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ABSTRACT 
Cartilage has a poor regenerative potential with very low cell-density that contributes to its poor capability for self -repair .For 

this reason, autologous cartilage grafts have been used in reconstructive surgery .Today; the rapidly emerging field of tissue 

engineering holds great promises for the generation of functional cartilage tissue substitutes. The technique was initiated by 

harvesting cartilage cells (chondrocytes)    from a donor site such as the nasal septum or the auricle. However, in clinical use 

of human chondrocytes for tissue engineering, extensive expansion of cell numbers from a small donor site biopsy was 

required and this could  limit  the chondrogenic potential of cells after proliferation. Therefore, the ability of chondrocytes  to 

replicate in- vitro allowed  the expansion of cell numbers  to produce theoretically limitless supplies of cartilage autografts 

.Stem cell technology presents an alternative , immunoprivileged resource of cells with unlimited replicative capacity .  These 

cells exist in a wide selection of tissues and provide the option of multi-lineage differentiation. This paper reviews the current 

evidence that stem cells may provide a superior cell resource for tissue engineered cartilage and outlines the methodology 

for their isolation and chondrogenic induction. (Tanaffos 2005; 4(14): 9-18) 
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INTRODUCTION 
Cartilage is a type of dense connective tissue, 
composed of cells called chondrocytes.  There are 
three main types of cartilage (hyaline, elastic, and 
fibrocartilage).  
Hyaline cartilage is found in the knee, fibrocartilage 
and elastic cartilage are seen in other areas of the 
body. All three composed of chondrocytes and 
extracellular matrix macromolecules, elastic cartilage 
forms the ear and nose and is characterized by the 
presence of elastin in the extracellular matrix (ECM). 
Fibrocartilage has a higher proportion of collagen in  
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the ECM than hyaline cartilage and is found at the 
ends of tendons and ligaments in apposition to bone. 
Hyaline cartilage has a white, glassy appearance, and 
unlike fibrocartilage, shows no macroscopic evidence 
of fibers (1, 2, 3). Usually, there are three main types 
of cartilage injury: matrix disruption, partial 
thickness defects, and full thickness defects. In 
addition, diseases or congenital abnormalities and 
trauma caused degeneration of cartilage that could be 
managed by reconstructive surgery, implants, 
prosthesis or a combination of these options (4, 5, 6, 
7). However, in these reconstructive surgeries, 
infection and dislocation frequently occurred. As a 
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10   Cartilage Tissue Engineering 

consequence, other attempts i.e. ., curettage, 
spongialization, autologous osteochondral 
transplantation, drilling holes through subchondral 
bone, periosteal and cartilage transplantation and 
injection of chondrogenic agents were also 
investigated (8, 9, 10, 11, 12). Overall, the success of 
total joint replacement and /or treatment for repair of 
cartilage damage was less than satisfactory.  
Today, the rapidly emerging field of tissue 
engineering holds great promises for the generation 
of functional tissue substitutes, by constructing tissue 
in vitro and implanting it in-vivo .For example, a 
trachea reconstructed by using calf articular 
chondrocytes seeded onto synthetic biomaterial 
polyglycolic acid (PGA) in athymic mice (13, 14). 
The basic principal is to utilize a sound scaffold that 
is seeded with an appropriate cell source which is 
loaded with bioactive molecules to promote cellular 
differentiation and/or maturation. Although, in 
clinical practice the potential for harvested 
autologous chondrocytes, especially for trachea is 
limited by their restricted replicative capacity (15, 16, 
17, 18, 19, 20, 21, 22, 23). This is due to 
dedifferentiation to a fibroblastic phenotype in 
monolayer culture. Recent discoveries point to a 
solution. Investigators have been able to identify and 
culture rare "stem cells" from various crucial tissues 
for many months (24, 25, 26, 27, 28). These cells are 
pluripotent and have an infinite self renewal capacity 
and can be induced into a mesenchymal lineage to 
produce chondrocytes. 
This review aims to present the current status and 
prospects of tissue engineered cartilage and the role 
of stem cells in propelling this field towards clinical 
applications. 
 
The Promise of  Mesenchymal  Progenitor  or  Stem 
cells 
There have been several promising advances in the 
use of stem cells for tissue regeneration.  Only a few 

stem cells would be required to produce large 
numbers of cells following serial sub cultivation in- 
vitro.  There are several sites from which these cells 
can be acquired; some of which yield high stem cell 
populations and involve minimally invasive 
harvesting techniques (29, 30, 31, 32, 33). In 
addition, stem cells are immuno-privileged and 
therefore offer a future potential for large scale stem 
cell banks that can be utilized to generate a wide 
variety of cell populations.  Cartilage remains closer 
to this end-point because it is not dependent on the 
currently theoretical development of an integral 
capillary network within tissue engineered constructs 
(34, 35, 36, 37, 38, 39). 
 
