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Abstract

In this paper we have studied the separation for the Laplace differential operator of the form

Plu] = — (az

6x2

u
) + g, y)uly)

in the Hilbert space H = L?({2), with potential q(x,y) € C/(£2). We show that certain properties of positive
solutions of the disconjugate second order differential expression P/u/ imply the separation of minimal and
maximal operators determined by P i.e, the property that P(u) € L?*(2) = qu € L*(2), € R A property leading
to a new proof and generalization of a 1971 separation criterion due to Everitt and Giertz. This result will allow
the development of several new sufficient conditions for separation and various inequalities associated with
separation. A final result of this paper shows that the disconjugacy of P — Aq? for some A > 0 implies the

separation of P.
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1. Introduction

The concept of separation of differential operators
was first introduced by Everittand Giertz in [1].
Mohamed and Atia [2] have studied the separation
property of the Sturm-Liouville differential
operator of the form

d d
Ly() = = 2=lk() 2] + QY ()

in the space H,(R),for p =1,2, where Q(x) €
L(¢p) is an operator potential which is a bounded
linear operator on ¢y, and u(x) € C'(R) is a
positive continuous function on R.

Mohamed and Atia[3] have studied the separation
of the Schrodinger operator of the form

Su(x) = — Aulx) + V(x)u(x),
with the operator potential V(x) € C/(R",L(H,)), in
2
the Hilbert space L,(R" H,), where A= Z?zlaa? is

the Laplace operator in R".
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Mohamed and Atia[4] have studied the separation
of the Laplace-Beltrami differential operator of the
form

u=-— —det 5 o [ det g(x) g 1(x)—]

+ V(x)ux),

for every x € 2 € R, in the Hilbert space H =
L,(2,H,) with the operator potential V(x) €
C'(2,L(Hy)), where L(H,)is the space of all
bounded linear operators on the Hilbert space Hj,
g(x) = gij(x) is the Riemannian matrix and g~'(x)
is the inverse of the matrix g(x).

n [5] Brown has shown that certain properties of
positive solutions of discongugate second order
differential expressions

Myl = -y +qy

imply the separation of the minimal and maximal
operators determined by M in L(l,), where
I, = [a,%) and a>-o. More fundamental results of
separation have been obtained by Brown [6] and

[7].
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In this paper we have generalized this work to 2 (a_“ + a_“) ut+2 ("_“ + "_“) u=qui<

prove the separation of the two dimensional Ox \ox oy~ Oy \ox - By

Laplace operator. 2 (a—“ + a—“) , 2
Consider the two dimensional Laplace differential ox oy

operator of the form du . ou\2 _ 8 [(ou  du

N (1—5)(54-5) Sa(a+a)u+

Plul = - (= += 1 9 (u ou 1

[l =-(35+ ayz) +q0xy)ulr,y) M TG Tude [0.3). 3)

P is said disconjugate on Q if and only if there
exists a positive solution u(x,y) on the interior of Q.
For additional discussions see [8]. We show that
properties of positive solutions of disconjugate
second order differential operator (1) [9], imply the
separation of minimal and maximal operators
determined by P in L?(Q) i.e, the property that P/u]
€L*(Q) = qu € L*(Q). In particular, the preminimal
and maximal operators Lo’ and L are given by Pfu]
for u in domain Dy’ = C3(), the space of
infinitely differential functions with compact
support in the interior of £ and

D ={ueLl’(2)NCu.(2)| uy + Uyy
€ Cloc(ﬂ)'P[u] € LZ('Q)}
where C;,.(£2) stands for the real locally absolutely
continuous functions on Q, and L*(f2) denotes the
usual Hilbert space associated with equivalence

classes of Lebesgue square integrable functions f
and g having norm

3
Ifll = < f f )12 dxdy) ,
n

and inner product

N =

If, gl = f f ) g0y drdy
0

The minimal operator L, with domain Do is
defined as the closure of Lo

With the above definitions one can show that:

(1) CF(RQ) € Dy €Dy D. (ii) Do', Do and D
are dense in L?(Q).

