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Abstract

In this paper, we introduce a new type of almost statistical convergence of generalized difference sequences of
fuzzy numbers. We give the relations between the strongly almost Cesaro type convergence and almost statistical
convergence in these spaces. Furthermore, we study some of their properties like completeness, solidity,
symmetricity etc. We also give some inclusion relations related to these classes.
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1. Introduction

The notion of statistical convergence  was
introduced by Fast [1] and Schoenberg [2],
independently. Over the years and under different
names statistical convergence has been discussed in
the theory of Fourier analysis, ergodic theory and
number theory. Later, it was further investigated
from the sequence space point of view and linked
with summability theory by Connor [3], Fridy [4],
Mursaleen et al. ([5], [6]), Salat [7], Tripathy [8]
and many others. In recent years, generalizations of
statistical convergence have appeared in the study
of strong integral summability and the structure of
ideals of bounded continuous functions on locally
compact spaces. Statistical convergence and its
generalizations are also connected with subsets of
the Stone-Cech compactification of the natural
numbers. Moreover, statistical convergence is
closely related to the concept of convergence in
probability.

The existing literature on almost statistical
convergence and strongly almost convergence
appear to have been restricted to real or complex
sequences, but Altinok et al. [9] extended the idea
to apply to sequences of fuzzy numbers and also
Altin et al. ([10], [11]), Etetal. ([12], [13]), Basarir
and Mursaleen [14], Colak et al. [15] Gokhan et al.
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[16], Nuray [17], Savas [18], Tripathy et al. ([19],
[20], [21]), Talo and Basar [22] studied the
sequences of fuzzy numbers.

In the present paper, we introduce and examine
the concepts of almost statistical convergence and
strongly almost convergence of generalized
difference sequences of fuzzy numbers. In section 2
we give a brief overview about statistical
convergence, fuzzy numbers and using the

generalized difference operator A, and the

sequence /1=(ﬂ,n). We define the concepts of
almost A, — statistical convergence and strongly

r
almost A —convergence of sequences of fuzzy
numbers. In section 3 we establish some inclusion

relations between WF(Arm,/L p) and ST (Arm,i),
between S° (Arm,ﬂ) and S (Arm).

2. Definitionsand preliminaries

The definitions of statistical convergence and
strongly p—Cesaro convergence of a sequence of

real numbers were introduced in the literature
independent of one another and have followed
different lines of development since their first
appearance. It turns out, however, that the two
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definitions can be simply related to one another in
general and are equivalent for bounded sequences.
The idea of statistical convergence depends on the
density of subsets of the set N of natural numbers.
The density of a subset E of N is defined by

. 1 <n
3(E)=tim, , —>, %:( ) provided the limit exists,

where g is the characteristic function of E . It is
clear that any finite subset of N has zero natural
density and 5(Ec)= 1-6(E).

A sequence (Xk) of complex numbers is said to
be statistically convergent to ¢ if for every & >0,
5({k eN: |Xk —€| > 8})= 0. In this case we write
stat —limx, =/ or S—limx, = /.

Fuzzy sets are considered with respect to a
nonempty base set X of elements of interest. The

essential idea is that each element Xe X is
assigned a membership grade U(X) a value in

[0,1], with u(X)=0  corresponding to
O<ux)<l1 to  partial
membership, and U(X)=1 to full membership.
According to Zadeh [23] a fuzzy subset of X is a
nonempty subset {(X,U(X)):Xe X} of X x [0,1]
for some function U: X — [0,1]. The function U
itself is often used for the fuzzy set.

Let C(R") denote the family of all nonempty,

nonmembership,

compact, convex subsets of R". The space C(Rn)
has linear structure induced by the operations

A+B={a+b:ac AbeB} and
IA={ia:ac Al for ABcCR") and AeR
If a,feR and/ABeC(R"), so

w(A+B)=aA+aB, (af)A=a(BA), A=A

and if a,f 20, then (a+ f)A=caA+ A The
distance between A and B is defined by the
Hausdorff metric

5, (A, B) = max{supinf |a—b|, supinf|a—b]},
acA beB beB €A

where ”” denotes the usual Euclidean norm in R",

It is well known that (C(R"),5,) is a complete

metric space.
Denote

LRY={:R" >[01] .y  satisfies (i) —(iv)
below },

where

i) U is normal, that is, there exists an X, eR"
such that U(X,)=1;

ii) U is fuzzy convex, that is, for X,yeR" and
0< A <1,u(Ax+(1-4)y) =2 min[u(X),u(y)];

iii) U is upper semicontinuous;
iV) the closure of {XeR":u(X)> 0}, denoted by
[u]’, is compact.

