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Abstract

In this paper, an effective direct method to determine the numerical solution of linear and nonlinear Fredholm and
Volterra integral and integro-differential equations is proposed. The method is based on expanding the required
approximate solution as the elements of Chebyshev cardina functions. The operational matrices for the integration
and product of the Chebyshev cardinal functions are described in detail. These matrices play the important role of
reducing an integral equation to a system of algebraic equations. Illustrative examples are shown, which confirms

the validity and applicability of the presented technique.
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1. Introduction

Integral equations provide an important tool for
modeling of the numerous problems in engineering
and science [1, 2]. These equations appear in the
modeling of electromagnetic and electrodynamic,
easticity and dynamic contact, heat and mass transfer,
fluid mechanic, acoustic, chemical and
electrochemical process, molecular . physics,
population, medicine and in many other phenomena
[3-9]. So, it is clear that solving integral equations can
be used to describe many eventsin real world.

In [10], some traditional methods for solving
integral equations are “ classified and described.
Recently, many researchers have focused on finding
efficient numerical or analytical methods to estimate
the solution of integral equations such as collocation
method [1, 11], Adomian decomposition method
(ADM) [12], homotopy perturbation method(HPM)
[13], He's variationa iteration method [14], optimal
control [15], wavelets [16-19], neura networks [20],
simulation methods [21], block-pulse method [22],
and some other new methods [23-27].

In this study, Chebyshev cardina functions are
introduced as the efficient basis to approximate the
solution of integral equations [28]. Also, the technique
of solving is involved in operational matrices as a
powerful tool to reduce an integral equation to a
system of agebraic equations. However, operational
matrices are applied with other basis [29, 30]. The
coupling Chebyshev cardina  functions  with
operational matrices provide high accurate solutions
using simple computations [31, 32].
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Moreover, the new defined operational matrix
utilizes the computations such that the proposed
method reduces the integral equation to an
algebraic system of equations without using the
collocation scheme.

A nonlinear  Fredholm-Volterra  integro-
differential equation can be considered in the
following general form

Zm:aj(t)u(”(t) =f(t)+ 1, J.atkl(t,s) [u©T ds

[kt 9[uEl'ds O

under theinitial conditions

u@=g,, j=01,.m-1, @)

where u(t) is an unknown function, the functions
f(t), ki (t,s) and K,(t,s) are defined on an
interval a<t,s<b and dso A;,4, and
,uj,j =0,1,....m-1, ae constants. Though

different choices of the parameters lead to various
problems, the method can afford to approximate the
solution.

The presented paper is organized in 6 sections. In
Section 2, we introduce the Chebyshev cardinal
functions and the matrix form of an approximated
function. Section 3 includes some useful property
of the Chebyshev cardinal functions. In Section 4,
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we show how to approximate the solutions of the
integral equation by the mentioned basis through
the operational matrices. Numerical results are
shown in Section 5. Finaly, Section 6 concludes
this paper with a brief summary and more
discussion of the numerical results.

2. Chebyshev cardinal functions

Chebyshev cardinal functions of order N in
[-1,1] are defined as[28]

Cj (X) - TN+1(X)

, j=12,...,N+1, (3
Thaax (X)) (X=X;)

where Ty,,(X) is the first kind Chebyshev
function of order N +1 in [—-1,1] defined by

Ty.1(X) = cos((N +1) arccos(x)), (4)

subscript X denotes X-differentiation and X,

j=12,...,N+1, are the zeros of T,,,(X)

-7

. @] .
defined by cos(———=—), | =1,2,...,N+1,
ined by COS(=5 o)+ |

with the Kronecker property

Cx)=6 = 1, if j=i, 4
IVTEIET 0, 0f o, N
where &; is the Kronecker delta function. We

b-a_ b+a
change the variable tzTX+T to use

these functions on [a, b] . Now any function g(t)
on [a,b] can beapproximated as

N+1

g(t) ~ Zg(t,—)cj (t) =G'O,(t), (6)

where t;, j=12,...,N+1, are the shifted
points of X; , j=12,...,N+1, by transforming

_b-a_ b+a
_—X _
2 2
G=[g(t,),9(t,),....9(ty.)]", (7)
and

Oy (1) =[C,(1),C,(1),....Cy.a O] ®

Also, wechoose t; sothat, t; <t, <---<ty,,.