 A) Different types of stem cells  
Two types of stem cells are available: embryonic and 
adult stem cells. 
 
A.1) Embryonic Stem Cells (ESCs)  
Embryonic stem cells are pluripotent; they have the 
ability to differentiate into any cell specification 
whilst maintaining full regenerative capacity.  There 
are three types of ESCs ; embryonic stem cells 
(ESC), embryonic carcinoma cells (ECC) and 
embryonic germ cells (EGC). ESCs are derived from 
the inner cell mass of blastocysts during gastrulation. 
The latter two are derived from primordial germ 
cells. 
 
A.2) Adult Stem Cells (ASCs)  
Adult stem cells have been found in a variety of 
differentiated tissues including bone, deciduous 
teeth, adipose tissue, umbilical cord blood, 
synovium, brain and blood vessels.  
However, the most researched postnatal stem cells 
are the two discrete populations found in bone 
marrow; hemopoietic and mesenchymal stem cells 

(15). 
Jiang et al. (40) found a pluripotent cell type in bone 
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marrow which could be induced to develop cells 
from all three germ cell lineages. He named this 
population multipotent adult progenitor cells 
(MAPC) and was later to find such cells in other 
tissues such as muscle and brain.  
 This phenomenon of transgermal plasticity 
challenges previous conceptions that ASCs have a 
restricted repertoire of cells into which they can 
differentiate. The advantages of ASCs for use in 
tissue regeneration are being less tumorogenic than 
their embryonic counterparts and are accessible from 
a diversity of tissues. 
 
B)  Stem cell source  
ASC can be found in a variety of tissues.  The 
selection criteria should consider site of harvest, 
yield and pluripotency of the cell type (40, 41, 42, 
43, 44, 45).  Currently, most stem cell derived 
neocartilage constructs have been engineered using 
bone marrow and adipose tissue. Bone marrow is the 
most widely used source for stem cells as it harbour 
two unique stem cell populations; HSCs and MSCs.   
MSCs can be expanded many-fold with little effect 
on the tissue that is eventually formed and have been 
shown to differentiate into both bone and cartilage 
cells (46).A 30ml aspirate produces an average of 105 
cells. Recent studies have shown that MSCs may be 
harvested from umbilical cord blood (31). This is a 
valuable source of stem cells because it is readily 
available, its collection harbours no risks to the donor 
and the risk of immune rejection to an allogenous 
implant of this derivation is small. They may also be 
cryopreserved for storage.   This cell population has 
been shown to possess multi-lineage differentiation 
but its role as a viable cell source in tissue 
engineering still remains undetermined. 
 
C) Isolation techniques 
MSCs are generally aspirated in a heparin loaded 
syringe and cultured in basal medium.  The standard 

choice is high glucose Dulbecco’s modified Eagle’s 
medium (DMEM), 10% fetal bovine serum and 
sometimes antimicrobial agents.  The MSCs will 
express a fibroblastic phenotype and adhere to tissue 
culture plastic.  The non adherent cells will die over a 
period of two weeks or can be washed away earlier 
by PBS.  Centrifugation may be used to produce cell 
pellets which are then re-suspended in basal medium 
and plated until they reach confluence (46, 47, 48, 
49, 50, 51, 52, 53).  
This technique is unfortunately not specific to MSCs; 
haemopoietic cell types can also adhere to tissue 
culture plastic. 
There are more accurate isolation and 
characterization methods now available involving 
monoclonal antibodies, fluorescent activated cell 
sorting (FACS), magnetic activated cell sorting 
(MACS), polymerase  chain reaction (PCR) and flow 
cytometry.    
Monoclonal antibodies have been particularly useful 
in classification of cell populations within tissue.  
One of the first antibodies found to correspond to an 
antigen on  colony forming unit-fibroblasts (CFU-
Fs), clonogenic stromal progenitor cells capable of 
prolonged replication, is STRO-1 (53-54).  Simmons 
et al (54) separated human bone marrow using a 
murine antibody which was named STRO-1.  
Paramagnetic beads conjugated to antibodies against 
known hemopoietic cell surface markers (CD11b, 
CD34, CD45) can be used to extract these cell 
lineages from murine bone marrow (55, 56, 57). 