If ue L(R"), then U is called a fuzzy number,
and L(R™) is said to.be a fuzzy number space.

For 0<a<l, the «-level set [u]” of

ue L(R") is defined by
[u]"=xeR":u(x)>a}.

Then from (i) —(iv), it follows that the « -level

sets [U]“ are in the space C(R").
For ‘the addition and scalar multiplication in
L(R"), we have

[usv]" =[ul"+[vI°, [ku]® = k[u]®

where u,ve L(R"), keR.

The aritmetic operations for o -level sets are
defined as follows:

Let u,veL(R") with the «—level sets be

LF =lacbe], M =[ag.be] aefo].

Then we have
[u+v] = [a{" +al b +b§’]

[u—V]* =[ay —b¢ by —a¢ ]

[U-V]a = [ min a,-ab}l, max a,-abfx} .
i,jel1,2] i,jel1,2]

Define, for each 1< <oo,

d (u,v)= [ [[8.(u. v ! docj
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and d, (u,v) = sup 5, ([u]",[V]*), where &, is the

0<a<l1
Hausdorff metric. Clearly d,,(u,V) = lim dg (u,V)
gq—ox©
with d, <d, if < ([24], [25)).

For simplicity in notation, throughout the paper
d will denote the notation d, with 1< q<oo,

The generalized de la Vallée-Poussion mean is
defined by

where A =(4,) is a non-decreasing sequence of
i SAL L A4 =1
Ay —® asN—o and | = [I’]—/1n +1,n].

positive numbers such that A

A sequence X= (Xk) is said to be
(V,4)— summable to a number £, if t,(X)— ¢ as
n— oo, (V,/”t)—summability reduces to (C,l)
summability when A, =n forall neN.

A sequence X =(X,) of fuzzy numbers is a
function X from the set N of all natural numbers
into L(R™). Thus, a sequence (X, ) of fuzzy

numbers is a correspondence from the set of natural
numbers to a set of fuzzy numbers, i.e., to each
natural number K there corresponds a._ fuzzy

number X(K). It is more common to write X
rather than X (K) and to denote the sequence by
(X, ) rather than X . The fuzzy number X, is
called the k ™ term of the sequence.

Let X =(X,) be a sequence of fuzzy numbers.
The sequence X = (X,) of fuzzy numbers is said
to be bounded if the-set {X, :keN} of fuzzy

numbers is bounded and convergent to the fuzzy
number X, written as 1im X, = X, if for every
k

£>0 there exists a positive integer K, such that

d(X,,X,)<e for k>k,. Let ¢ and c*
denote the set of all bounded sequences and all
convergent sequences of fuzzy numbers,
respectively [26].

The famous space € of all almost convergent
sequences was introduced by Lorentz [27] and a

sequence X=(Xk) is said to be strongly almost

convergent to a number ¢ (see Maddox [28]) if

1 . o
lima—> [x...=/|=0, uniformly in i.
k=1

The difference sequence spaces / w(A), c(A)
and C, (A), consisting of all real valued sequences
x=(%) such that AX=(X —X.,) in the

sequence spaces ¢, C and C,, were defined by

Kizmaz [29]. The idea of difference sequences is
generalized by Et and Colak [30], Basar and Altay
[31], Mursaleen [32], Tripathy et al. ([19], [33]) and
many others.

Let W be the set of all sequences of fuzzy
numbers. The operator Afm;v\f —w is defined by

(on)kzxk’ (Almx)kz(AmX)k=xk_Xk+m’ and

(A'mx)k = i(—l)“[r)xmmu for all keN
v=0 v

Throughout the paper‘m,r will denote any positive
integers and for convenience we will write A, X,

instead of (Arm X )k.