P is a limit point of Lp at o if there is at most one
solution of P/uJ=0 which is in L? (Q).

Proposition 1. If P is separated on D, then it is
separated on D if P is Lp at oo.
We now turn to the central concern of this paper.

Theorem 2. Let g(x,y) be C? functions. Suppose the
laplace differential operator of the form (1) has a
positive solution on the interior of Q such that:

Then g > 0 and P is separated on L,(Q).

Proof: For the separation proof we need only show
that u satisfy an inequality of the form ||qu||? <

c|lull?+ d||P[u]||>, where ¢, d are positive
constants.
First, we prove that
du @
Lo
u
satisfies the P.D.E. of the form
0z 0z
P 7y = z’—q. 4
We have,
(2 (2 2y
0z _ U\5x2 T oxoy x ' 0y)ox
ox u? ,
0%u 0%u ou ou\ (ou
_axZ Yaxay T (5%) + (@) (5%)
= = :
and

0%u . 0%u ou  ou\odu
az_‘”<a_y2+axay) ( * )

0z ox ' dy) oy
dy u?
0%u 0%u du\*  ou\ (du
vyt (5) +6)(5)
= e .

By substituting in (4), we get

0%u 0%u 0%u ou\ (du ou\?
‘”W‘Z”—axay—”a—yz”(ﬁ)(@)Jf(a) +<

u
ady

;

uZ
ou\? du\ (Ou ou\?
(@) 2@ E) )
= " _
Hence
9%u %u  o*u _
axz “axay ayz qu, ®)
since
b?—4ac =0,

so it is a parabolic equation.
The solution of the equation (5) is as follows:
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y? +2y+1=0>y, =-1,
dy

5—1_0 >z=y—x.

Suppose that w=y, so

ou auaz ou ow

3y —9z0y ow ay = U+ thy,

Pu_0 L0z 0w
ay? 9z 2 T Uwi gy Ty W TG

02u 0%u 0%u

z t 200 o (6)
u _auaz+auaw
dx  9dzdx ow dx Uz
0%u _a ( )az+ 0 ( )aw
oxdy 9z° Yoy Taw © " gy
B 0°u  0%u ;
T 9z%2  dzow’ 7
And

0%u ow

W 622( uz) (—uz)a

a2u
= ®

By substituting from (6), (7) and (8) into (5), we
get

0%u

ow?

= qu.
Hence

u = @1(M)exp(y/qx) + P23 exp(=y/qx).

The conditions (2) and (3) are equivalent to the
conditions

g2z 02

<+ )
and

ax+ < 6z2.

(10)

To see this, note that from the definition of z and
(6), (7), we get

e
ou  ou\?
(ﬁ*@)
_2—2
u
_i(a_qua_u) _6(8u+6u)
ax\ox Toay)* " ay\ax "oy ¥

u’
(=14

ou  oJu
(6x+6y)
uZ
9 (0u  Ou 9 (0u  Ou ou . ou\?
‘a(ﬁ+@)“‘@(a+@)“(a+ﬁ)
< -
@
—ZZ +_
oy
(3)4:)
(35
-(1 6)—
d (0u OJu d (0u OJu
‘a@*@)“‘@(ww)“
> —
=
ou  ou\?
(ﬁ*@)
5 2
u
0 (Ou Ou 0 (Ou OJu ou oOJu
‘a(ﬁ+w)“‘@(a+@)“(ax+ay)
> -
==
52>az+az
“ox 0y

Next we define the operators

dv v
L(v) = —+—+zv

dy
and
dv Ov
L'(v) = —a—a+zv,

where v € Cy’(2) and 2 € R2

Now we derive sufficient conditions for the
separation of L* as follows:
We have

IL*W)II? = [L*(v), " ()] = [LL"(v), V]

and
=1 Wy )
V) = ox 3y zZv
_6( ov 817+ )
T ox\ ox ady i
0( v av+ )
dy\ 0dx 0dy z
ov v
+ (—a—5+zv)
So
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* 2= - —_ —
2@l [ dx? 0dxdy 0ydx 0dy?

