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Abstract

Biofacies and palacoecology of the limestone of the Jahrum Formation in the Lar area in the southwest of Iran
(Zagros Basin) is addressed in this paper. Our detailed analysis of biofacies and palaeoecology shows that the
Jahrum Formation in the studied area were deposited in a carbonate open shelf dominated by heterozoan and,
subordinately, photozoan skeletal assemblages. Based on analysis of larger benthic foraminiferal assemblages and
biofacies features, two major depositional environments are identified. These include inner shelf and middle shelf
environments. The inner shelf facies is characterized by wackestone-packstone, dominated by various taxa of
imperforate foraminifera. The middle shelf is represented by wackestone-packstone with a diverse assemblage of
larger foraminifera with perforate wall. The distribution of the larger benthic foraminifera indicates that shallow
marine carbonate sediments of the Jahrum Formation at the studied areas have been deposited in the photic zone

of tropical to subtropical oceans.
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1. Introduction

The limestone of Jahrum Formation (Paleocene-
Eocene), constitutes one of the reservoirintervalsin
the Zagros Basin in Iran. The studied areais located
in Fars Province (SW Iran), which is part of the
Zagros fold-and-thrust belt (Fig. 1) [1, 2]. The
Jahrum Formation, the focus of this study, takes its
name from the type section at Kuh-e Jahrum in Fars
Province. The type section was described by James
and Wynd [3]. It is divided into three carbonate
units with a total thickness of 467.5 m. This
formation transgressivly overlies the silty marl,
dolomites and evaporates of the Sachun Formation
(Fig. 2) [4]. Where the latter is absent, it overlies
either the Pabdeh or Gurpi formations. The upper
contact with the Asmari Formation is
unconformable. On the Fars area, there is a
transition between the Jahrum and Pabdeh
Formation. Studies of the Jahrum Formation have
focused mainly on their lithostratigraphy and
biostratigraphy, James and Wynd [3]; Rahaghi [5];
Kalantari [6]; Hottinger [7]. A few previous studies
have been focused on detailed investigation of
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sedimentological aspects [8-10], however, detailed
palaeoenvironmental interpretations and biofacies

work is still necessary. Shallow marine carbonate
sediments of the Jahrum Formation exhibit a great
diversity and abundance of larger foraminifera, and
they can be easily identified in thin section and in
the field. Consequently, larger foraminifera provide
a useful tool for reconstructing paleoenvironments
in lithologically monotonous Jahrum successions.
The most prominent components of the studied
sediments are nummulitids and aveolinids.

This paper examines in detail the biofacies of
Jahrum Formation in the Lar area and provides
palacoenvironmental  interpretations  of  the
sedimentary succession.

2. Methods of study

More than 328 thin sections were analyzed under
the Petrographic microscope for biofacies
composition. The textura classification of Dunham
[11] and Embry and Klovan [12] were used to
describe biofacies types. The biofacies and
assemblages of benthic hyaine and imperforate
foraminifera  are  used in interpreting
palacoenvironmental conditions of the Jahrum
Formation.
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Fig. 1. Location of the studied sections in southwest Iran
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Fig. 2. Cenozoic stratigraphic correlation chart of the
Iranian Sector of the Zagros Basin, [4]

3. Geological setting

The lranian plateau extends over a number of
continental fragments welded together along suture
zones of oceanic character. Each fragment differsin
its sedimentary history, age of magmatism and
metamorphism, and its structural character and
intensity of deformation [13]. These fragments are
in the following provinces. (1) Zagros, (2)
Sanandgj-Sirjan, (3) Urumieh-Dokhtar, (4) Central
Iran, (5) Alborz, (6) Kopeh Dagh, (7) Lut and (8)
Makran (Fig. 3) [14]. The Jahrum Formation is part
of the Cenozoic deposits (Paleocene-Eocene) of the
Zagros Basin in southwest Iran. The Zagros
Mountains and adjacent areas are well-known for
their vast huge hydrocarbon reservoirs and very
young tectonic activities [2].
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Fig. 3. (@) Genera map of Iran showing eight geologic
provinces [13], (b) Subdivisions of the Zagros province

The Zagros Basin was a continental margin
attached to the eastern edge of Africa during the
Phanerozoic. Throughout the Permian, detachment
of the Iran plate including Alborz, Central-East-lran
microcontinent, and Sanandg-Sirjan from the
Arabian plate caused the formation of the Neo-
Tethys Ocean [1, 15].

