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Abstract

Two-dimensional semiconductor quantum-dot systems are typical nanoscale structures in which a few number of
electrons is confined in a small region of space by applying external electric gate potentials. While the detailed form of
the confining potential depends on the specific experimental setup, the parabolic confinement model has commonly
been used because of its simplicity. Clearly, on those instances in which the experimental setup involves placement of
gate potentials with sharp geometric features, the area depleted of electrons; thus, the quantum-dot region cannot
be considered circular. If, for simplicity, we consider the confinement region of the electrons as square in shape, then
an accurate calculation of the properties of such square-patterned quantum dot should be made using a realistic
confinement potential originating from that particular configuration. We calculated exactly such a confinement
potential for a square quantum dot. The particular analytic form of this realistic potential is complicated given its
dependence on the two-dimensional position coordinates, rather than simply the distance from the center of the
quantum dot. In this work, we choose to substitute the realistic confinement potential for a square-patterned
quantum dot with an approximated circular symmetric potential. We assess the quality of this approximation and
discuss instances in which one can reliably use the approximated simplified potential instead of the computationally
unyielding exact one.
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Background
Two-dimensional (2D) semiconductor quantum-dot sys-
tems are typical nanoscale structures in which a few
number of electrons is confined in a small region of space
by applying external electric gate potentials [1,2]. Such
systems represent one important step towards future gen-
erations of sophisticated nanoscale device technologies
[3,4] and also are important from a fundamental theoret-
ical point of view since they represent an ideal setting to
investigate the interplay between many quantum effects
that otherwise are not readily available [5-13]. Confine-
ment and electron correlations manifest themselves in
many interesting phenomena including signatures of the
very interesting physics of the fractional quantum Hall
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effect phases [14-19] if a high perpendicular magnetic
field is applied. To some extent, small 2D semiconductor
quantum dots mirror naturally occurring atomic systems
[20-22] with the important difference of the confinement
potential which is artificially created. Freedom to choose
the confinement potential is extremely desirable since it
implies high tunability of physical properties using stan-
dard experimental methods. While the detailed form of
the confining potential depends on the specific experi-
mental setup, the parabolic confinement model has com-
monly been used because of its simplicity [23-26]. Despite
the variety of confinement potentials with both infinite
and finite range, most of these choices share the prop-
erty of being isotropic in the 2D spatial directions [27,28].
While these confinement models generally work well,
there are situations in which the experimental setup in
a 2D semiconductor quantum dot involves asymmetric
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application of several gate potentials with sharp geometric
features.

In instances in which the experimental setup involves
placement of gate potentials with sharp geometric fea-
tures, the area depleted of electrons, thus the quantum
dot region, is not circular. If, for simplicity, we consider
the confinement region of the electrons as square in
shape, then an accurate calculation of the properties of
such square-patterned quantum dot should be made by
using a realistic confinement potential originating from
that particular configuration. In this work, we consider
the confining region of the electrons to be precisely a
square and, thus, calculate exactly the confinement poten-
tial originating from this geometry. We find out that the
particular analytic form of this confinement potential is
quite complicated given the dependence of the potential
on the separate x and y coordinates. Given that the realis-
tic confinement potential for a square-patterned 2D semi-
conductor quantum dot is complicated, it makes sense
to approximate it with simpler forms that possess circu-
lar symmetry if the loss of accuracy is not prohibitive.
In this work, we study a circular confinement potential
that is a good approximation to the resulting square-
patterned one. We assess the quality of this approximation
and discuss instances in which one can reliably use the
approximated simplified circular potential instead of the
computationally unyielding exact one.

Methods
Confinement potential due to a square patterned
two-dimensional semiconductor quantum dot
Depending on the placement of the gate potentials in
a 2D semiconductor quantum dot, electrons might get
confined in a non-circular region with sharp geometric
features. In this work, we consider the area depleted of
electrons to be a uniformly positively charged square. The
confinement potential felt by electrons with charge, −q0
(q0 > 0) in presence of a uniformly charged finite square
(the depleted region) with length, L, and total positive
charge, Q, is:

U(x, y) = −q0 V (x, y) , (1)

where V (x, y) is the electrostatic potential created by a
the uniformly charged square at the point �r = (x, y) on
the 2D plane. To calculate such a potential, we choose the
origin of the system of coordinates at the center of the
square. This implies that the positive charge is all found
in the domain D : −L

2 ≤ x′ ≤ +L
2 ; −L

2 ≤ y′ ≤ +L
2 .