Definition 2.1. Let /X =(X, ) be a sequence of

fuzzy numbers. Then the sequence X = (X, ) is
said to be A|, —bounded if the set {Arka ke N}

of fuzzy numbers is bounded, and A, — convergent

to the fuzzy number X,, written as

li{nArka = X, , if for every & >0 there exists a
positive integer K, such that d(Arka,X0)< £
for all k>k,. By KZ(Arm) and c (Arm) we
denote the sets of all A", —bounded sequences and

r
all A, —convergent sequences of fuzzy numbers,

respectively.

Definition 2.2. Let 1 =(4,) be a non-decreasing
sequence of positive numbers such that
Ao SA+1, A4 =1, A, >0 as N—>oo0 and

X =(X,) be a sequence of fuzzy numbers. Then

n+1

the sequence X =(X, ) of fuzzy numbers is said

to be almost Arm — statistically convergent to the

fuzzy number X, if for every £ >0,

limA;

n—on

{kel,:d(arX,..X,)> ¢} ‘ = 0, uniformly ini e N.

The set of all almost Arm — statistically
convergent sequences of fuzzy numbers is denoted
by S (Arm,ﬂ). In this case we write

X, = XO(SF(Arm,l)). In the special case
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A,=n for all NeN, we shall write S (Arm)
. F
instead of S (Arm,ﬂ).

Definition 2.3. Let A= (ln) be a non-decreasing
sequence of positive numbers such that
Apy SA,+1, A4 =1, A, 5o a nN—>o,

X =(X,) be a sequence of fuzzy numbers and

n+1

p= (pk) be any sequence of strictly positive real
numbers. We define the following sets

wh (A' k,p) =

m>

|X = (Xk) : lim% z [d(A:ﬂkaX(])]pk _ 0]

uniformly inieN

wh (A'

e
m? n kel

. 1 r )Pk _
k’p)_|X—(Xk):l1mxZ[d(AkaH,O)} o]’

uniformly inieN

wE (AL hp)= éx =(X,): Sup%kzl [a(aX,..0)]" < w},

uniformly inieN
where

_ 1, t=(0,0,0....,0)
0(t)= .
0, otherwise.

If XEWF(Arm,Z,, p), we say that - X is

strongly almost Arm — Cesaro convergent to the
fuzzy number X, and is| written = as
X, — X, (W (A7, 4, p)).

We get the following sequence spaces from the

above sequence spaces giving particular values to
m,A and p.

D) WAL A p)= W (A ph WE (A A p)= wE (A p)
and WOFO(Arm,i, p)= WOFO(Arm, p) when A, =n for
allneN,
i) If p=1 for all keN then
WAL A p)=wi 2L WA AL p)=wE (A )
and V\[O(A’m,/l, p): V\IZ(Arm,/‘t),
i) If m=1 then w(x,.1 p)=w (.2 p)
W (80,2 p)=wf (', 2. p) and Wi (4,2, p)=wE (', 2, p).
A sequence space EF is said to be normal (or
solid) if (X,)eE" and (Y,) is such that
d(Yk ,6)3 d(xk,ﬁ) implies (Y, )e E7.
A sequence space EF is said to be monotone if

EF contains the canonical pre-image of all its step

spaces. Let K = {kn 'k, <k,,,,ne N}g N and

n+l1°

EF be a sequence space. A K — step space of E"
is a sequence space

,UEF = {(an)e w :(Xn)e EF}.
A canonical pre-image of a sequence

F
(X K, )e Ly is a sequence (Yn ) eW defined as

X,, ifnekK,
Y = -
n 0, otherwise
. . eF .
A canonical pre-image of a step space f isa

F
set of canonical pre-images of all elements in ,u,f R

F
. .. . . gF .
i.e.,, Y isin canonical pre-image x, if and only
F
. . . . E
if Y is canonical pre-image of some X € g .

Remark: If a sequence space EF is solid, then EF
is monotone.

A sequence space EF is said to be symmetric if
(Xﬁ(n))e EF, whenever (Xk) € EY where 7 is
a permutation of N .

A sequence space EF is said to be convergence
free if (Yk) e Ef whenever (Xk)e EF and
X =0 implies Y, =0.