+<az+az+ )
5 3y z% v, v|.

Using (9), we obtain

dv dv v dv v dv
IoIP = 5250 + 50 5] + |5 51]
ox’ dx dx dy dy 0x
+ [0v 617]
ay ay
=5 2l 5]
617
W

- (15D

By the triangle inequality it also follows that

llzvll? < 4lIL* @)1

The remaining step is to use the separation of L*
to show that M, which is restricted to C;°(£2) is also
separated.

We first observe that

d 0v dv
LU'Lv) = ——(—+—+ZU)

dx\ox 0dy
6(0v+6v+ )
dy\dx dy Zv
v v
+Z(£+a—+zv)
_ v v v o _oa, J0n
T 9x2  axdy adydx 0y? axv 6yv b o
Since
az+az_ )
dx ay_z 1
So

L) = 0%v. 0*v  0*v 9%v
V) TT Tk dxdy 0dydx 0y? +av.

Suppose that
v 0%
axdy  dyox’
then
%v 0%
L'L(v) = _W_a_yz—l-qv = M[v].

A consequence of (9) and (10) is that

0z 0z
—— 4z > =622+ 22 = 2?(1 - §).
dx 0dy

Then
q=0.
Now, also

IP[ull? = [L"L(w), L'L@)] = IL°L@)II?

Since
2Ll = 2L LGOI,
So
IPRIE 2 5 Lo
=4 ), 210
= [ (ZL@).u]  an
and

=[5 33] [33 Zi])
#[52(75) 4
+ [—aa—x(z u),u]
5

P—@mq
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we find that

ox ax
[—%—Z;u,u] + [—23%,11] + z*[u,u]
Since
—aa—zj—(;—z; 4——322%—32222+z4,
and
0z 0z
wt 3y < 6§22
Hence
—i)—i—%+z4224(1—36). (13)
But
0z 0z 5
£ + @ ze,
So
. 0z 0z )
z¢e=q+ I + @ =q—z°
Hence
z? 2%
Then (13) becomes
—Z—i—%+z42§(1—36). (14)

From (11), (12) and (14), we obtain

|P[u]]l? = (“‘/— ||+||‘/Ez_l;“)2

1-346

+ llqull>.

This immediately yields the separation inequality

5 1P [l = Hlqull®.

The final result of this paper is quite different
from Theorem 2, but it reinforces the connection
between disconjugacy and separation. In addition,
the proof is quite elementary.

%u  9%u
-G+ 50+
(g — Ag®)u, is disconjugate on Q for some A > 0.

2 2
Then Plu] = — (ZTZ + Zy ) + qu, is separated.

Theorem 3. Suppose that P [u] =

Proof: It is well known that the disconjugacy of P*
is equivalent to the positive definiteness of the
functional

Qw =, (|5+

foru € C5° (),

2"+ (@ = 2g)lul?) dxdy

see for example [8, Theorem 6.2]. In other words,
we must have the inequality

Q) =
(2 +2)"+ qu2) dudy = [f, q?lul? axdy, (15)

with equality holding iff u = 0.
Now consider the expression

P,2(uw) =g 62u+a2 +
W) =4 a2 T 9y qu|,

where u is an appropriate function in L(q% Q). If
u € C2(2), then the Cauchy-Schwrtz inequality
and (15) yields that

[1Pq 2(u)|| llullgz = Q°(w) = MlullZz = Alqull*.

It follows that the inequality
1Pl 2 [|Pg2 @), = Allqull

holds on the Cg° functions, and therefore on D,.
Because P is Lp at oo we again conclude that it is
separated on D. Hence the proof.
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