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Abstract

Recently, the strong consistency and asymptotic distribution for the maximum consecutive pairwise likelihood
estimators (MCPLE) have been established in the linear time series models. In this paper, the weak convergence
of the maximum weighted pairwise likelihood estimator (MWPLE) of the parameters of the AR(1) models is
established by using the concept of L? convergence (convergence in mean square).
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1. Introduction

The pairwise likelihood (PL) is a special case of the
composite likelihood proposed in Lindsay (1988) as
a pseudo-likelihood. In PL, the pseudo-likelihood is
constructed by the product of the bivariate
likelihood of all possible pairs of observations.
Detailed accounts of PL can be found in Cox and
Reid (2004). For an excellent review on the
composite likelihood methods, see Varin (2008). A
general recent discussion on theoretical aspects and
possible applied contexts are also considered in
Varin et a. (2011).

Recently, Davis and Yau (2011) have established
the consistency and asymptotic distribution for the
MCPLE in the linear time series models. In
particular, they showed that the asymptotic relative
efficiency of the MCPLE to the MLE is one for all
values of the AR(1) parameter. Formally, let X,
follows the invertible stationary AR(1) models as,

Xt = ¢Xt—1 + Ztt |¢| < 1' (1)

where Z,~N(0,02). Let X; = (X;, X;21)T. It is easy
to show that

Xi~N2 (0 ) z);

where
= %)
1-¢2\¢ 1
Now, consider the WPL, L, (x; ¢, 0%), given by
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Lywp (X ¢,0%) =11 I1; (f(Xi,Xj)(xi'xj; ?, 02)) U' (%)

where x = (xq, x5, ...,Xx,)" is the vector of the
observations, and

o {1, j=i+1
Tij =10, otherwise,
are the corresponding weights according to the

autoregressive property of the observations. The
weighted pairwise log-likelihood is then given by

lwpl(X; o} 02) =1In (prl x; ¢, 0-2))

n-1

1
x _EZ {InZ + xTz71x,}
i=1

= —%[(n — DIn(1 — ¢2) —2(n — DIn(a?) —
o~? Zlnz_ll (XLZ + xi2+1) + 2¢po? ?:_11 XiXit1]-

So the weighted pairwise score function is

Swpl(X; b, 02)

_ alwpl(X; ¢,0%) alwpl(X; ¢,0%)

B ( a¢ ' do2 )

., (=D¢ Il xxy, n-1
= ( 1— ¢2 o2 ’ o2

1 - -
52?=11 Cef +xf) — ¢ ?:11 XiXiy1
+ T ).
g
Set S, (X; ¢,0%) equal to zero and solve the
equations with respect to ¢, o2, then the MWPLE
of ¢ and 0% are given by
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~2 Zn ! (XZ +Xl+1) ¢Z XXL+1
2(n—-1) n—1 '

respectively. These estimators are also derived by
Davis and Yau (2011). In this paper we study the
limiting behavior of these estimators by using the
limiting behavior of the statistics

1 -
T, = _Z? T XiXisa,
— Zn 1 XZ
Té' = Eﬁ?:f XZ1. 3)

However, Davis and Yau (2011) have established
the strong convergence of these estimators and the
strong convergence aways implies the weak
convergence, but in this paper we use a simple
method to establish the L? convergence of these
estimators which in turn establishes their weak
convergence of them. The weak convergence of the
WPLEg is then an immediate consequence of the
Slustky’ s theorem.

2.Main Result

The following lemmas are necessary to find the
limiting distribution of T,,, T,, and T,,'.

Lemma 2.1. Suppose that X, follows the first-order
autoregressive process defined by (1), and let T, T,
and T, beasin (3). Then

E(T)— E(T,) = andE(T”)—

2
1- ¢2’ 1-¢2’
Proof: The proof is easily done by using the facts

that E(XXi4) =y() = and EX})=

1- ¢2
2

y(0) = 1:’? for Vi = 1,2,...,n, where y(.) is the

autocovariance function of the model.