The sequence spaces Wg (Arm,/l, pl
WA ap) wi(an.4p) and SF(AT.2)

contain some unbounded sequences of fuzzy
numbers which are divergent too. To show that let

m=1, p,=1and A4, =n forall neN. Then the
X =(X,)= (Er ) belongs  to
WF(Arm,/i, p), but the sequence X is divergent

and is not bounded.
For the classical sets, (Xk) converges to ¢ which

sequence

implies (Armxk) converges to 0, but this case does
not hold for the sequences of fuzzy numbers.

Examplel. Let p,=1, 4,=n forall neN and

r=m=1. Consider the sequence (X,) as
follows:
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L ift{%,z}

k+1 1+k
X (t)=
D=1k H_3k+1’ if[{ﬁku}
k+1 1+k k
0, otherwise,

then the sequence X = (X, ) is convergent to the

fuzzy number L, where

t-1, ifte[l,2]
L(t)=4-t+3, ifte[2,3].

0, otherwise

We find the o —level sets of X, and AX, as
follows respectively:

o k-1 k+1 3k+1 k+1
[Xk]= k+ka,k—ka

and

—2k* -4k —1 (k+1 k+2J 2k +4k +1 [k+1 k+2j
+| ——+ - o
k k+1

T k+2
[2%.] [ Ik K k+1)"T Kk

Then  we have AX, =L, where

LT =[-2+2a,2-2a]=0.

3. Main results

In this section we give some inclusion relations
between \I\/F(Arm,/i, p) and SF(Arm,/i), between

s (Arm) and S (Arm , /1) .

Theorem 3.1. Let the sequence (pk) be bounded.
Then
vv(f(Arm,/i, p)c V\f(Arm,ﬂ,, p)c \Afo(Arm,/i, p) and

the inclusions are strict.

Proof: The inclusion wf (A", 2, p)c wF (A7, 4, p) is
obvious. So, we will only show that
WA A p)c Wi (A 4 p). Let X ewf (AL, 2, p).
Then we have

%kzl [d(A:“XMﬁ)Tk gx—D“ > [d(A:“XM,X‘,)]Fk +>TD" > [d (xn,ﬁ)}”k

kel kel

< LAl X)) +pmax{sup[a(x,0)] |

where sup, p,=H, and D= max(1,2"7).
Thus we get X € W;(Arm,/i, p).

To show that the inclusion is strict, consider the
following example:

Let p,=1, A,=n for all neN and
r=m=1. Consider the sequence (Xk) of fuzzy
numbers as follows:

Zt+1, _Koico
2
k . .
-Zt4l, 0<t<— }, ifk=10,(j=1,2,3,..)
X ()= 2
0, otherwise
0, otherwise.

Then, for & € (0,1], we have «a —level sets of
X, and AX, as follows:

. _{B(Q—l),z(l—a)}, itk =10,(j=1,2,3...)

[0, 0] s otherwise

and

[g(a—l)%(l—a)],

[AXL]“:{ p (a—l),@(l—a)}, ifk+1=10,(j=1,2,3,...)

[0, 0] s otherwise.

itk =10%,(j=1,2,3,..)

Now it is easy to see that —2<[o,|* <2 for
oo 1 n ot
a €(0,1] and all neN, where [o,] :sz:l[Axk] .

Thus, the sequence (O‘n) of fuzzy numbers is

bounded but is not convergent.
We give the following three theorems without
proof.

Theorem 3.2. The spaces WF(Arm,ﬂ, p),
\N'O:(Arm,l, p), V\EO(Arm,/i, p) and S" (Arm,/i) are

closed under the operations of addition and scalar
multiplication.

Theorem 3.3. Let 0<p,<q, and (q—kJ be
Pk

bounded. Then WF(Arm,/”t,q)g V\f(Arm,/i, p).

Theorem 34. If liminf,(2,/n)>0, then
s () S (a0 2).
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Theorem 3.5. The spaces \/\/F(A'm,/i, p),v\{(Arm,i, p)
and Wi(Arm,/t, p) are complete metric space with

the metric

1
K

3,(X,Y)= Zd(Xk,Yk)+sup[7»;'

k=1

[d(a XA Y J

kel

where K = max(l,supk pk).