3. Some new properties of chebyshev cardinal
functions

In this section, some operational matrices of
integration and product will be derived.

Lemma 1. The integration of the vector ®(t)
defined in (8) can be approximated as

[©n(s)ds~ PO, (1), ©

where P is the (N +2)x(N +1) operational

matrix of integration for Chebyshev cardina
functions.

Proof: Let

t

Using (6), any function ICj(S)dS can be
a

approximated as

N+1

Ltc:j (9)ds~ ¥ @, Cy (1), (11)
k=1

where

o = [“C(9ds= —E [T (s-t)ds jk=1.2,...,N+1. (12)
i=Li#]

TN+1.S(tJ)
22N+1
and £ = W Comparing (9) and (11), we
—a
obtain
aqy (2273 Tt Oinn
a a cee o
S e (13)

ANy Ansip QNN+

Remark: The elements of the matrix P can be
also found without integration equivalent to (12).

Let L,,,,(X) be the Legendre polynomial of order

M +1 on [-1,1]. Then the Legendre-Gauss
nodes are

-1<7,<r,<...<7,, <], (14)
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where {7,}12" are the zeros of L,,.,(X). No

explicit formulas are known for the points 7;, and

so they are computed numerically using subroutines
[33]. Also, we approximate the integral of f on

[-1,1] as

M +1

j f (X)dx ~ ZW f(z,), (15)

where 7; are Legendre-Gauss nodesin (14) and the

weights W, givenin [33]

2
\Ni = 2 ' 27
(1-7)[Lya(z)]
It is well known that the integration in (15) is

exact whenever f(X) is a polynomial of degree
smaller than 2M +1.

i=1.2,...,M+1. (16)

t,—a_ ft +a

By change of varible S= k2 T+ k2 :
(12) can be written as

N+1 t t)d (17)

o, =
Jk N+ls(t ) 2 | 1]
Now, using the Gaussian integration formula’in
_ N
(15) with M = > leads to

e P g 09

N+1s(t ) 1=1  i=li=

for j,k=1.2,...N+1.

Lemma 2. Assume. O (t) in (8 and

F=[f,f,..,f
then

xia]' as the column vectors,

0, ()OL (F ~ FO (1), (19)

where F is a (N+1)x(N+1) product
operational matrix as follows

F =diag[f,, f,...., f,..]. (20)

Proof: First, by using the definition of @ (t) in
(8) we obtain

GMCH)  CMC,H) - CC.(1)
0, )01 (1) = cz(t):cl(t) Cz(t):cz(t) Cz(t)?w(t) e

CN+1(t‘)cl(t) CN+1(t‘)Cz(t) CN+1(t)CN+1(t)

Using (6), any function C,(t)C,(1),

j,k=1,2,...,N +1 can be approximated as

C,()C, () = Nfe“’ci(t), (22)
where
0 =C,(t,)C(t;) = 5. (23)
So, from (21) and (22), we have
ct 0. -« 0
0, 00,0~ oo 2P 0@
0 0 - Cu

Clearly, by using the vector F, we find the
(N +2)x(N +1) matrix F asfollows

F =diag[f,, f,...., fu.l. (25)
Lemma 3. Assume Ay, n.g) IS @ abitrary
matrix, then

OL(H)AO, (t) ~ AO (1), (26)

where ©(t) is defined in (8) and A is a
( N +1)-row vector including elements equal to the
diagonal entriesof A matrix.

Proof: To prove the identity, we expand the
formulaasfollows

[ Ay Ay o Al,N+1 Cl(t)
A A e A C,(t
@L(t)A@N(t) _ @L ® :21 :22 ) 2,:N+1 2:( )
7AN+11 AN+1‘2 : AN+1‘N+1 CN+1(t)
Sne
=05(t) ]Z:AZJC.(I = ZZA (oA (s[e} (t)} {ZA C(t)] = A0, (1).

