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Abstract

This paper demonstrates the synthesis of SnO2 nanoparticles using a simple hydrothermal route in the presence of
the surfactant hydrazine at 100 °C for 12 h. X-ray diffraction (XRD), field emission scanning electron microscopy, and
transmission electron microscopy (TEM) were employed to characterize the as-prepared product, and optical
property was studied by UV-visible diffuse reflectance spectroscopy (DRS). The XRD pattern of the as-prepared
sample is indexed to the tetragonal structure of SnO2, and the calculated particle size is 22.4 nm, which is further
confirmed by TEM. The selected area electron diffraction patterns showed continuous ring patterns without any
additional diffraction spots and rings of secondary phases, revealing their crystalline structure. Analysis of the DRS
spectrum showed the bandgap of the synthesized SnO2 to be 3.6 eV. The anionic surfactant hydrazine plays a key
role in the formation of the SnO2 nanostructures. A probable reaction for the formation of SnO2 nanoparticles is
proposed.
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Background
Nanomaterials have attracted great interest due to their
intriguing properties, which are different from those of
their corresponding bulk state. In the past few years,
SnO2 is an important n-type wide-energy-gap semicon-
ductor (Eg = 3.64 eV, 330 K) which has a wide range of
applications such as in solid-state gas sensors [1], trans-
parent conducting electrodes [2], rechargeable Li batter-
ies [3], and optical electronic devices [4]. During the
past decade, SnO2 nanostructures have been one of the
most important oxide nanostructures due to their prop-
erties and potential applications [5,6].
Many processes have been developed to the synthesis

of SnO2 nanostructures, e.g., spray pyrolysis [5], hydro-
thermal methods [6-8], evaporating tin grains in air [9],
chemical vapor deposition [10], thermal evaporation of
oxide powders [11], rapid oxidation of elemental tin
[12], the sol–gel method [13], etc. Davar et al. [14]
reported the synthesis of SnO2 nanoparticles by thermal
decomposition using [bis(2-hydroxyacetophenato)tin(II)],
[Sn(HAP)2], as precursor. Salavati-Niasari et al. [15]
synthesized zinc blend ZnS nanoparticles by a thioglycolic

acid (HSCH2COOH)-assisted hydrothermal technique
via the reaction between a new inorganic precursor
[bis(2-hydroxyacetophenato)zinc(II)], [Zn(HAP)2], and thio-
acetamide (CH3CSNH2). Gnanam and Rajendran [16]
synthesized nanocrystalline tin oxide powders of about
8 to 13 nm in size using different surfactants such as
cetyltrimethyl ammonium bromide, sodium dodecyl
sulphate, and polyethylene glycol via hydrothermal reac-
tion at 160°C for 12 h and studied their structural and
photoluminescence properties.
A simple hydrazine-assisted hydrothermal route was

employed to synthesize nanocrystalline SnO2 powders in
this study, and structural, morphological, microstruc-
tural, and optical properties were discussed.

Methods
All reagents used were of analytical grade without fur-
ther purification. First, 3.505 g of SnCl4�5H2O (0.1 M)
was dissolved in 100 ml of distilled water, and then
1.2800 g of hydrazine hydrate (0.01 M) was added with
stirring. N2H4�H2O immediately reacted with SnCl4 in
the solution to form a slurry-like white precipitate of the
hybrid complex between N2H4 and SnCl4. After 10 min
of stirring, the solution was transferred into a Teflon-
lined stainless steel autoclave with a capacity of 200 ml
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IDand then sealed. The autoclave was maintained at 100°C
for 12 h and cooled naturally to room temperature. The
product was centrifuged, filtered out, and rinsed with
methanol and distilled water several times, and then
dried at 120°C for 1 h in air.
The possible reaction of SnCl4�5H2O with hydrazine

produced SnO2 nanoparticles via Sn4+ reaction with
NH4OH. The process can be expressed as follows:

mSnCl4 þ nN2H4 ! ðSnCl4ÞmðN2H4Þn ð1Þ

ðSnCl4ÞmðN2H4Þn ! mSn4þ þ nN2H4 þ 4mCl� ð2Þ
3N2H4 þ 4H2O ! 4NH4OHþN2 ð3Þ

Sn4þ þ 4NH4OH ! SnO2 # þ4NH4
þ þ 2H2O: ð4Þ

Prior to the hydrothermal process, the (SnCl4)m(N2H4)n
complex clusters were formed via reaction (1), and at the
same time, the clusters were agglomerated into the slurry-
like white precipitate mentioned above. As represented in
reaction (2), the (SnCl4)m(N2H4)n clusters underwent dis-
sociation when the solution was heated to 100°C during

the hydrothermal stage. In reaction (3), OH− ions were
formed via the dissociation of N2H4 into NH4OH and N2

[17]. Reaction (4) represents the formation of the SnO2

nanoparticles via the reaction between Sn4+ and OH− ions
formed in reaction (3).
The synthesized sample was characterized by X-ray

powder diffraction (XRD) using the XRD Make-Bruker
D-8 model (Bruker AXS, Inc., Madison, WI, USA) with
CuKα radiation with a wavelength λ =1.5418 Å at 2θ
values between 20° and 80°. Transmission electron mi-
croscopy (TEM) images were recorded from a transmis-
sion electron microscope (CM-200, Make-PHILIPS,
Amsterdam, The Netherlands). The UV-visible (UV–vis)
diffuse reflectance spectrum (DRS) was obtained from a
JASCO UV–vis/NIR spectrophotometer V-670 model
(Easton, MD, USA).

Results and discussion
Structural properties by XRD
The XRD pattern of the product is shown in Figure 1.
The peaks at 2θ values of 26.6°, 33.8°, 37.9°, 51.8°, 54.7°,
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Figure 1 XRD pattern of the SnO2 sample.

Figure 2 FESEM image of the SnO2 sample. Figure 3 SAED pattern of the SnO2 sample.
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ID61.9°, and 65.9° can be associated with (1 1 0), (1 0 1),
(2 0 0), (2 1 1), (2 2 0), (3 1 0), and (3 0 1), respectively. A
matching of the observed and standard (hkl) planes con-
firmed that the product is of SnO2 having a tetragonal
structure, which are in good agreement with the literature
values (JCPDS card no. 41–1445). The average particle
size (D) was estimated using the Scherrer equation [18]:

D ¼ 0:9λ
β cosθ

; ð5Þ

where D is the crystallite size, λ is the X-ray wavelength,
β is the full width at half maximum of the diffraction
peak, and θ is the Bragg diffraction angle of the diffrac-
tion peaks. The average particle size was found to be
22.4 nm.

Morphological properties by FESEM
Figure 2 shows the field emission scanning electron mi-
croscopy (FESEM) micrograph of the synthesized SnO2

sample. Clustering of particles seems to have occurred
on the surface. In this image, cubic structures can be
easily seen.

Microstructural properties by TEM and SAED pattern
Figure 3 shows the electron diffraction patterns of the
sample. It is clear from the figure that the SnO2 particles
are crystalline in nature. The electron diffraction pat-
terns show continuous ring patterns without any add-
itional diffraction spots and rings of secondary phases,
revealing their crystalline structure. Seven fringe pat-
terns corresponding to planes (1 1 0), (1 0 1), (2 0 0),
(2 1 1), (2 2 0), (3 1 0), and (3 0 1) are consistent with
the peaks observed in the XRD patterns. XRD and TEM
studies confirmed pure tetragonal structure of SnO2 as
evidenced from Figures 1 and 4, respectively. The ring-
to-the-center distance of each ring is measured as 3.01,
4.23, 4.41, 5.61, 6.52, 7.10, and 7.71 and expressed in
terms of nm−1. The reciprocal of these values gives the
interplanar distance d. Details are given in Table 1.