Proof: We shall prove only for Wi(Arm,/i, p) The
others can be treated similarly. Let (XS) be a
Cauchy sequence in Wi(Arm,/i, p), where

= (x5) = (X7 X3, )ewE (A 2.p)  for
each SeN. Then

5, (X, X")= id(x;,xt)ﬂw[x;‘ > [a(anxianxi) ] ]K —0,as5,t - o0,

= kel

Therefore

S d(XgX)»>0  and
lﬁlZ[d(Ar st+i’Armxlt<+i)pk—>0 as S,t— oo,

m
keln

for each fixed i € N. Now from
d(x;,,x;“)gd(A’xj,Afx;)+[g]d(xj,x;)+...+(ri1]d(xjw,,x;wl)

we have d(Xf,X})—)O, as S,t —> oo, for each
j €N.  Therefore (XJS)S=(X},Xj2,...) is a

Cauchy sequence in L(Rn) Since L( n) is
complete, it is convergent

lim X5 = X
S

say, for each | eN. Since (XS) is a Cauchy

sequence, for each '€ > 0, there exists N, =N, (5)
such that

5,(X°,X) < forallst=n,.

Hence for each i €N we get

id(x;, X,)<eand 'y [d(A:ﬂX;H, ATX )]“k <ef,  sten,
kel

k=1

So we have

limzr:d(xks,Xf(): d(Xg, X, )< e

r
e k=1

and

Pk

lipﬂ»;'k; [d(a X XL ) [* =20 2 [a(arnXo anX,, ) [* <

kel
n

for all n,ieN and S>n,. This implies that
5A(XS,X)< 2¢, forall S>ny, thatis X° — X
as S—» 00, where X = (X]-) Since

LY [d(ax 0 <) {;} [d(A{“X:ﬁ‘,ﬁ)+d(AL,X£‘1l,A:“XkH):|Pk}

X W (A7 2, p)

WfO (Arm, A, p) is a complete metric space.

we obtain Therefore

Theorem 38.6. If liminf, p, >0 and X is

strongly almost A’ — Cesaro convergent to the

fuzzy number X, then X, — XO(WF (Arm,/%, p))

uniquely.

Proof:  Suppose that liminf p, =S>0. Let

X, — Xo (W (a7, 4, p)l X, > X, WF (a7, 2. p))
and X, # X, . Then

tim 77 3 [l %,q. %, [ 0.

n—oo
kel n

and

tim?,' " [d (85X, X,) [* = 0, uniformly in i
n kel

%

Then we have

7 [0 X <2 3 [l

keln n keln

+XB Z [d(Aankﬂle )Tk — 0, uniformly in i(n — o),

n kel

Hence

limﬂr_ml z [d(xo» Xl)]pk =0

kelr.l

and so X, = X, a contradiction. Thus the limit is
unique.
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Theorem 3.7. Let X =(X,) be a sequence of
fuzzy numbers, then we have

wi (A, 2)=00(ar).

Proof: Let X E\Ni(Arm,/l). Then there exists a

constant K, >0 such that

%d(A;Xm,ﬁ) < supL Zd(A:nXk+i,6) <K, forall i

1 n kel

F r
and so we have X € fm(Am).

F
Conversely, let X € ﬁw(Arm). Then there exists
a constant K, >0 such that d(ArmX j ,6)3 K, for

all j, and so

% >d(ALX,,.,0)< % >1<K, forall k and i.

n kel n kel

Thus X e W (A, 2).

Theorem 3.8. Let X =(X,) be a sequence of

fuzzy numbers and

O0<h=inf p, < P <supp, =H, then
k k

W (A7 4, p)e (AT A).

Proof: The proof follows from the following
inequality

Crlaxx) T B [l
n kel n kel

r
d(AkaH .xojzr.

zi‘{keln :d(Af“XM,XO)zg} "min(sh’s,.)

Theorem 3.9. Let X =(X, ) be a A", —bounded
sequence of fuzzy numbers, then

S A)c w2 p).

Proof: Suppose that X, — XO(SF (Arm,ﬂ)).