The closure of the Neo-Tethys Ocean, mostly
during the Late Cretaceous, was because of the
subduction of the Arabian plate toward the
northeast, beneath the Iranian subplate [13, 16-18].

The Zagros fold-thrust belt resulted from the
continent-continent collision between the Arabian
margin and the Eurasian Plate, caused the
subsequent closure of the Neo-Tethys Ocean during
the Cenozoic [19, 20]. The Zagros fold-and-thrust
belt of Iran isaresult of the Alpine orogenic events
[21] in the Alpine-Himalayan mountain range.

This study is based on two outcrop sections in the
Lar area (Kuh-e Gach and Kuh-e Kurdeh) (Fig. 4).
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Kuh-e Kurdeh section is located about 40 Km
northeast of Lar city. This section was measured at
27° 49' 26" N and 54° 40' 9"E. The Kuh-e Gach
section is located about 30 Km southeast of Lar
City. It was measured in detail at 27° 38' 55" N and
54° 37' 16" E.

The total thickness of the Jahrum Formation is
404.5 m and 437 m in the Kuh-e Gach and Kuh-e
Kurdeh sections, respectively.

Fig. 4. Location and geological map of the study areas,
Kuh-e Gach and Kuh-e Kurdeh Anticline, sw of Iran, Lar
area

4. Biofacies analysis

Facies anaysis of Jahrum, the Formation in the
study area has resulted in recognition of 7 biofacies
types (Figs. 5, 6), characterizing platform
development (Figs. 7, 8). Each biofacies  is
characterised by typical skeletal components and
textures. The genera environmental interpretations
of the hiofacies are discussed in the following

paragraphs.

4.1. Biofacies A. Large and flat. nummulitids
bioclastic wackestone

The predominate fauna are larger benthic
foraminifera with perforate walls (nummulitidag).
Nummulitidae are represented by Operculina and
Nummulites. This biofacies has a fine grained
matrix. Other bioclasts include Linderina,
Amphistegina and echinoid.

The foraminifera assemblage of this facies (Fig.
5a) shows close affinities to that described by
Cosovic et al. [22] of the Adriatic carbonate
platform (Istrian Peninsula) and Taheri et al. [10] of
the Jahrum Formation in the Zagros Basin. Such
assemblages are characteristic of lower sSlope
carbonate environments.

Fig. 5. Microfacies of the Jahrum Formation at Kuh-e
Gach section in Lar area. (a) Biofacies A, Large and flat
nummulitids bioclastic wackestone. (b) Biofacies B,
Lens-shaped nummulitids bioclastic  wackestone-
packstone. (c) Biofacies C, Foraminifera (perforate and
imperforate)  bioclastic  wackestone-packstone.  (d)
Biofacies D, High diversity imperforate foraminifera
packsotne-grainstone. () Biofacies F, Miliolids
packstone. (f) Biofacies G, Stromatalitic boundstone

Fig. 6. Microfacies of the Jahrum Formation at Kuh-e
Kurdeh section in Lar area. (a) Biofacies B, Lens-shaped
nummulitids bioclastic wackestone- packstone. (b)
Biofacies C, Foraminifera (perforate and imperforate)
bioclastic wackestone-packstone. (c) Biofacies D, High
diversity imperforate foraminifera packsotne-grainstone.
(d) Biofacies E, Dictyoconus Coskinolina wackestone-
packstone. (e) Biofacies F, Miliolids packstone. (f);
Biofacies G, Stromatolitic boundstone.
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The presence of large and flat foraminifera such
as nummlitidae, in comparison with analogues in
the modern platform [23-27], dlowed us to
interpret this facies as having been deposited in the
lower photic zone.