N+l
DA G
=1
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Lemma 4. Suppose U " =[u,,U,,...,Uy,,] and
ejT = [, fj 5o ;] . 1f we consider

U™ =UTe(t), j=01,.,m-1, (27
then

umI(t) > [UTP' +§e;7kp‘*k}®N(t)

=LO,, 1=01.,m (28)

In particular, for | = m, we have
ut) = [U'P"+e] P +..+e[P+e] |0 () =L,0,, (29)

where L, =0/1,..,m, ae the N+1-row
vectors.

Proof: Clearly, by integration of (27) we will have

[u™ (9)ds = u™? (1) - 1. (30)
Also, from (9), we get

[UTe,(5ds=UTPO,, (1), (31)

which concludes

U™ () xUTPO (1) + f 4 (32)

From (6), i, , asthe constant function has the

vector form €} ,0,, (t) whichgives

U™ (t) ~UTPO, (1) + 6,0, (t) = [UTP+€" o, 1).(33)

Similarly, we can obtain vector forms of other
differentiations of u(t).

Lemma 5. If we consider
u) =UToe (), (34)

then for every N € N we have

u®] ~UTU) e, (), (35)
or
[u®]" ~[up,ug, -, ug,, 10, (1), (36)

where U = diag(U,, Uy.,...,Uy,,)-

Proof: By induction, for K = n+1, wewill have
ey ()
®I™ =[u®]"u(®) ~UT V)0, He}, KU
=UT(U)"0,(t)

=[uy™ ug™ e U] O (1)

Lemma 6. If we consider
u™(t)=UTO (1), (37)
then for every 0 € N we have

u®]* ~U e, W), (39)

where (Ug), = [(Ly)i ' and L, is defined in
Lemma 3.

Proof: According to Lemma 4, hypostasis lead to
u(t) = L0, ().
So, considering the previous Lemma5 gives

U@ ~[(Lo)d (L) (L) 3210 (1),

and the proof is completed.

4. Direct method to solveintegral equations

In this section, by using results obtained in the
previous section concerning Chebyshev cardinal
functions, an effective and accurate direct method
for solving nonlinear Fredholm, Volterra and
Fredholm-Volterra integral and integro-differential
equationsis presented.

Consider the following integral equation

Zm:otj(t)u“’(t) =f(t) +x1ja‘kl(t,s) [u©] ds+2, [:kz(t,s) [u@]"ds, (39)

=0

under the initial conditions

uV@=g,, j=01..m-1, (40)

as before.

We first reform the proposed integral equation to
utilize for solving. This process is described in the
following steps.

Step 1.
Since f (t) isagiven function, according to (6) we
can approximate it as follows
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N+1

f(t)sz(tj)Cj (t)=FTO(t), (41)

where F' =[f (t), ft,),.., f(t.)] and
tj,j =1,.,N+1, ae shifted points of
b-a b+a

X, ]=1.,N+1 by t=——xX+——.
jr] y 5 5

Step 2.
From (6), «a;(t) as the given functions can be
rewritten in the following form

o, () ~ATO () =0 (DA, j=0,2,.,m, (42)

where A7 =[a;(t,), a; (t,) -, (ty.1)] - Also,
by Lemma 4 we have

ul(t) =L, 0,1, j=01..m

Therefore, the right side of the equation can be
approximated as

AJ®N (t)

onaj(x)u(j)(t) & FZOLj (CN (t)QL (X)Aj ~ |:FZOLjAj:| 0, (t), (43)

where ;&j is the (N+1)x(N+1) diagonal
matrix whose entries correspond to the elements of
A;. Note that the points t; relaed to. X;,

j=12,..,N+1, ad the vectors L,
j =0,2,...,m, aredefined in (28).

