http://www.shirazu.ac.ir/en

Separation of the two dimensional Laplace operator by the disconjugacy property

H. A. Atia^{1*} and R. A. Mahmoud²

1 Current Address: Mathematics Department, Rabigh College of Science and Art, King Abdulaziz University, P. O. Box 344, Rabigh 21911, Saudi Arabia

¹

¹ Permanent Address: Zagazig University, Faculty of Science, Mathematics Department, Zagazig, Egypt ² Zagazig, University, Eggulty of Science, Mathematics Department, Zagazig, Egypt *Zagazig University, Faculty of Science, Mathematics Department, Zagazig, Egypt*

E-mails: h_a_atia@hotmail.com, rony_695@yahoo.com

Abstract

In this paper we have studied the separation for the Laplace differential operator of the form

$$
P[u] = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + q(x, y)u(x, y)
$$

Example 20
 Archive of the separation for the Laplace differential operator of the form
 $P[u] = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + q(x, y)u(x, y)$
 Alibert space $H = L^2(\Omega)$, with potential $q(x, y) \in C'(\Omega)$. We show that cer in the Hilbert space $H = L^{2}(\Omega)$, with potential $q(x, y) \in C^{1}(\Omega)$. We show that certain properties of positive solutions of the disconjugate second order differential expression *P[u]* imply the separation of minimal and maximal operators determined by P i.e, the property that $P(u) \in L^2(\Omega) \Rightarrow \varphi u \in L^2(\Omega)$, $\Omega \in \mathbb{R}^2$. A property leading to a new proof and generalization of a 1971 separation criterion due to Everitt and Giertz. This result will allow the development of several new sufficient conditions for separation and various inequalities associated with separation. A final result of this paper shows that the disconjugacy of $P - \lambda q^2$ for some $\lambda > 0$ implies the separation of *P*.

Keywords: Separation; Laplace differential operator; Disconjugacy; Hilbert space

1. Introduction

The concept of separation of differential operators was first introduced by Everitt and Giertz in [1]. Mohamed and Atia [2] have studied the separation property of the Sturm-Liouville differential operator of the form

$$
Ly(x) = -\frac{d}{dx}[\mu(x)\frac{dy}{dx}] + Q(x)y(x)
$$

in the space $H_p(R)$, for $p = 1,2$, where $Q(x) \in$ $L(\ell_p)$ is an operator potential which is a bounded linear operator on ℓ_p , and $\mu(x) \in C^1(R)$ is a positive continuous function on *R*.

Mohamed and Atia[3] have studied the separation of the Schrodinger operator of the form

$$
Su(x) = - \Delta u(x) + V(x)u(x),
$$

with the operator potential $V(x) \in C^{1}(R^{n}, L(H_{1}))$, in the Hilbert space $L_2(R^n, H_1)$, where $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ $\int_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator in $Rⁿ$.

*Corresponding author

Mohamed and Atia[4] have studied the separation of the Laplace-Beltrami differential operator of the form

$$
Au = -\frac{1}{\sqrt{\det g(x)}} \frac{\partial}{\partial x_i} \left[\sqrt{\det g(x)} \, g^{-1}(x) \frac{\partial u}{\partial x_i} \right] + V(x) u(x),
$$

for every $x \in \Omega \subset R^n$, in the Hilbert space $H =$ $L_2(\Omega, H_1)$ with the operator potential $V(x) \in$ $C^{1}(\Omega, L(H_1))$, where $L(H_1)$ is the space of all bounded linear operators on the Hilbert space *H₁*, $g(x) = g_{ij}(x)$ is the Riemannian matrix and $g^{-1}(x)$ is the inverse of the matrix *g(x).*

In [5] Brown has shown that certain properties of positive solutions of discongugate second order differential expressions

$$
M[y] = -(py')' + qy
$$

imply the separation of the minimal and maximal operators determined by M in $L(I_a)$, where $I_a = [a, \infty)$ and $a \rightarrow \infty$. More fundamental results of separation have been obtained by Brown [6] and [7].

Received: 10 July 2011 / Accepted: 5 October 2011

In this paper we have generalized this work to prove the separation of the two dimensional Laplace operator.