The cell surface antigens Sca-1, CD29, CD44, CD81, 
CD106 and stem cell marker nucleostemin (NST) on 
these immunodepleted cells were analysed using 
FACS.  These cells could be induced to differentiate 
into adipocytes, chondrocytes and osteoblasts in vitro 
(56). Immunoprecipitation, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), 
matrix-assisted laser desorption/ionisation time of 
flight (MALDI-TOF), mass spectrometry and amino 
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acid analysis have been used in the isolation and 
characterization of the SB-10 antigen in human, rat, 
canine and rabbit MSCs (57, 58, 59). 
 
D) The important adjuncts  
Various adjuncts for stem cell propagation and 
differentiation have been explored such as 
biomaterials, bioreactors and growth hormones.  
 
D.1 ) Exogenous factors 
The role of growth factors in stem cell derived 
chondrogenesis has been extensively studied.  It is 
well documented that MSCs centrifuged to a pelleted 
micromass and cultured in a serum free medium 
containing “Tumour Growth Factor”-betaTGF-1  or 
TGF-3 will differentiate into chondrocytes (60, 61). 
The TGF super family has been found to promote 
chondrogenic induction and cartilage matrix 
production (32, 60, 62, 63).   
Barry et al. (59) compared the effects of TGF-1, 
TGF-2 and TGF-3 on chondrogenesis of human 
MSC cell pellets. All three growth factors maintained 
at similar cellular content over three weeks but TGF-
2, and TGF-3 produced significantly more GAGs and 
collagen 2 than TGF-1. With availability of this 
extra-cellular matrix, the cartilage would be 
designed. Without a TGF-(analogue) cells were small 
and secreted minimal matrix (64, 65, 66). Bone 
morphogenic proteins (BMP) and the sonic hedgehog 
gene (Shh) are members of the TGF- super family 
which can be transfected into stem cells to enhance 
chondrogenesis. Chondrogenesis is regulated by 
factors of the wnt family. Among these, wnt-7a has 
found to be implicated in chondrogenesis inhibition 
whereas wnt-4 and wnt-14 are expressed at sites of 
future joint development. Wnt-5 and wnt-11 are 
found in the prehypertrophic chondrocytes and wnt-
5b characterizes prehypertrophic ones in the growth 
plate (67). Fibroblast growth factor (FGF)-FGF 
receptor 3 signaling is sufficient to induce 

chondrogenic differentiation (68). 
ASCs share the requirement with chondrocytes for 
three dimensional constructs to produce 
chondrocytes and extra cellular matrix. Huang et al 
reported that human adipose derived stem cells could 
be induced to chondrocytic differentiation in 
micromass culture but not in monolayer cultures 
even with TGF-(1) (62) Disease can modify the 
replicative senescence of MSCs.  The proliferative 
capacity of human MSCs with respect to adipogenic 
and chondrogenic activity in patients with 
osteoarthritis was reported. 
 Basic Fibroblast growth factor (bFGF) has been 
shown to improve chondrogenesis in stem cells of 
osteoarthritic patients (69, 70, 71, 72).  
In addition, nanofibrous  scaffold ( NFSs) in the 
presence of TGF- differentiated to a chondrocytic 
phenotype, as evidenced by chondrocyte-specific 
gene expression and synthesis of cartilage -associated 
extra cellular matrix (ECM) proteins .This is because  
the NFSs can be readily fabricated in any shape and 
size as needed clinically and also provides sound 
mechanical stability .Thereby , the three dimensional 
NFS  can be a good candidate of bioactive carrier for 
MSC transplantation in tissue engineering based 
cartilage repair.  
 
D. 2) Biomaterials for cartilage engineering 
The extra cellular matrix and basement membrane 
are the two biological scaffolds which guide cell 
growth and function. A biomaterial should be easily 
producible, non-cytotoxic, non-immunogenic, 
compatible with physiological environments, 
adaptable by manipulation of cell-matrix 
communications, porous and biodegradable. It should 
also ideally possess self assembling spatial geometry 
similar to that found in living tissues and provide 
mechanical strength. The construct must not only 
enable cell adherence and orientation but also 
provide specific antigens and growth factors to 
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trigger cellular proliferation and matrix production 

(39). 
 