4.2. Biofacies B. Lens-shaped
bioclastic wackestone-packstone

nummulitids

This biofacies (Figs. 5b, 6a) has a high diversity
of benthic biota including large benthic forminifera
and echinoid. The larger foraminifera consists of
small-lens shaped Nummulites, Operculina and
Amphistegina. Fragmentation of larger foraminifera

robust and small size tests are abundant biogenic
components in biofacies B. Depositional textures
are represented by wackestone- packstone. Peloids
are aso present.

The change in shape of test of larger perforate
foraminiferawith depth has been documented in the
Cenozoic  carbonate  successions  [28-32].
Prolification of perforates benthic foraminifera is
indicative of normal marine conditions [28]. The
sediments with robust and lens specimens reflect
shallower water than those containing larger and
flat nummulitids and discocyclinids [29, 31]. The
relatively high degree of fragmentation of the larger
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Fig. 7. Vertical facies distribution and biofacies of the Jahrum Formation at Kuh-e Gach sectionin Lar area, Zagros Basin
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Fig. 8. Vertical facies distribution and biofacies of the Jahrum Formation at Kuh-e Kurdeh section in Lar area, Zagros Basin

4.3. Biofaces C. Foraminifera (perforate and
imperforate) bioclastic wackestone-packstone

The main components of this biofacies (Figs. 5c,
6b) are benthic foraminifera, fragments of
macrofossils and peloids. Both hyaline and
imperforate foraminifera are present. Hyaline
foraminifera are represented by small lens shaped
Nummulites, Linderina, Amphistegina, Operculina,
Orbitolites, and Spherogypsina, whereas among
imperforate  forms, miliolids,  textularids,
Austrotrillina, Archias, Peneroplis and Orbitolites

are common. Echinoderms, gastropods and
dasycldacean are also present. The features of biota
and stratigraphic position of biofacies C indicate
that sedimentation took place in the semirestricted
lagoonal area. Co-occurrence of normal marine
perforates foraminifera and platform-interior
imperforates foraminifera suggest that there was no
effective barrier present to separate the platform
interior from the open marine [28, 33]. Nebelsick et
al. [34], Corda and Brandano [35] and Vaziri-
Moghaddam et al. [36]considered the similar facies
as representative of a shelf lagoon.
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4.4, Biofacies D. High diversity imperforate
foraminifera wackestone-packstone grainstone

The abundant components of this biofacies are
benthic foraminifers with imperforated walls such
as. Orbitolites, Somalina, Dictyoconus, Rhapydionina,
Alveolina, textularids and miliolids (Figs. 5d and 6c).
These deposits include different textures ranging
from wackestone to packstone and grainstone.
Peloids are aso present. In some samples, a
subordinate amount of dasycladacean are aso
present.

The occurrence of a large number of imperforate
foraminifera tests indicates that the sedimentation
took place in a shelf lagoon setting with relatively
low to moderate current energy [28, 33].

45. Biofacies E. Dictyoconus Coskinolina
wackestone-packstone

This facies is dominated by benthic foraminifera
(mainly Dictyoconus and Coskinolina) and other
bioclasts (Fig. 6d). Small Peloids are also present.
Textures reflect poorly sorted wackestone-
packstone. Some of the grains have been partially
micritized.

Both the fossil content and the sediment texture
suggest alow-energy shallow subtidal environment.
The features of component and stratigraphic
position indicate that sedimentation took place in
the lagoonal area.

4.6. Biofacies F. Miliolids packstone-grainstone

This biofacies is dominated by the occurrence of
small miliolids and Peloids. Rare echinids
fragments are also present (Figs. 5e and 6€).

This facies was deposited in very restricted
innermost shelf areas. The abundance of peloids,
miliolids and low_diversity of fauna support this
interpretation.

4.7. Biofacies G. Stromatolitic boundstone

These deposits are represented by a mud-
supported texture formed by millimeter thick
lamina, generally without fossils, irregularly
undulating and laterally continuous (stromatolitic
type cryptoalgal laminae) (Figs. 5f and 6f). The
cyanobacteria with their filamentous features
trapping and binding the sedimentary particles
produced a laminated sediment or stromatolite.