Consider the two dimensional Laplace differential operator of the form

$$
P[u] = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + q(x, y)u(x, y) \tag{1}
$$

N P in $L^2(2l)$ i.e, the property that $P[u] = \left(\iint_R |f(x, y)|^2 dx dy\right)^{\frac{1}{2}}$
 $\left(\iint_R f(x, y) \overline{g(x, y)} dx dy\right)^{\frac{1}{2}}$
 P is said disconjugate on *Ω* if and only if there exists a positive solution $u(x, y)$ on the interior of Ω . For additional discussions see [8]. We show that properties of positive solutions of disconjugate second order differential operator (1) [9], imply the separation of minimal and maximal operators determined by *P* in $L^2(\Omega)$ i.e, the property that $P[u]$ $\epsilon L^{2}(\Omega) \Rightarrow$ qu $\epsilon L^{2}(\Omega)$. In particular, the preminimal and maximal operators L_0' and L are given by $P[u]$ for *u* in domain $D_0' = C_0^{\infty}(\Omega)$, the space of infinitely differential functions with compact support in the interior of *Ω* and

$$
D = \{u \in L^2(\Omega) \cap C_{loc}(\Omega) \mid u_{xx} + u_{yy}\}\
$$

$$
\in C_{loc}(\Omega), P[u] \in L^2(\Omega)\}
$$

where $C_{loc}(\Omega)$ stands for the real locally absolutely continuous functions on Ω , and $L^2(\Omega)$ denotes the usual Hilbert space associated with equivalence classes of Lebesgue square integrable functions *f* and *g* having norm

$$
||f|| = \left(\iint\limits_{\Omega} |f(x,y)|^2 \, dxdy\right)^{\frac{1}{2}}.
$$

and inner product

$$
[f,g] = \left(\iint\limits_{\Omega} f(x,y) \, \overline{g(x,y)} \, dx dy\right)^{\frac{1}{2}}.
$$

The minimal operator L_0 with domain D_0 is defined as the closure of *L ₀ ′.*

With the above definitions one can show that:

(i) $C_0^{\infty}(\Omega) \subset D_0' \subset D_0 \subset D$. (ii) D_0' , D_0 and D_0' are dense in *L²(Ω).*

P is a limit point of L_p at ∞ if there is at most one solution of $P[u]=0$ which is in $L^2(\Omega)$.

Proposition 1. If P is separated on D_0 then it is separated on *D* if *P* is L_p at ∞ .

We now turn to the central concern of this paper.

Theorem 2. Let $q(x, y)$ be C^T functions. Suppose the laplace differential operator of the form (1) has a positive solution on the interior of *Ω* such that:

$$
\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) u + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) u \equiv q u^2 \le
$$
\n
$$
2 \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)^2,\tag{2}
$$

$$
(1 - \delta) \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right)^2 \le \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) u +
$$

$$
\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) u, \delta \in \left[0, \frac{1}{3}\right).
$$
 (3)

Then $q \ge 0$ and P is separated on $L_2(\Omega)$.

Proof: For the separation proof we need only show that u satisfy an inequality of the form $||qu||^2 \le$ $c||u||^2 + d||P[u]||^2$, where *c*, *d* are positive constants.

First, we prove that

$$
z = \frac{\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}}{u},
$$

satisfies the P.D.E. of the form

$$
+\frac{\partial z}{\partial y} = z^2 - q.\tag{4}
$$

We have

 ∂z $\overline{\partial x}$

$$
\frac{\partial z}{\partial x} = \frac{-u\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y}\right) + \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right)\frac{\partial u}{\partial x}}{u^2}
$$

$$
= \frac{\frac{\partial^2 u}{\partial x^2} - u\frac{\partial^2 u}{\partial x \partial y} + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial u}{\partial x}\right)}{u^2},
$$

and

$$
\frac{\partial z}{\partial y} = \frac{-u\left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x \partial y}\right) + \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right)\frac{\partial u}{\partial y}}{u^2}
$$

$$
= \frac{\frac{\partial^2 u}{\partial y^2} - u\frac{\partial^2 u}{\partial x \partial y} + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)}{u^2}
$$

By substituting in (4), we get

$$
\frac{-u\frac{\partial^2 u}{\partial x^2} - 2u\frac{\partial^2 u}{\partial x \partial y} - u\frac{\partial^2 u}{\partial y^2} + 2\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2}{u^2}
$$

$$
= \frac{\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right) + \left(\frac{\partial u}{\partial y}\right)^2}{u^2} - q
$$

Hence

$$
\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial y^2} = qu,
$$
 (5)

since

$$
b^2-4ac=0,
$$

so it is a parabolic equation.

