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Abstract 

In the present work we use the negativity to study the effect of Rashba parameter on the thermal entanglement of 
electronic spin and subband states inside a quasi-one-dimensional Rashba nanowire, in a perpendicular uniform 
magnetic field. We assume that the nanowire is held at a temperature T, so that both spin and subband states, with 
definite probabilities, are present. The partially transposed density matrix is shown to be block-diagonal, whose 
eigenvalues are readily obtained. By analyzing these eigenvalues, it is shown that, even at high temperatures there 
always exist negative eigenvalues, so that the system of electronic spin and subbands inside a Rashba nanowire is 
never separable. Moreover, we show that the negativity, at certain temperatures, exhibits maxima. The 
temperatures at which the entanglement is maximal strongly depend upon the Rashba parameter. We further 
present graphs of negativity as functions of temperature for different Rashba parameters, showing that the 
maximal entanglement occurs at lower temperatures for larger Rashba parameters. The novel results in the present 
article shows how the behavior of spin-subband thermal entanglement depends upon an externally controllable 
agent. 
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1. Introduction 

It is a sound prediction that entanglement, arising 
from nonlocal quantum correlations, forms the basic 
ingredient for many applications in quantum 
information processing [1, 2]. In this regard, the 
question of how to implement and control the 
entanglement has been the focus of several reports 
[3, 4]. In most of these treatments the entanglement 
is investigated at absolute zero temperature, so that 
the quantum system is in pure states. However, due 
to the interaction with the environment, as a heat 
reservoir, temperature should be taken into account 
since thermal fluctuations may lead to 
disentanglement [5, 6]. 

Among the many proposals for realization of 
entanglement, hetrostructural systems, in particular, 
nanowires, have attracted much interest [7]. The 
simplest method of controlling the spin states of the 
electrons in nanostructures is to apply a uniform, 
time independent magnetic field and model the 
structural confinement as an externally applied 
electric field. As a consequence, both the space 
inversion and time reversal symmetries are broken, 
leading to the removal of degeneracies. Moreover, 
in suitably chosen hetrostructures, due to different 
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band gaps, there appears an asymmetric potential, 
leading to the spin-orbit coupling; the Rashba effect 
[8, 9]. It has been shown and experimentally verified 
that the Rashba effect is modified when external 
gate voltages are applied [10, 11]. It is then evident 
that there are two externally controllable agents, 
magnetic field and Rashba parameter, that govern 
the spin-subband entanglement. In the present work, 
therefore, we shall concentrate on the effect of 
temperature on the entanglement of electronic spin 
states and thermally induced subband excitations 
(mixed states) in a quasi-one-dimensional Rashba 
nanowire. In particular, the behavior of such 
entanglements under different values of Rashba 
parameters is also discussed. Even though there are 
several measures to determine the entanglement 
(inseparability) of mixed states [12, 13], we use the 
concept of negativity [14, 15], which proves to be 
more suitable for the problem in hand [16]. A 
bipartite quantum system is disentangled (separable) 
if its density matrix can be written as

A B
i i ii p     where

0, 1iiip p  and

,A B
i represents the density matrices for the 

subsystems. The elements of   are given by 

, , ,a b a b    where  a  and  b  form the 

orthonormal basis for each subsystem. It has been 
shown that for the composite system to be separable, 
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it is necessary that the partially transposed density 
matrix, defined as,

 , , , , ,Pt a b a b a b a b        

has no negative eigenvalues [17]. Conversely, if 
Pt  possesses even a single negative eigenvalue, 

then the quantum system is entangled (inseparable). 
Quantitatively, this criterion may be expressed in 
terms of the negativity, defined as,

 0,n nN Max   , where 
,

n s  are the 

eigenvalues of Pt . It then follows that the state of 

the composite system is separable (disentangled) 
when the negativity is null, otherwise it is entangled 
[14]. The aforementioned criterion becomes a 
sufficient condition for 2 2  or 2 3  bipartite 
quantum systems [18]. In the following we find it 
expedient to explicitly use the density matrices 
instead of operators. 