This facies was deposited in a tidal flat
environment [37-41]. Modern stromatolites are
most common in shallow, intertidal and supratidal
zones, athough they may occur under subtidal
conditiong/42].

5. Sedimentary model

On the basis of biofacies variation, a sedimentary
model can be proposed for the Jahrum Formation,
suggesting that it was accumulated in an open shelf
carbonate platform (Fig. 9). As aresult of the facies
interpretations and palacoecology of larger
foraminifera, it can be stated that middle shelf and
higher portions of the inner shelf environments are
present among the studied area. Planktonic
foraminifera are absent in the studied sections,
because the setting is located in shallow tropical sea
environments, not-suitable for their accumulation.

In the study areas, the inner shelf deposits consist
of an open lagoon, protected lagoon and tidal flat.
Tidal flat facies is characterized by stromatolite
boundstone. The wavy or flat-laminated
stromatolite boundstones are formed by trapping
and binding fine-grained carbonate sediments by
cyanobacteriain the upper intertidal zone.

In the protected lagoon, the most abundant
biofacies are medium to coarse grained larger
foraminifera  with. imperforate  wall-bioclast
wackestone-packstone The presence of imperforate
foraminifera that include Archaias, Peneroplis,
Dendritina, Alveolina, Austrotrillina, Orbitolites,
Dictyoconus, Coskinolina and miliolids indicates a
low-energy, upper photic, shallow shelf lagoon
depositional environment. Generally the upper
photic zone is dominated by porcellaneus larger
foraminifera, predominantly living in symbiosis
with dinophyceans, chlorophyceans or
rhodophyceans [33]. Open lagoon shallow subtidal
environments are characterized by biofacies types
that include mixed open marine bioclasts (such as
echinoids and perforate foraminifera) and protected
environment fauna (such as imperforate
foraminifera). The diversity association of skeletal
components represents a shallow subtidal
environment, with optimal conditions with regard
to salinity and water circulation.

Nummulitids with robust and small size tests are
abundant fauna in the upper middle shelf
environments. The sediments with robust and lens
specimens reflect shallower water than those
containing larger and flat nummulitids and
discocyclinids [29, 31]. The change in shape of test
of the larger perforate foraminifera with depth has
been documented in the Cenozoic carbonate
successions [28-32]. The relatively high degree of
fragmentation of the larger foraminifera points to
moderate turbulence conditions for this facies.
Lower middle shelf facies are differentiated from
upper middle shelf by the greater amount of
micritic matrix, an increase in the flatness, and size
of the perforate foraminifera.
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6. Palaeoecology

Larger foraminifera are important constituents of
shallow-water carbonates from the Early Eocene to
Early Miocene of SW Iran (Zagros Basin). Larger
foraminifera which occupied most niches in the
photic zone of tropical to subtropical oceans in the
Tethyan realm during the Paleogene, provide a
useful tool for reconstructing palaeoenvironments
and biostratigraphy.

Scheibner et al. [43] proposed that the larger
foraminifera turn over (LFT) during the
Palacocene-Eocene transition closely linked with
the Paleocene-Eocene thermal maximum (PETM).
Larger foraminifera are extreme K-strategists,
flourishing in a constant, typicaly oligotrophic
environment [44].

Carbonate production directly or indirectly
depends on photosynthesis and consequently on
light penetration into water column. The Jahrum
Formation contains both larger benthic imperforate
foraminifera  and, subordinately hyaline
foraminifera. Both groups of larger foraminifera
are often supported by endosymbiotic relationships
with unicellular algae.

The  paleoenvironmental distribution  of
foraminiferal  assemblages and  depositional
conditions have been reconstructed, based on the
depth range of recent foraminifera, foraminifera-

bearing Early Oligocene carbonates from the Lower
Inn Valley of Austria [34], Oligo-Miocene
foraminiferal limestones of the Zagros Basin [36,
45, 46], Eocene foraminifera limestones of the
Adriatic carbonate platform [22], Paleocene-earliest
Eocene larger benthic foraminifera of SW Slovenia
[47], benthic carbonate assemblages across the
Paleocene-Eocene boundary of the Campo section
[48] and Early Eocene foraminiferal limestones of
the Pyrenees [49]. The occurrence of a large
number of porcelaneous imperforate foraminiferal
tests may point to the depositional environment
being dlightly hypersaline. The biotic assemblage
indicate a deposition within the photic zone, in a
seagrass-dominated environment, as suggested by
the presence of _epiphytic porcellaneous
foraminifera (Alveolina, Archaias, Peneroplis),
such an assemblage has been interpreted as a shelf—
lagoon environment [50, 37, 51, 36].