The solution of the equation (5) is as follows:

www.SID.ir

.

$$
\gamma^2 + 2\gamma + 1 = 0 \Rightarrow \gamma_{1,2} = -1,
$$

$$
\frac{dy}{dx} - 1 = 0 \Rightarrow z = y - x.
$$

Suppose that *w=y*, so

$$
\frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial u}{\partial w} \frac{\partial w}{\partial y} = u_z + u_w,\n\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial z} (u_z + u_w) \frac{\partial z}{\partial y} + \frac{\partial}{\partial w} (u_z + u_w) \frac{\partial w}{\partial y} \n= \frac{\partial^2 u}{\partial z^2} + 2 \frac{\partial^2 u}{\partial w \partial z} + \frac{\partial^2 u}{\partial w^2},
$$
\n(6)

$$
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial u}{\partial w} \frac{\partial w}{\partial x} = -u_z,\n\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial z} (-u_z) \frac{\partial z}{\partial y} + \frac{\partial}{\partial w} (-u_z) \frac{\partial w}{\partial y} \n= -\frac{\partial^2 u}{\partial z^2} - \frac{\partial^2 u}{\partial z \partial w},
$$
\n(7)

And

$$
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial z} (-u_z) \frac{\partial z}{\partial x} + \frac{\partial}{\partial w} (-u_z) \frac{\partial w}{\partial x}
$$

=
$$
\frac{\partial^2 u}{\partial z^2}
$$
 (8)

By substituting from (6) , (7) and (8) into (5) , we get

$$
\frac{\partial^2 u}{\partial w^2} = qu.
$$

Hence

$$
u = \varphi_1(y) exp(\sqrt{q}x) + \varphi_2(y) exp(-\sqrt{q}x).
$$

The conditions (2) and (3) are equivalent to the conditions

$$
-z^2 \le \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \tag{9}
$$

and

 ∂z ∂x $+\frac{\partial z}{\partial y} \leq \delta z$ ଶ . (10)

To see this, note that from the definition of *z* and (6), (7), we get

$$
(2) \Leftrightarrow
$$
\n
$$
-2 \frac{\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right)^2}{u^2}
$$
\n
$$
\leq \frac{-\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) u - \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) u}{u^2}
$$
\n
$$
\Leftrightarrow
$$

Next we define the operators

$$
L(v) = \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + zv,
$$

and

$$
L^*(v) = -\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} + zv,
$$

where $v \in C_0^{\infty}(\Omega)$ and $\Omega \in R^2$.

Now we derive sufficient conditions for the separation of L^* as follows: We have

$$
||L^*(v)||^2 = [L^*(v), L^*(v)] = [LL^*(v), v]
$$

and

$$
LL^*(v) = L\left(-\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} + zv\right)
$$

= $\frac{\partial}{\partial x}\left(-\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} + zv\right)$
+ $\frac{\partial}{\partial y}\left(-\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} + zv\right)$
+ $z\left(-\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} + zv\right)$.

So

$$
||L^*(v)||^2 = \left[-\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 v}{\partial y^2} + \left(\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} + z^2 \right) v, v \right].
$$

Using (9), we obtain

$$
||L^*(v)||^2 = \left[\frac{\partial v}{\partial x}, \frac{\partial v}{\partial x}\right] + \left[\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right] + \left[\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}\right] + \left[\frac{\partial v}{\partial y}, \frac{\partial v}{\partial y}\right] + \left[\frac{\partial v}{\partial y}, \frac{\partial v}{\partial y}\right] \ge \left\|\frac{\partial v}{\partial x}\right\|^2 + 2\left\|\frac{\partial v}{\partial x}\right\|\left\|\frac{\partial v}{\partial y}\right\| + \left\|\frac{\partial v}{\partial y}\right\|^2
$$

$$
= \left(\left\|\frac{\partial v}{\partial x}\right\| + \left\|\frac{\partial v}{\partial y}\right\|^2\right).
$$

By the triangle inequality it also follows that

$||zv||^2 \leq 4||L^*(v)||^2$.