Step 3.
Now we focus on the Integral part with the constant
limits of integration® of the proposed integral

equation. It is clear that K, (X,t) , asakernd of the
Fredholm part, can be written as follows

N+IN+1 ;
ky(t,s) ~ szij G (t)Cj (s)
j=li=1
=[C,(1), Cy(1), ..., Cppy (NIK[C,(8), Cy(S), -, Cya(S)]
=0, (1K' '0,(s), (44)

where kz(t_ S-) = kijf = (Kf)ij .

i1
Now we describe the most important part of the
process

j:kz t,9ue)] ds~ j:’@TN (HK 0, (9O (U, ds
=@ (HK' (L“@N(s)@)L (s)ds|U,
=0 (K'Y,  ©

where S isdefined as follows

S= [ ©,(90},(9ds~ diagonall [ C,(9)ds [ C,(9ds -, [ Cy,(9)al],

which is obtained from (24).
Note that the integral has the scalar value. So it is
equal to itstranspose. Finally, we have

j:k2 t9ue ds~[K U, [0, ). @

Step 4.
This step explains how to reduce the Volterra
Integral part of -the proposed mixed Volterra

Fredholm integral equation. Similarly, K, (t,S), as

a kernel of the Volterra part, can be approximated
as

k(6923 S KCHC© = OLOKD,(S), n

j=1i=1

where K (x,t;) = ki =(K");. Therefore, we
have

DpeL(s)

[%,(t.9[uE] ds= [[OLOK" 0, (908U, ds= O ()K T, [ O] (s)ds

~ O (DK U, PO, (1) = HO (1), (48)

Where, according to Lemma 2 Jp is the diagonal

matrix constructed by entries of U . Also, I:I isa
column vector including the entries of the main
diagonal of K*U P . Itisadirect result of Lemma
3.

Step 5.

Now we substitute the obtained reformed parts into
(39). So, we have

HIZZ;LJA;}FT,Alﬂsz(Kfqu)T}@N(t):0_ (49)

Since the above equation is satisfied for every
t e[a,b], wehave

< X T ) T_
(J;LJAJ]—F -AMH-2,(K'SU,) =0. (50)
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Solving the obtained system included N +1
unknowns and N +1 equations, leading to the
solution of the integral equation. Newton's method
can fulfill the accurate solutions of nonlinear
systems.

5. Numerical results

In this section, some different examples which have
been solved with other usua methods are
considered. Thus, the obtained numerical results
can be compared with other methods. The
associated computations with the examples were
performed using MAPLE 13 with 64 digit precision
on a Personal Computer. Although 64 digits were
used in the computations, only 2 digits are legit in
the illustrative examples.

Example 1. As the first example, consider the
following integral equation of the first kind [34]

2+l _
et2—11 - Lletzsu(s) ds=0, te[01],
+

where the exact solution is U(t) = €' . We proceed
with the process of solving corresponding to the
described stepsfor N = 4. According to (39)

t%s
k,(t,s) =€ 7,

q=1, A, =0,
t2

et o1
f(t) = —,
® t2+1

and we approximate the solution as follows

dy=-1

ut) =Uu’e, ).

Now, we obtain the needed vectors and matrices
asfollows

253 213 161 122 102 3.09
185 165 137 114 102 252

K'=|128 122 113 105 101|, F=|199
104 103 102 101 10 176
10 10 10 10 10 172
008 0 0 0 O u,
0 026 0 0 O u,

sl 0 0 031 0 0 U, =|u |
O 0 0 026 0 u,
0O 0 0 0 008 u

o

Substituting these values in (53) gives the
following system of linear equations

FT—(K'su,)" =0,

which is equivaent to

0.21u, +0.56u, +0.49u, + 0.32u, + 0.09u, —3.09 =0,
0.16u, +0.43u, + 0.42u, + 0.30u, + 0.09u, — 2.52 =0,
0.11u, +0.32u, +0.35u, +0.28u, + 0.08u; —1.99 =0,
0.09u, +0.27u, + 0.31u, + 0.27u, + 0.08u; —1.76 = 0O,
0.08u, +0.26u, + 0.31u, + 0.26u, +0.08u; —1.72= 0.

From this system, the coefficients U, , i =1,2,...,5
are computed as

U=[264 222 164 1.24 1.0

and the approximate solution of the integra
equation is obtai ned by

u(t) ~ iui G (1),

which is fitted on the exact solution demonstrated
in Fig. 1. In addition, error function is shown for
N'=10. Further investigations will be described
in the conclusion.