In what follows we study the thermal 
entanglement of electronic spin states and structural 
subbands, in a quasi-one-dimensional nanowire, 
under the influence of electric (position-dependent) 
and magnetic (uniform) fields, with due attention to 
the Rashba spin-orbit coupling. At the strong 
magnetic field limit the governing Hamiltonian is 
similar to the famous Janes-Cummings Hamiltonian 
in quantum optics for the interaction of two-level 
atoms and a single-mode quantized electromagnetic 
field [19]. Forming the partially transposed density 
matrix and calculating its eigenvalues, we find a 
simple condition under which the eigenvalues 
become negative. Moreover, we demonstrate that 
such a condition is always met, so that the system of 
electronic spin and subband excitations is never 
separable. Furthermore, it is shown that the 
entanglement of electronic spin-subbands becomes 
maximal at a certain temperature whose values (both 
the maxima and temperatures) strongly depend upon 
the Rashba parameter. Since the Rashba parameter 
is externally controllable (through gate potentials 
and suitable hetrostructures), the material presented 
in this article may be employed to control the 
behavior of electronic spin-subband thermal 
entanglement. 

The remainder of this article is organized as 
follows. In Sec. 2 we present the model, the 
corresponding Hamiltonian along with the “bare” 
and “dressed” states. The thermal density matrix, 
the partially transposed density matrix and its 
eigenvalues are presented in Section 3. The 
condition under which these eigenvalues become 
negative is also discussed in this section. In Section 
4 we show that the condition for negative 
eigenvalues is always satisfied. In this section the 
behavior of thermal entanglement is also discussed. 
Finally, some concluding remarks are made in 
section 5. 

2. The Hamiltonian, “bare” and “dressed” states 

For a quasi-one-dimensional quantum wire with 
Rashba spin-orbit coupling, in a perpendicular 
magnetic field, B


, laterally confined by a parabolic 

potential, the Hamiltonian is [11] 

 

 (1) 

 

 
where , g  and 

2

e

mc
 B

  are, respectively, the 

effective mass, Landé factor and Bohr magneton of 
the electron, while   is the vector of the Pauli 
matrices. The wire is assumed to lie in the x y  

plane, so that the magnetic field defines the Z -axis. 
Taking the Landau gauge,  0, , 0A B x 


, the 

Hamiltonian of (1) becomes 
 

  (2) 

 
where eB m cc

  is the cyclotron frequency, 

Bl c eB  (in effect gives the radius of electronic 

spin precession), 2 2sol m   , with   being the 

Rashba coupling (giving the effective radius of 
electronic orbital motion). In obtaining (2) the 
confining potential along with parts of the vector 
potential is presented by the harmonic oscillators 
creation (annihilation) operators, (

† )a a ,and the limit 

of strong magnetic field, i.e., 0   has been 

assumed. We have also disregarded the vacuum 
state of the oscillator, since it contributes a constant 
phase to the density operator. It is emphasized that 
the last term of (2) with the usual spin ladder 
operators,  is, in fact, a representation of Rashba 

spin-orbit coupling. The electronic Hilbert space is 

spanned by the “bare” states  ,n  and  ,n  , 

0,1,2,...,n   where   denotes the spin states, 

while n  represents the subband indices. The 

matrix representation of (2), with respect to the 
“bare” states 1 ,n  and 2 1,n    is of the 

form            
 
 
 
 
 
                                                                              (3) 
 
 
 
 

2

2 2
0

1 1
( ) ,

2 22
B z

Z

e
P A

ec
H m x g B P A

cm


  


            







m

† †

0
,

4 2
( )B

c Z
so

lm
H a a g a a

m l
   



 
 

    
  




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2 2 2 2

2
,

2 8 2 4

n
n

n n




   


  

2
1 1,

2
( ), c B

so

l
c n l

m g
n

m
  


   

Where 0
04

m
E g

m


  (coming from 0, ) is a  

matrix, while each  is a 2 2  one 

with elements, 
 

11 22
0 0

12 21

( ) , ( ) ( 1) ,
4 4

( ) ( ) 1.
2

n n

B
n n

so

m m
H n g H n g

m m

l
H H n

l


 
    

  

          (4) 

 
From (3) it is seen that the ground state corresponds 
to 0,  which is separable, so that at absolute zero 

the negativity should vanish. The eigenstates of 
each block, the “dressed” states, 1n and 2n , 

along with the eigenvalues, 1nE and 2nE , may be 

straight forwardly calculated. One finds 
 

1 1 2

2 2 1

, 1, ,

, 1, ,

n n n

n n n

n n

n n

 

 

     

     
                      (5) 

 where,
 
 

                                                                                 (6) 

 

 

with 2
12 1n n    and 

 
                                                                                (7) 

 
while, 
 

2 2
1 ,2

1 1
( ) 4 .

2 2n n c nE n        
            (8) 

 

Since 2 24 n   cannot vanish for any n , the 
absence of degeneracy is noted. It is evident from 
(7) that neither eigenvalues can assume negative 
values. In the next section (5) and (8) are used to 
form the thermal density matrix. 