The remaining step is to use the separation of L^* to show that *M*, which is restricted to $C_0^{\infty}(\Omega)$ is also separated.

We first observe that

$$
L^*L(v) = -\frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + zv \right)
$$

$$
- \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + zv \right)
$$

$$
+ z \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + zv \right)
$$

$$
= -\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 v}{\partial y^2} - \frac{\partial^2 v}{\partial x} \partial y - \frac{\partial^2 v}{\partial y \partial y} \partial y + z^2 v.
$$

Since

$$
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z^2 - q.
$$

ܮ So

$$
L^*L(v) = -\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 v}{\partial y^2} + qv.
$$

Suppose that

$$
\frac{\partial^2 v}{\partial x \partial y} = -\frac{\partial^2 v}{\partial y \partial x'}
$$

then

$$
L^*L(v) = -\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} + qv = M[v].
$$

A consequence of (9) and (10) is that

$$
-\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z^2 \ge -\delta z^2 + z^2 = z^2 (1 - \delta).
$$

Then

$$
q\geq 0.
$$

Now, also

$$
||P[u]||^2 = [L^*L(u), L^*L(u)] = ||L^*L(u)||^2
$$

Since

$$
||zL(u)|| = 2||L^*L(u)||.
$$

So

$$
||P[u]||^2 \ge \frac{1}{4} ||zL(u)||^2
$$

= $\frac{1}{4} [zL(u), zL(u)]$
= $\frac{1}{4} [L^*(z^2L(u)), u]$ (11)

and

$$
+ \left\| \frac{\partial v}{\partial y} \right\|
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\left\| \frac{\partial v}{\partial x} \right\| + \left\| \frac{\partial v}{\partial y} \right\| \right)^{2}
$$
\n
$$
\left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + zv \right) + \left(\frac{\partial v}{\partial x} \frac{\partial v}{\partial y} \right)^{2}
$$
\n
$$
\left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + zv \right) + \left(\frac{\partial v}{\partial y} \frac{\partial v}{\partial y} \right)^
$$

we find that

$$
\left[-\frac{\partial}{\partial x}(z^{3}u), u\right] + \left[-\frac{\partial}{\partial y}(z^{3}u), u\right] + \left[z^{4}u, u\right] =
$$
\n
$$
\left[-\frac{\partial z^{3}}{\partial x}u, u\right] + \left[-z^{3}\frac{\partial u}{\partial x}, u\right]
$$
\n
$$
+ \left[-\frac{\partial z^{3}}{\partial y}u, u\right] + \left[-z^{3}\frac{\partial u}{\partial y}, u\right] + z^{4}[u, u]
$$

Since

$$
-\frac{\partial z^3}{\partial x} - \frac{\partial z^3}{\partial y} + z^4 = -3z^2 \frac{\partial z}{\partial x} - 3z^2 \frac{\partial z}{\partial y} + z^4,
$$

and

$$
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \le \delta z^2
$$

.

,

.

Hence

$$
-\frac{\partial z^3}{\partial x} - \frac{\partial z^3}{\partial y} + z^4 \ge z^4 (1 - 3\delta). \tag{13}
$$

But

$$
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \ge -z^2,
$$

So

$$
z^2 = q + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \ge q - z^2
$$

z $\overline{\mathbf{c}}$ \geq $rac{q}{2}$.

Hence

Then (13) becomes

$$
-\frac{\partial z^3}{\partial x} - \frac{\partial z^3}{\partial y} + z^4 \ge \frac{q^2}{4} (1 - 3\delta). \tag{14}
$$

From (11), (12) and (14), we obtain

$$
||P[u]||^2 \ge \frac{1}{8} \left(\left\| \sqrt{q} \frac{\partial u}{\partial x} \right\| + \left\| \sqrt{q} \frac{\partial u}{\partial y} \right\| \right)^2 + \frac{1 - 3\delta}{16} ||qu||^2.
$$

This immediately yields the separation inequality

$$
\frac{16}{1-3\delta}||P[u]||^2 \ge ||qu||^2
$$

The final result of this paper is quite different from Theorem 2, but it reinforces the connection between disconjugacy and separation. In addition, the proof is quite elementary.