Optical properties by UV–vis DRS
To determine the optical bandgap of synthesized SnO2,
the reflectance spectra of the SnO2 thick film prepared
by screen printing technique [19] on a glass substrate
was measured. The reflectance (R) spectra of the SnO2

thin film were shown in Figure 5.
As seen in Figure 5, the reflectance spectra show a

strong decrease after 360 nm. This decrease is related to
optical transitions occurring in the optical bandgap. In
order to determine the precise value of the optical band-
gap of the SnO2, the reflectance values were converted
to absorbance by application of the Kubelka-Munk func-
tion [20,21].
The Kubelka-Munk theory is generally used for the

analysis of diffuse reflectance spectra obtained from
weakly absorbing samples. The Kubelka-Munk formula
is expressed by the following relation:

FðRÞ ¼ ð1� RÞ2
2R

¼ K
S
; ð6Þ

where F(R) is the Kubelka-Munk function which corre-
sponds to the absorbance, R is the reflectance, K is the
absorption coefficient, and S is the scattering coefficient.

Figure 4 TEM image of the SnO2 sample.

Table 1 d values obtained from XRD and TEM

Reported d values (Å) XRD d values (Å) Electron diffraction (TEM) Planes
(hkl)Reciprocal of d values δhkl (nm

−1) d values dhkl (Å)

3.35 3.342 3.01 3.320 (1 1 0)

2.64 2.604 4.23 2.364 (1 0 1)

2.37 2.372 4.41 2.267 (2 0 0)

1.76 1.770 5.61 1.782 (2 1 1)

1.67 1.653 6.52 1.533 (2 2 0)

1.50 1.501 7.10 1.408 (3 1 0)

1.41 1.418 7.71 1.297 (3 0 1)
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IDIt is well known that the optical transitions in semicon-
ductor materials are taken place by direct and indirect
transitions. The absorption coefficient α for direct tran-
sitions is expressed by the following relation [22]:

αhν ¼ Aðhν� EgÞn; ð7Þ

where α is the linear absorption coefficient of the mater-
ial, A is an energy-independent constant, Eg is the op-
tical bandgap, and n is a constant which determines the
type of optical transitions: for indirect allowed transition,
n= 2; for indirect forbidden transition, m= 3; for direct
allowed transition, n= 1/2; and for direct forbidden tran-
sition, m= 3/2. The F(R) values of the SnO2 film were

obtained using the ð1�RÞ2
2R relation in Equation 6 [23,24]

and the Kubelka-Munk function F(R) is directly propor-
tional to the absorbance. Therefore, F(R) values were
converted to the linear absorption coefficient by means

of the α ¼ FðRÞ
t ¼ Absorbance

t relation [25], where t is the

thickness of the SnO2 film. The curve of FðRÞhν
t

� �2
vs. hν

for the SnO2 film was plotted, as shown in Figure 6. The
optical bandgap (Eg) of the SnO2 film was determined

from the curve of FðRÞhν
t

� �2
vs. hν and was found to be

3.6 eV. The optical bandgap of the SnO2 studied is simi-
lar to that of undoped SnO2 materials obtained by vari-
ous methods [26,27]. This suggests that the optical
bandgap of SnO2 semiconductors changes with respect
to the synthesis method used.

Conclusions
SnO2 nanoparticles have been successfully synthesized
by a simple hydrothermal method at low temperature
using hydrazine hydrate as a mediator. The structural,
morphological, microstructural, and optical properties of
a SnO2 sample were investigated. XRD spectra indicated
that the as-prepared product is polycrystalline in nature.

It was also shown from these spectra that the crystallite
structure was observed to be tetragonal. The surface
morphology was investigated by FESEM. The crystallite
size (22.4 nm) of the SnO2 nanoparticles, estimated by
XRD, is confirmed by TEM. The optical bandgap of the
SnO2 film was found to be 3.6 eV.
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