Perforate foraminifera that exist in shallow water
are characterized by hyaline walls and they protect
themselves from UV light by producing very thick,
lamellate test walls to avoid photo inhibition of
symbiotic algae within the test in bright sunlight,
and/or test damage in turbulent water or they occur
in moderately deeper water. Flatter tests and thinner
test walls with increasing water depth reflect
decreased light levels at greater depths or possibly
poor water transparency in shallow water [29].
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7. Skeletal grain association

The differentiation between non-tropical and
tropical carbonates is mainly based on analysis of
skeletal  components  [52-54].  Non-tropical
carbonates are identified by the absence of certain
skeletal and non-skeletal grains (e.g. Halimeda,
ooids) and framework-forming zooxanthellate
corals [55]. Non-tropical carbonates are subdivided
into warm-temperate and cool-temperate provinces
[56]. Tropical associations are restricted to the
tropics, whereas sediments of temperate latitudes
also extend into the tropics [52- 54, 57]. Lees and
Buller [52], Lees [56], Carannante et a. [53] and
Hallock and Schlager [58] have concluded that
parameters such as depth, nutrients and salinity
additionally influence distribution of skeletal
grains.

Consequently, certain skeletal grains may exist in
various environments. James [55] introduced two
new terms for carbonate grain associations
(‘Photozoan’ and ‘Heterozoan') that are applicable
to the entire Phanerozoic. The cool water sediments
are aways heterozoan, however, the heterozoan
association does not mean that the carbonates are
cool water [55].

The most common skeletal components in
limestones of the study areas are large benthic
foraminifera, whereas echinoids, bryozoans and
bivalve components are less common (Fig. 10).
Corals are almost absent. The biotic associations
and palaeolatitudina reconstructions [59] suggest
that carbonate sedimentation® of/ the Jahrum
Formation took place in tropical waters. under
oligotrophic conditions and .is dominated by a
heterozoan skeletal assemblage.

Zooaxanthellate corals did not-make framework
structures in the lower latitudes due to worldwide
warm sea-surface temperatures and enhanced CO,
levels [48]. Unlike zooaxanthellate cordls,
increasing summer sea-surface temperatures do not
cause symbiont loss in larger foraminifera [60].
Larger foraminifera and their symbionts agae
appear to be less succeptible to high summer
temperatures [61]. Therefore, the extension of
heterozoan assemblages in the Jahrum Formation
related to the palaeoecology of zooaxanthellate
corals.

8. Conclusions

Biogenic components of the Jahrum Formation are
dominated by benthic foraminifera. Based on
biogenic components and textures, 8 biofacies have
been recognized and grouped into two depositional
environments that correspond to the inner and
middle shelf environments, and are interpreted as a

carbonate platform developed in an open shelf
settings. As aresult of the facies interpretations and
palacoecology of larger foraminifera, it can be
stated that middle shelf and higher portions of the
inner shelf environments are present among the
studied areas. The biotic assemblages of the Jahrum
Formation suggest that carbonate sedimentation
took place in subtropical waters with oligotrophic
conditions.

Fig. 10. (a) Dictyoconus indicus, (J330). (b) Alveolina
rutimeyeri, (J303). (c) Orbitolites sp., (J374), (d)
Linderina brugesi, (J278). (e) Somalina stefaninii, (J256)
(f) Penarchaias glynnjonesi(3203) (g) Pyrgo sp. (3146)
(h) Nummulites sp., (J274) (i) Medocia blayensis (3199).
(J) Coradlinacean fragment, (J270). (k) Bryozoan
fragment (J275). (I) Amphistegina sp. (3202)
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