N=4

2.6

2.4+

2.24

T T T T T T
o 0.2 0.4 0.6 0.8 1
r

| approximated solution

exact solution |

N=10

0.006+
0.005+
0.004+

=N
- b/

—0.003
T

o
1

a 0.2 0.4 0.6 0.8 1

Fig. 1. The exact and approximated solution cover each other for
N = 4. Theerror function for N =10 isalso shown. Seethe
Example 1
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Example 2. Consider the following integral
equation of the first kind [17]

1—51(— 8e” +6sint+3cost +5e™" ) j:(es’I +sin(t—s))u(s)ds=0,

where the exact solution is Uu(t) =e*. We

describe the steps of solving for N =4.

According to (39)

k,(t,s) =€ +sin(t—s), p=1, A4=-1,  1,=0,
-1 2t . t
f(t) =—(-8e" +6sint+3cost+5¢"),
15

and we approximate the solution as follows
ut) =UTe, ().

Now we obtain the needed vectors and matrices
asfollows

From this system, the coefficients U,

i =1,2,...,5 are computed as

U=[6.99 491 271 152 1.05]

and the approximate solution of the integra
equation is obtained by

u(t) ~ iui G (1),

which is fitted on the exact solution demonstrated
in Fig. 2. In addition, error function is shown for
N =15.

10 101 108 116 120 3.18

1.02 10 104 111 116 2.03

KY=/115 105 10 104 1.08|, F=10.88],

146 125 105 10 101 0.26

177 146 115 1.02 1.0 0.03
006 -0.01 001 -00 00 u 0 0 0 O
027 013 -0.02 001 -00 0O u 0O 0 O
P=/030 033 015 -0.03 00 |, 0 0 u;, 0.0
026 025 029 013 -00 0 0 0 u O
0.08 0.09 008 010 0.03 0.0 0 0 wu

and H constructed by KVJDP

0.06u, +0.27u, +0.33u; + 03111, + 0.10u,
—0.01u, +0.13u, +0:35u, + 0.28u, + 0.10u,
H™ =| 0.01u, —0.02u, +0.15u, +0.30u, + 0.08u,
—0.01u, +0.02u, — 0.03u, +0.13u, +0.10u,
0.03u,

Substituting these values in (53) gives the
following system of linear equations

FT-H" =0,
which is equivalent to

0.06u, +0.27u, + 0.33u, + 0.31u, + 0.10u, —3.18 = 0,
—~0.01u, +0.13u, + 0.35u, + 0.28u, +0.10u, — 2.03= 0,
0.01u, —0.02u, + 0.15u, +0.30u, + 0.08u, —0.88 =0,
—0.01u, +0.02u, — 0.03u, +0.13u, +0.10u, — 0.26 = 0,
0.03u, —0.03=0.

N=4
/
74
/
/
6
/
5 /
Ve
4 7
7
7
34 e
-
-~
2 -
-
-
—
1= T T T T T
0 0.2 0.4 0.6 0.8 1
¢
— = approximated solution exact solution |
N=15
7.% 10714
6.x 10714+
5. % 10714+
4. % 10714
3.x 10714+
2. % 10714
1.% 10714
04
—1.% 10714
T T T T T T
4] 0.2 0.4 0.6 0.8 1

£

Fig. 2. The exact and approximated solution coincided with each
other for N =4. The error function for N =15 is aso
shown. See the Example 2.

Example 3. Consider the Volterra integral egquation
of the second kind as follows [35, 36]

u(t) = cos(t) - I;(t _ s)cos(t — s)u(s)ds,

where the exact solution is y(t) = 1(2005@+1).
3

Corresponding to (39)
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ki(t,s) = (t-g)cos(t-s),  p=1,
n=-1,  A,=0 m=0,
f (t) = cost, a,(t) =1,

and we approximate the solution as follows

ut) =U e ().