D. 2a) Non synthetic  
Natural materials used to produce a bioactive 
scaffold include agarose, alginate, hyaluronic acid, 
fibrin glue, collagen derivatives, cellular dermis, 
porcine intestine submucosa, cadaveric fascia and 
amniotic membrane.  The overriding disadvantage of 
these constructs is their mechanical fragility.  
Cartilage is tough but pliable and hence an integral 
ingredient to successful regeneration lies in an 
equivocal structural support.  Issues regarding 
variable host related degradation rates, antigenicity 
and disease transfer also need to be considered (13). 
Collagen is a widely used polymer in cartilage 
regeneration. The ECM of cartilage predominantly 
comprises of collagen 2.  Both collagen 1 and 2 have 
proved to be effective substrates for chondrogenesis.  
Mechanical integrity has been improved by various 
techniques involving cross-linking and sponge 
formation. 
 Pieper et al (44) showed that crosslinked collagen 2 
matrices elicited an evenly distributed cell population 
whereas the collagen 1 matrix located chondrocytes 
on its periphery.  Both types of polymer, however, 
stabilised phenotype and supported matrix 
production. Collagen matrices have been found to 
have the proper molecular cues to stimulate new 
collagen production by transplanted cells as 
compared with other scaffold types (73). 
Chitosan is a relatively unexplored bioactive scaffold 
for engineering cartilage. It is a partially de-
acetylated derivative of chitin, found in the 
exoskeletons of arthropods. Hence, this is a naturally 
occurring, infinitely available polymer (74, 75, 76).  

Itosan is a polysaccharide based analogue of GAG 
which is degraded in vivo by lysosyme.  A large 
repertoire of moieties may be added to this polymer 
to modify its biochemical behavior. It has a 

propensity to form hydrogels and was first used as a 
bioactive substrate for chondrogenesis by Sechriest et 
al (77). Alginate and agarose beads or gels have 
problems with degradation in mammalian cartilage as 
they are derived from sea-weed. They are also 
difficult to handle. Some forms of alginate have been 
found to be immunogenic, as evidenced by increased 
lymphocyte number and presence of anti-alginate 
antibodies (78). 
Recently, chitosan has been processed into porous 
matrices.  This is produced by freezing and 
lyophilising chitosan-acetic acid, the pore size of 
which is modulating the rate of freezing. The use of 
this substrate to induce stem cell derived 
chondrogenesis is not reported. 
 
D.2 b) Synthetic  
The mechanical, biochemical and degradable 
qualities of   a synthetic biomaterial are much easier 
to modify than that found in naturally occurring 
polymers.  They do not possess the same problems 
with availability and their shapes and sizes can be 
tailored to specific requirements. Polyglycolide 
(PGA), polylactides (PLLA, PLGA,PDLA,PLC), 
polycaprolactone (PCL), polyethylene glycol (PEG), 
polyesterurethane (PEU), polyamide, expanded 
polytetrafluoroethylene (ePTFE), polyethylene oxide 
(PEO), polyN-isopropyl acrylamide (PNIPAAm), 
polybutylene and polystyrene have all been used to 
produce cartilage. Copolymers, polymer blends and 
composites are also continually investigated in the 
quest to find the ideal engineering matrix (60, 79, 80, 
81, 82, 83, 84). 
PGA is a well studied substrate which will continue 
to be used in engineering cartilage. It has been shown 
to maintain significantly higher chondrocyte 
differentiation than PLLA and PLGA and has 
comparable adhesivity and matrix production to non-
absorbable scaffolds such as polyamide and ePTFE 
(60, 83, 85). It is most often used in its non-woven 

Tanaffos 2005; 4 (14): 9-18 www.SID.ir



Arc
hi

ve
 o

f S
ID

14   Cartilage Tissue Engineering 

form which has a high porosity.  However, PGA 
fibrous polymer is weaker and degrades at a faster 
rate than most synthetic scaffolds.  This can be 
modified in copolymers and composite compounds. 
Hybrid scaffolds have also been presented as 
promising candidates for engineering cartilage.  Chen 
et al. (83) invented a novel composite web of PLGA 
knitted mesh filled with collagen microsponges.  The 
thickness of the chondrocyte seeded implant was 
altered by rolling or laminating the web.  The same 
group of scientists modified their matrix using PLGA 
sponge filled with collagen microsponges.  Both 
forms of this hybrid scaffold promoted chondrocyte 
phenotype and new tissue formation in vivo. PLGA 
offered the mechanical strength and shape whilst the 
collagen provided the 3-D environment for cellular 
differentiation.  PLGA, like most synthetic polymers, 
is hydrophobic and lacks cell signaling mitosis.  
Collagen enhanced homogenous cell seeding because 
it is hydrophilic and exhibits surface cell adhesion 
receptors (84, 85, 86, 87, 88). 

 
Future direction: 
Further research should thus be aimed at 
investigating and evaluating tissue-engineering 
approaches to cartilage repair   in diseases-
compromised animal models to gain a better 
understanding of clinically feasible designs. The 
results of such studies should have direct therapeutic 
applications and should also provide a model system 
for the study of normal and pathological cartilage 
tissues. 
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