N-primary submodules and so L = N™.
Consequently, N2 = L or L = N. Thus (v) holds.

v) = (i) Suppose P is a maximal ideal of R. If
PM = M, then Mp = 0p, by Nakayama's Lemma.
Now assume that PM = M. Then by Lemma 2.5(i),
N = PM is a maximal submodule of M, so Np is a
maximal submodule of the Rp-module Mp. Suppose
(N»)p € LS Np for some L € L(M). Then by
Lemma 2.9 parts (i) and (iiii), we have N? =
((N®)p)¢ € L¢ € (Np)¢ = N, so either N2 = L or
L =N and hence either (N?)p = (L)p =L or
L= (L°)p = Np. Therefore there are no
submodules strictly between Np and (N2)p. Now
by Lemma 2.7 and Lemma 2.8, Np is cyclic and
every non zero submodule of Mp is a power of Np.
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As M, is cyclic, by Lemma 1.1(iv), Mp is a PI-
multiplication module. Thus (i) holds.

(iit) = (vi) The proof follows from [8, Theorem 5].
This completes the proof of the theorem.
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