Similarly, we obtain the needed matrices and
vectorsfor N = 4 asfollows
1 10000 U 0.56
1 01000 u, 0.70
A=[1, A=[0 01 00 L=y F=|088|
1 00010 u, 0.98
1 00001 Ug 10
0.0 018 042 055 055 0.06 -001 001 -00 00
-018 00 028 049 055 027 013 -0.02 0.01 -0.0
KY=|-042 -028 00 028 042|, P={030 033 015 -003 00 |,
-055 -049 -028 00 018 026 025 029 013 -0.0
-055 -055 -042 -018 0.0 008 009 008 010 0.03
u 0 0 0 O 0.05u, +0.13u, +0.15u, + 0.05u,4
0 u 0 0 O 0.09u,+0.12u, +0.05U;
0,=|0 0 u 0 0| A= 0.01u, +0.08u, +0.03u,
0 0 0 u O —0.01u, +0.01u, +0.02u,
0 0 0 0 uy 0.0

Substituting these values in (53) gives the
nonlinear system of equations

u, +0.05u, +0.13u, + 0.15u, + 0.05u; <0.56 = 0,
u, +0.09u, + 0.12u, + 0.05u; =0.70=0,
U, +0.01u, +0.08u, +0.03u; —0.88 = 0,

u, —0.01u, + 0.01u, + 0.02us — 0.98,
u,—1.0=0.

the coefficients U,

From ,

this ‘system,
i =1,2,...,5 are computed as

U=[025 046 077 096 10J.

and the approximate solution of the mixed Volterra-
Fredholm integral equation is obtained by

u()) ~ YuC, 0,

which coincides for 3-digit arithmetic with the

exact solution. The method for N =10 gives 11
true digits. The results are reported in Tablel.

Table 1. The infinity norm of error

functions for different N .

Example| N =5 N =15 N =30
1 2.05x107% | 7.82x10° | 8.74x10*
2 117x10° | 752x10™* | 5.05x10°%
3 2.41x10°° | 1.04x10Y | 8.01x10™*
4 2.01x10° | 357x10™ | 451x10°%
5 351x10™* | 1.37x10°% | 2.91x107™®
6 3.10x10° | 1.94x107Y | 273x107®
7 451x10° | 1.48x107® | 1.44x10™®
8 4.06x10° | 3.82x107® | 1.12x10™
9 8.31x1072 | 559x10° | 3.61x10™"

Example 4. Consider

1

u(t)=;1t6+ft4—t2+§t—f
30 3 4

3

the ‘following mixed
Volterra-Fredholm integral equation [37, 24]

5

+ J.;(t—s)[u(s)]zds+ J.:(t+s)u(s)ds, t,se[0,1],

where the exact solution is u(t) =t*—2.
According to (39)

k(9 =t-s,

f(t)=_—1t6+—t4—t2
30 3

k,=t+s p=

1

2, g=1, A=i,=1 m=0,
5 5

+—1——, a,y(t) =1,
3'72 o(t)

and we approximate the solution as follows

ut) =U e, (t).

Then, for N =4, we obtain the vector and
matrices as follows

J>)
1
R R R R e

10000 u,
01000 U,
A=|0 01 00, L=|u
00010 u,
00001 U
[195 1.77 148 1.18 1.0
177 159 129 10 082
K'=[148 129 10 071 052|,
118 1.0 0.71 041 023
|10 082 052 023 005
[0.0 018 048 0.77 095
-0.18 0.0 029 059 0.77
KY=|-048 -029 0.0 029 048|,
-0.77 -059 -0.29 0.0 0.18
|-0.95 -0.77 -048 -0.18 00