3. The thermal density matrix and negativity 

The thermal density operator for the present system 
is 

 

1 2

0

1 1 2 2
0

( )
4

1
( ) ( )

1
0, 0, ,

n n

c

E E
n n n n

n

m
g

m

T e e
Z

e
Z

 








 


     

  




   (9) 

 
where 1( )KT  , Z  is the partition function and 

, 1,2,in i   are the “dressed” states with 

eigenvalues inE  given in (5) and (8), respectively. 

When and inE  are substituted into (9) the 

thermal density matrix, describing the system of 
electronic spin and subband excitations at a 
temperature ,T is obtained as 
 
 
 
 
                                                                            (10) 
 
 
 
 
 

where, again,

 
exp ( )0 4 0

mc g
m


 

 
 
 
 



 

is a 1 1  matrix 

while each n  is a 2 2  one with elements (in the 

“bare” representation), 
 

11 1 22 1

12 21 1

( ) ( ), ( ) ( ),

( ) ( ) ( ).

n n n n

n n n

A T B T

C T

 

 
 




 

 
        (11) 

 
With 
 

   2 2
1 1 1 2 2( ) exp exp ,n n n n nA T E E         

   2 2
1 1 2 2 1( ) exp exp ,n n n n nB T E E        (13) 

 
and 
 

   1 1 2 1 2( ) (exp exp ) .n n n n nC T E E          (14) 
 
The partially transposed density matrix 
representation of   is then calculated using the 

partially transposed (with respect to spin states) 
“bare” states, 1 ,n    and 2 1,n    . The 

partial transposed density matrix, as the density 
matrix itself, (11), is block diagonal. The first block 
(coming from ,n  ), being 1 1 , is 
 

0 1
Pt A                                                             (15) 

 
all the other blocks are 2 2 , with elements, 
 

1 1 2 2 2

1 2 2 1 1

( ( )) ( ), ( ( )) ( ),

( ( )) ( ) ( ).

Pt Pt
n n n n

Pt Pt
n n n

T B T T A T

T C T

 

 
    


    

 

 
  (16) 

 
Since the negativity is defined as, 
 

0

( ) (0, ( ))nN T Max T


                               (17) 

 

where, ,
n s  are the negative eigenvalues of 

,  does not contribute to the 

1 1

( 1, 2,...)nH n 

'in s

( )Pt
n T 0 ( ) 0Pt T 
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2 2

2
2 2

2 2

2 1
2

1

[cosh( )cosh( ) sinh( )cosh( )
2

sinh( )cosh( ) sinh( )sinh( )
2 4

( 1)
sinh ( ] 0,

n n n n

n

n n n n

n n n

n

n

n


   

 
   



 

 

 





   



   
 
  
 

 


negativity. Diagonalization of each block of 

gives 

   
 

( ) 1
22

2 2
2 2 1

( ) [( ( ) ( ))

( ( ) ( )) 4( ( ) ( ) ( )) ]

n n

n n n n n

T B An

B A B A

T T

T T T T C T

 


  

 

   

     (18) 

 
as the eigenvalues. It is clear from (18) that ( ) (T)n



becomes negative if and only if 
 

2
2 1( ) ( ) ( ) 0n n nA T B T C T                             (19) 

 
Upon substituting (12), (13) and (14) into (19), the 
condition for nonvanishg negativity becomes 
 
 
 
 
 
                                                                            (20)   
 
 
 

where 
2 so

c B

l kT

l






 defines the scaled, 

dimensionless temperature,
 

21
4

2n n    and

2 2
( )

2
so

B

l m g m

l m


 
 . In the next section we 

examine the condition of (20) and show that the 
system of electronic spin-subbands is never 
separable. 

4. Results and discussions 

Since all possible negative eigenvalues of the 

blocks in ( )Pt T  participate in the negativity, we 
examine these eigenvalues for large excitations. 
Under the assumption that 2n  ( 225 for InAs 

with 111.6 10 eVm   ), systematic expansion of 

the condition (20) in negative powers of n  (at a 
fixed temperature) gives 
 

2

3

2

1 0

16

n

e

n




                                                    (21) 

 
From (21) it is clear that for a large enough 
excitation, and thereafter, even at high 

temperatures, blocks of ( )Pt T  produce negative 
eigenvalues. Moreover, a similar expansion of (20) 
for high temperatures and fixed n  yields 

2
2 1

4
n

                                                      (22) 