We say that the sequenceY,, converges in ther-th
mean(or inthe L"-norm) to Y, for somer > 1, if

limE(Y,—-Y|") =0,
n—-oo

LT
and it is often denoted by Y,—>Y. The L?
convergence is established for r = 2, where we say
that Y, converges in L? or mean square to Y,

2
denoted by Y, 5 Y.

Lemma 2.2. Let E(Z;) = a and §;; = cov(Zl,Z)
such that 11m 0;j = 0. Then VA —> a, where

] l — 00
Z, =% L1 Z, inthe sense that lim E(Z,, — @) =
0.

Proof: Note that

LetY; = Z; — a, then E(Y;) = 0 and E(Y;Y}) = §;;.
Then
E(Z, - a)* = —E(Z L, 1)?
= 55(21:1 Y, YY)
1
=z =1 Z;'l=1 5ij-

Moreover,

n_lz [ }1—1 Sij Si ?:1 }1=1 |5i1'|S
(2, 16l + 22 z;-l i1 05[] =

—[Z Ly 18:] + 2{Z L+ILW+1 |5l}| +

iy ]=i+M+1 |5ij|}] =o0(1) +o0(1)+
v NN [ |

The last term in the above equation vanishes,
whenever n goes to infinity, by the assumption of

y llll‘n 0;j=0. The proof of this lemma is
j=i|-=
compl eted.

Searle (1971) obtains a well-known relation to
compute the covariance between two completely
different quadratic forms in a general context. Let

Y;~N(0,C;) and C;; = E(Y]Y;), then

COV(Y1A12Y2’Y3A34Y4) =
trace(A12C23A34C41 + A12C24A34C31)' 4)

see Searle (1971, page 64-65) for more details.

Lemma 2.3. Suppose that X, follows the first-order
autoregressive process defined by (1). Then

y 11r|n cov(X;Xis1, XjXj11) = 0.
j—il-

Proof: Since E(X,,) = 0 for vn € N,and by using
rdat'on (4), take Xl = Yl’ Xi+1 == YZ!A12 = A34_ =
1, X; = Y;and X;,; = Y,. So, we can write

cov(XXi 11, X;X41)
= trace{cov(XHl,Xj)cov(XjH,Xl-)
+CoV(Xi11,Xj41)cov(X;, X; )}

=YG-i- (=i =D +y(G-dyG-))
= (1 - > [gl-itlplii=1l 4 gli=il glioil]

¢2
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which converges to zero as |j — i| — oo, because of
the stationarity of the model (1).

Lemma 2.4. Suppose that X, follows the first-order
autoregressive process defined by (1). Then

lim cov(X?,X?) = 0.

|j=il-00

Proof: The proof is easily followed by noting that
2

cov(X2,X?) = 2 (%) p2li=il,

Now, we are in a position to state the main result of

this paper.

Theorem 2.1. Suppose that X, is the drictly

stationary solution of (1), and let T;,, T,, and T,;’are
H L2 ¢‘Uz ’ L2 o2 "
as in (3). Then T, —>1_—¢2,Tn =g and T,

2
L® 42

- .
1-¢?

Proof: First note thatT,,, T,, and T,;' are unbiased
estimators for 141‘:;, ::)2 and :;2 respectively, by
using Lemma 2.1. The proof is now completed by
applying the Lemmas 2.2 and 2.3.

The convergence in L? immediately implies the
convergence in probability (the weak convergence),
and s0 T,,, T, and T, are consistent estimators for

¢po2 o2 o? .
parameters o 147 and o7 respectively. Now,
the consistency of the WPLE, ¢ can be easily
derived, by using the Slutsky’s theorem.

3.Conclusion

This note is concerned with the asymptotic L2
properties of PL procedures for the parameter of the
AR(1) models. We have applied a ssmple method to
establish the L? convergence of the estimators
proposed by Davis and Yau (2011) which in turn
establish their weak convergence. The weak
convergence of the WPLE is aso studied.
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