-0.30
-0.43
F=|-065|
-0.95
-121
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006 -001L 001 -00 00 where U(0)=1 and the exact solution is
027 013 -002 001 -00 2
P=/030 033 015 -003 00 |, u(t) = €" . With respect to (39),
026 025 029 013 -00
008 009 008 010 003 K, =t(1+ 2t)es ), p=1, A4=1  4=0, m=1
008 0 0 0 0
0 026 0 0 0
s=lo0 0 0310 0 f(t)=1+2t, a,(t) =1, a,(t) =1,
0 0 0 026 0
0 0 0 o0 o008 and we approximate the solution as follows:
- B - ' ~ T
u’ 0 0 0 O u, u't) =U O (1)
2
- 0 u 02 0 0 Uz Then, for N =4, we obtain the vector and
U,={0 0 u”- 0 0} U,=lus|, matrices as follows:
2
u
0 0 0 u 02 4 1 10000
10 0 0 0 wu| | Us | 1 01000
A,=A,=|1|, A,=A,=(0/0 1 0 0],
and H, which is constructed by entries of 1 yoo1o0
" 1 00001
KU,P 2.95 1
_ i} 2.59 1
0.049u,” +0.145u,” +0.203u,” +0.079u,” F=|20, &=[1
0.002u,” + 0.098u,” +0.147u,” + 0.067u,” 141 1
HT =|-0.003,2 +0.007u,” +0.084u,? + 0.037u,” | 105 :
0-003112 - O-OO7U22 + 0-008U32 + 0-01&152 u, 0.06u, +0.27u, + 0.30u, + 0.26U, + 0.08U,
0.001u 2 _ 0.001u 2 +0.001u 2 u, -0.01u, +0.13u, +0.33u, + 0.25u, + 0.09 ug
L ) 2 ) 3 ) 4 Lh=U"=|u,|, LI=U"P+e, =| 0.01u,-0.02u,+0.15u, +0.29u, +0.08u; |,
i . . i u, 0.01u, -0.03u, +0.13u, +0.10u,
Substituting these values in (53) gives the u, 0.03u,

nonlinear system of equations

0.84u, —0.46u, —0.450, —0.31u, —0.08u; +0.30— 0.05u,” — 0.14u,” —0.20u,” —0.08u,” =0,

‘7 0.15u, +0.58u, — 0.40u; — 0.26u,, — 0.07u; +0.43—0.10u,” < 0.15u,” - 0.07u,” = 0,

—0.12u, —0.34u, +0.69u, — 0.1, — 0.04u; +0.65— 0.01u,° — 0.08u,° —0.04u,” = 0,
}- 0.10u, —0.26u, — 0.22u, + 0.89u, — 0.02u, + 0.95+ 0.01u,” —0.01u,” — 0.02u,” = 0,
—0.08u, —0.22u, — 0.16u, - 0.06U, +1.0u, +1.21=0.

From this system, the coefficients U, , i =1,2,...,.5
are computed as

U=[-105 -137 -1.75 -1.96 -20[,

and the approximate solution of the mixed Volterra-
Fredholm integral equation is obtained by

u(H) ~ SuC 0.

The numerical results are reported in Table 1.

Example 5. Consider the following initia value
problem [38, 39]

u't)+u(t) =1+ 2t + j;t(l+ 2t)e9u(s)ds, u(0)=1, te[0,1],

288 333 365 337 295
172 205 238 232 209
KY=1063 079 10 106 1.01|,
014 018 025 0.29 0.29
0.01 0.01 0.02 0.02 0.03
0.06 -0.01 001 -00 00
027 013 -002 001 -00
P=/030 033 015 -0.03 00 |,
026 025 029 013 -00
0.08 0.09 008 010 003

0.06y, +0.27u, + 0.30u, + 0.26u, + 0.08u; +1
—0.01u, + 0.13u, + 0.33u, + 0.25u, + 0.09u, +1
U, =| 0.0lu,-0.02u, +0.15u, + 0.29u, +0.08us +1 |,
0.01u, —0.03u, +0.13u, +0.10u, +1
0.03u; +1

l:-j-p = diagonal ((U p)lll(U p)22’(U p)331(U p)M’(U p)55)1

N

and H, which is constructed by entries of
K"UpP
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3.30+0.15u, +0.49u, + 0.70u, + 0.27u; |
0.02u, +0.19u, + 0.36u, + 0.15u, +1.81

HT = 0.52+0.01u, + 0.08u, + 0.04u,

0.06

0.0

Substituting these values in (53) gives the linear
system of equations

1.06u, +0.12u, —0.19u, — 0.43u, —0.19u, —5.25= 0,
—0.01y, +1.11u, + 0.14u, — 0.11u, — 0.06u, —3.40=0,
0.01u, — 0.02u, +1.14u, + 0.21u, +0.04u, —~1.52 =0,
0.01u, — 0.03u, +1.12u, +0.09u, —0.47 = 0,

1.03u, - 0.05=0.