Again, it is observed that at any fixed (even high) 
temperature (except zero and infinity) the condition 
of (20) may be satisfied for a specific n (and 

thereafter). The conclusion that ( ) ,
n s   eventually 

become (and remain) negative may be verified from 
Figs. (1) to (5), in which ( ) ( )n T   (unnormalized) 

versus n , at different temperatures corresponding to 
and 100 , for three values of Rashba 

parameters, 111.6 10 eVm   ( long-dashed line), 
112.4 10 eVm   (short-dashed line) and 

113.2 10 eVm   (solid line), are illustrated.The 

figures (and the following one) are drawn for the 
parametric values in InAs: -11 -111.6 10 - 3.2 10 ,eVm     

8, 0.04 og m m    [11] under the influence of a 

magnetic field of .6.59Tesla  Parethetically, we 
mention that for the width of the wire in the order 
of 100 nm a confinement frequency of the order of 

0
1110 Hz   is requred. For the limit of strong 

magnetic field, e. g. 0  , we have taken c  in 

the order of 1310 Hz . As a result, 1310c Hz   yeilds 

a magnetic field of .6.59Tesla  From these figures it 
is confirmed that, even at high temperatures, for 

sufficiently high subband indices, 0n , 
( )

0
( )n T


 

assumes a negative value and remains negative for 

0n n  
 

 
 
Fig. 1. Eigenvalue versus subband excitations at 1  , for 
different Rashba parameters: 111.6 10 eVm   (long-

dashed line), 112.4 10 eVm   (short-dashed line) and 
113.2 10 eVm   (solid line) 

 

( )Pt
n T

1, 2, 4 ,10 
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Fig. 2. Eigenvalue versus subband excitations at 2   

for different Rashba parameters: 111.6 10 eVm   ( long-

dashed line), 
112.4 10 eVm   (short-dashed line) and 

113.2 10 eVm   (solid line) 
 

 
 
Fig. 3. Eigenvalue versus subband excitations at 4  , 

for different Rashba parameters: 111.6 10 eVm   ( long-

dashed line), 112.4 10 eVm   (short-dashed line) and 
113.2 10 eVm   (solid line) 

 

 
 
Fig. 4. Eigenvalue versus subband excitations at 10  , 

for different Rashba parameters: 111.6 10 eVm   ( long-

dashed line), 112.4 10 eVm   (short-dashed line) and 
113.2 10 eVm   (solid line) 

 

 
 
Fig. 5. Eigenvalue versus subband excitations at 100  , 

for different Rashba parameters: 111.6 10 eVm   ( long-

dashed line), 112.4 10 eVm   (short-dashed line) and 
113.2 10 eVm   (solid line) 

 
From these figures, moreover, it is also observed 
that at relatively low temperatures, ( ) ( )n T   turns 

negative at smaller 0n , with larger absolute values 

for larger Rashba parameters. This behavior of 
( ) ,
n s   is reversed at higher temperatures.These 

observations of the behavior of ( ) ,
n s  indicate that 

the negativity should rise at lower temperatures, 
passing through a maximum, and then reduce. The 
negetivity against the scaled temperature, , for 
different Rashba parameters, is depicted in Fig. (6), 
showing its behavior in accordance with  the 
foregoing anticipations. The fact that electronic 
spin-subband states are never separable (always 
entangled) is also seen from Fig. (6).  

6. Conclusion 

In the present work we have considered the effect 
of Rashba spin-orbit coupling on the thermal 
entanglement of spin-subband states in a Rashba 
nanowire. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Graphs of negativity versus the scaled temprature, , for a 

magnetic field of 5 69. Tesla and different Rashba parameters. 

Left (right) inset depicts the negativity for small (large) ’s 
 
To this end, we have calculated the eigenvalues of 
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partially transposed thermal density matrix and, 
consequently, the negativity. An analysis of the 
eigenvalues and the negativity indicates that (a 
complete discussion is presented in Section (4)),  
i) The system of electronic spin state and subband 
excitations in a Rashba nanowire is never separable. 
ii) As the temperature rises the negativity, in 
general, starts from zero (due to separablity of the 
ground state) at absolute zero, goes through a 
maximum and decreases to diminishing values. 
iii) The maximal entanglement occurs at lower 
temperatures for larger Rashba spin- orbit coupling. 
In conclusion, we have demonstrated that the 
behavior of thermal entanglement of electronic spin 
states and subband excitations in a Rashba 
nanowire may be controlled through the Rashba 
spin-orbit couplings. To be specific, the maximal 
value of entanglement, the temperature at which the 
maximal entanglement and the decoherence occur, 
one indeed controlled by the Rashba spin-orbit 
coupling. 
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