Theorem 3. Suppose that $P^{\lambda}[u] = -\left(\frac{\partial^2 u}{\partial x^2}\right)^2$ $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ $\frac{\partial u}{\partial y^2}$ +

 $(q - \lambda q^2)u$, is disconjugate on Ω for some $\lambda > 0$. Then $P[u] = -\left(\frac{\partial^2 u}{\partial x^2}\right)$ $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ $\frac{\partial u}{\partial y^2}$ + qu, is separated.

Proof: It is well known that the disconjugacy of P^{λ} is equivalent to the positive definiteness of the functional

$$
Q^{\lambda}(u) = \iint_{\Omega} \left(\left| \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right|^2 + (q - \lambda q^2) |u|^2 \right) dxdy
$$

for $u \in C_0^{\infty}(\Omega)$,

see for example [8, Theorem 6.2]. In other words, we must have the inequality

we must have the inequality
\n
$$
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \le \delta z^2.
$$
\n
$$
Q^0(u) = \iint_{\Omega} \left(\left| \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right|^2 + qu^2 \right) dxdy \ge \iint_{\Omega} q^2 |u|^2 dxdy, (15)
$$
\nwith equality holding iff $u = 0$.
\n
$$
+ z^4 \ge z^4 (1 - 3\delta).
$$
\n(13)
\n
$$
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \ge -z^2,
$$
\nwhere *u* is an appropriate function in $L^2(q^2; \Omega)$. If $u \in C_0^\infty(\Omega)$, then the Cauchy-Schwrtz inequality and (15) yields that
\n
$$
z^2 = q + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \ge q - z^2,
$$
\nIt follows that the inequality
\n
$$
|P(q^2(u)||_{q^2} ||u||_{q^2} \ge Q^0(u) \ge \lambda ||u||_{q^2}^2 = \lambda ||qu||^2.
$$
\n
$$
= 2 \cdot \frac{q}{2}.
$$
\n
$$
= 2 \cdot \frac{q}{2
$$

with equality holding iff $u = 0$.

Now consider the expression

$$
P_{q^2}(u) = q^{-2} \bigg[-\bigg(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\bigg) + qu \bigg],
$$

where *u* is an appropriate function in $L^2(q^2; \Omega)$. If $u \in C_0^{\infty}(\Omega)$, then the Cauchy-Schwrtz inequality and (15) yields that

$$
\left\|\overline{P_{q^2}}(u)\right\|_{q^2} \|u\|_{q^2} \ge Q^0(u) \ge \lambda \|u\|_{q^2}^2 = \lambda \|qu\|^2.
$$

It follows that the inequality

$$
||P(u)|| \ge ||P_{q^2}(u)||_{q^2} \ge \lambda ||qu||,
$$

holds on the C_0^{∞} functions, and therefore on D_0 . Because P is L_p at ∞ we again conclude that it is separated on *D*. Hence the proof.

References

- [1] Everitt, W. N. & Giertz, M. (1971). Some properties of the domains of certain differential operators. *Proc. London Math. Soc*. (301-324).
- [2] Mohamed, A. S. & Atia, H. A. (2004) . Separation of the Sturm-Liouville differential operator with an operator potential. *Applied Mathematics and Computation*. *156*(2), 387-394.
- [3] Mohamed, A. S. & Atia, H. A. (2005). Separation of the Schrodinger operator with an operator potential in the Hilbert spaces. *Applicable Analysis*. *84*(1) 103-110.
- [4] Mohamed, A. S. & Atia, H. A. (2007). Separation of Laplace-Beltrami differential operator with an operator potential. *J. Math. Anal. Appl*. *336*, 81-92.
- [5] Brown, R. C. (2003). Separation and disconjugacy. *J. Inequal. Pure and Appl. Math*. *Art*, *4*(3), 56.
- [6] Brown, R. C. (2003). Certain properties of positive solutions of disconjugate second order differential

expressions. *J. Inequal. Pure and Appl. Math*. *Art*, *4*(3), 56.

- [7] Brown, R. C. (2000). *Some separation criteria and inequalities associated with linear second order differential operators*. Narosa New Delhi, Publishing House.
- [8] Hartman, P. (1982). *Ordinary Differential Equations*, Second Edition, Birkhauser, Boston, Stuttgart.
- [9] Coppel, W. A. (1971). Disconjugacy, Lecture Notes in Mathematics", *Vol* .*220* (A. D old and B. Echman, Eds), Berlin, Heidelberg and New York, Springer-Verlag.

Archive of SID