From this system, the coefficients U,
i=1,2,..,5, arecomputed as

U=[5.05 298 1.28 0.43 0.05,

and the approximate solution of the mixed Volterra-
Fredholm integral equation is obtained by

U ~ YuC, (),

which coincides for 2-digit arithmetic with the
exact solution. Also, the norm infinity of error

function for N =10 shows 8 true digits with
respect to the exact solution.

We are reminded that we used the 64 digits for
solving the examples, however, we show the results
with 2 digits. Compare the last equation in (54)
with the obtained value for Us. It confirms digits

can have a serious effect on the results. The results
arereported in Table 1.

Example 6. Consider the following nonlinear
Volterra integral eguation of the second kind [40,
24]

ut) =1+sin’t —3j;s'n(t _9[u(9Pds, te[0,1],
where the exact solution is u(t) = cost.
Corresponding to (39)

k,(t,s) =sin(t-s), p=2 A =-3, A, =0, m=0,

f(t) =1+sin’t, a,(t) =1,

and we approximate the solution as follows

u) ~UTe, ).
Theresults are reported in Table 1.

Example 7. Consider the Fredholm integro-
differential equation as follows[41]:

u’(t) + tu'(t) —tu(t) = € - 2sint

+ I isi n(s) e°u(s)ds,

u(0) =1, u'(0) =1,

te[-1,1],

where the exact solution is U(t) = €' . According

to (39)
k(t,s)=sin(s)e®, g=1, 4=0, A4=1 m=2

ft)y=€-2sint, " o (t)==t, = at)=t, a,(t)=1,

and we approximate the solution as follows
u'(t) ~UTO, (t).

The results are shown in Table 1.

Example 8. Consider the Volterra integro-
differential equation as follows [42]

u"(t)—s‘nht+1coshtsinht—Et—j‘uz(s)ds te[0,1]
5 St , 1],

u(0)=0, u(0)=1,

where the exact solution is u(t) =sinht.
According to (39)

k(s)=1 qgq=2, 4=-1, 14,=0  m=2
f(t)=sinht+%coshtsinht—%t,

%®=0, @®=0, o,t)=1,

and we approximate the solution as follows
u’(t) = UTO (t).

Theresults are reported in Table 1.

Example 9. Consider the integra equation of the
first kind asfollows [17]

4z cog(4nt) +sin(4nt) —4ze’ J~r e

5 5 sU(s)ds=0,
(1+t%)(1+167°)

01+S

where the exact solution is U(t) = sin(4xt).
According to (39)
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t-s

f— e f— - =
kl(t!s) _W! q_l! 21_ 1’ 1’2 0’
f(t) = 477 cos(4nt) +sin(4nt) — 4ne'
(1+t3)(1+1672) ’

and we approximate the solution as follows:
ut) =U e ().

Weillustrate the numerical examplein Table 1.

Conclusion

The Chebyshev cardinal functions and the
associated operational matrices of integration P

and product F are applied to solve the genera
type of linear and nonlinear integral equations.
Moreover, the new defined matrix operations utilize
the computations so that the proposed method can
reduce the integral equation to an algebraic system
without using the collocation scheme. The obtained
results showed that this approach can solve the
problem effectively with simple computations.
There are some notable points in the numerica
results which we investigate in detail. Table 1

shows the maximum errors for N = 5,15 and 30.

Looking carefully at the results shows the different
behavior of error functions. In particular, Examples
1 and 4 have an irregular rate of convergence.
Experimenta results show the Fredhlom integral
equations of the first kind have the most ill-
conditioned systems, which lead to weak accurate.
Also, the best candidate integral eguations for this
method have the solution in the polynomia forms,
even if the problem includes many terms or the
higher order of differentiations.

The method of Chebyshev cardinal functions
proposed in this paper can be extended to solve the
more general type as follows

iocj(t)u(j) (1) =)+ k, (L F(t, 5 u()ds
1, k(£ 9G(t, 5 u(S)ds,

under theinitial conditions
u(a) = u;, j=01,..,m-1.

Here we can use Taylor seriesof F and G.
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