F
Since X eﬁw(Arm), there is a constant T >0

such that d(Arka,XO)ST. Given £>0 we
have

%ﬂ%[d(%xwxu)]ngi ; max(T“,T")Jr%n kz.: s

“(":n"kw vxuj\‘ q ‘:..ka.“)‘n Je

< max(T",T" )%‘{k el (A X, . X, )2 &f]
+;nax(gh,8H).
Hence X € WF(Arm,/I, p).

Theorem 3.10. The sequence spaces W('):(/”t) and
vao(/i) are solid and hence monotone, but the
F r r
sequence spaces S (Am,/i), WF(Am,/l, p),
VVJO:(Arm,/l, p) and W;(Arm,/l, p) are not solid.

Proof: Let (X,)eW. (1) and (Y,) be such that
d(Yk ,6)S d(Xk,ﬁ) foreach kK €N . Then we get

=l 0)< - Y d(x,.0)

n keln n keln

Hence WOFC(ﬂ) is solid and hence monotone. The

space \NOFO(Arm,/L p) is not solid. This follows from
the following example:

Let p,=1, A4,=n for all neN and m=1.
Let us consider the sequences

X =(X,)=(M)=(T.23...)e wWi(A". 4 p)and

0, ifnisodd
a =
" |1, if niseven

then (a,X,)=(0.2.04.06...)¢ W.(A". 2, p).
Hence W, (Arm,/l, p) is not solid.

Theorem 3.11. Let x denote any of the sequence
spaces S" (Arm,/l), WF(Arm,ﬂ., p), Wg(Arm,ﬁ, p)

and V\é(Arm,/i, p) Then, the following statements

hold:
a) u is not symmetric,

b) u is not convergence free.

Proof: Since the proof can be obtained for the
spaces S (Arm,/l), WF(Arm,/l, p), Wg(Arm,/L p)
in a similar way, we consider the only the space
W (A, 2, p)

a) Let p =1 for al keN and m=2.
Consider the sequence (Xk)Z (T,E,g,...)e
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mf(r,AJﬂ.Dﬁme(n) 635516 )bya
rearrangement of (X, ). Then ( ) ,ﬂ).
b) Let p, =1 forall keN and m=3. Suppose

that A=n, then | = [1, n]. Define the sequence

{Xa(t)} by

nensl 1o
n+1 n
Xn(t): M, 0<t<l+—,
n+1 n
0, otherwise

Then, we have

(t+2)n’ +3nt+8n+3 , 1 1

, 2-—- <t<0
2n’+8n+3 n n+3
AX, (t)=9(~t+2)n’ -3tn+8n+3
A R L R PP U
2n"+8n+3 n n+3
0, otherwise.

Therefore, lim A;X, (t) =X (t ), where X (t) is

n—ow

defined by
(t+2)
2

(2-1)

X{t)=1"5 > 0=st<2,
0

2

, otherwise.

Hence, {X,(t)jew] (Arm, /1) Now, consider
{Y.(t)} defined by

0, otherwise.

At this stage,

t+2n+3

, —2n-3<t<0,
2n+3

AQG@): 2n+3-t

, 0<t<2n+3,
2n+3

0, otherwise.

It is clear that {Yn('[)}eéwz(Arm,/t, p) This

shows that the space WO'Z(Arm,ﬂ,, p) is not
convergence free.

4, Conclusion

The sequences of fuzzy numbers were introduced
and studied by Matloka [26] and the first difference
sequences of fuzzy numbers were studied by Savas
[18], Talo and Basar [34]. Now in this paper we

study the m™ " difference sequences of fuzzy
numbers for some sequence classes. The results
obtained in this study are much more general than
those obtained by others. To do this some fairly
wide classes of sequences of fuzzy numbers using

the generalized difference operator Arm and a
nondecreasing sequence A= (ln) of positive real

<A+l A4 =1,

numbers such that A, <

A,—>®© as N—oco have been introduced.
Furthermore, using these concepts we establish

some inclusion relations between WF(Arm,ﬂ, p)
and S (Arm,i), between S" (Arm,/l) and S" (Arm)
and show that the sequence spaces WF(Arm,/i, p),
Wg( s A p) and WOFO(Arm,ﬂ, p) are complete

metric spaces with suitable metric.
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