The uniform charge density of such distribution is writ-
ten as ρ0 = Q/L2. The total charge of the domain, Q,
and the length, L, can both be tuned experimentally. The

calculation of the electrostatic potential, V (x, y), is simpli-
fied using the transformation:

1
|�r − �r ′| = 2√

π

∫ ∞

0
du e−u2 (�r−�r ′)2

. (2)

The remaining steps are more straightforward with the
final result for the potential written in integral form as:

V (X, Y ) = k Q
L

2√
π

∫ ∞

0
dt f (t, X) f (t, Y ) , (3)

where k is Coulomb’s electric constant, X = x/L, Y =
y/L, and t = u L are dimensionless variables. The func-
tion f (t, X) (as well as f (t, Y )) is given by the following
expression:

f (t, X) =
√

π

2 t

{
erf

[
t

(
1
2

− X
)]

+ erf
[

t
(

1
2

+ X
)]}

,

(4)

where erf (z) = 2/
√

π
∫ z

0 dx e−x2 is the error function
[29]. The above expression is extremely useful since it
allows us to calculate the electrostatic potential, thus the
resulting confining energy, at any location on the 2D
quantum-dot region. In dimensionless units, the confin-
ing potential, U(X, Y ) = −q0 V (X, Y ), can be written as:

U(X, Y ) = −k Q q0
L

2√
π

∫ ∞

0
dt f (t, X) f (t, Y ) . (5)

In Figure 1, we plot the confining potential as a function
of the dimensionless distance,

√
X2 + Y 2, from the center

of the square (X = 0, Y = 0) for two chosen directions,
U(X, Y = 0) and U(X, Y = X), along the square. For
the same distance from the center of the square, we veri-
fied that the strongest confinement is achieved along the
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Figure 1 Confinement potential. We plot the confinement
potential, U(X , Y), created by a uniformly charged square with total
charge, Q, and length, L, along the (X , Y = 0) and (X , Y = X)

directions.
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Y = X direction. The overall strongest confinement
energy felt by electrons was found to be:

U(x = 0, y = 0) ≈ −3.52549
k Q q0

L
, (6)

and corresponds to electrons placed at the center of the
uniformly charged square.

Results and discussion
Approximated circular confinement potential
The confinement potential created by a uniformly charged
square is complicated given the dependence of the poten-
tial on each of the coordinates, x and y, and not simply
the distance,

√
x2 + y2, from the center of the quantum

dot. Thus, it looks very appealing to explore possibilities
in which the realistic confinement potential for a square-
patterned quantum dot is replaced with an approximated
circularly symmetric one as done in this work. To this
effect, we assess the quality of such an approximation and
also discuss instances in which one can reliably use the
approximated simplified circular potential instead of the
computationally unyielding exact one. To gain back the
circular symmetry lost in the square, let us consider a cir-
cular domain in the form of a disk having the same area as
the original square region:

π R2 = L2 . (7)

The idea is to compare the confinement potential cre-
ated by a uniformly charged disk to the one created by
a uniformly charged square under the constrain that the
same total charge, Q, is uniformly distributed over two dif-
ferent domains with equal area. In this scenario, one has
to calculate the resulting confining potential energy felt
by an electron with charge, −q0 (q0 > 0), in a 2D uni-
formly charged disk. The calculation of such charged disk
potential [30,31] is lengthy with the final result:

UD(r, R) = −q0 V0 F(r, R) , (8)

F(r, R) =
∫ ∞

0

dt
t

J0
( r

R
t
)

J1(t) , (9)

where R is the radius of the disk, F(r, R) is a function that
depends only on the ratio r/R (given in integral form),
Jn(x) are n-th order Bessel functions, r = √

x2 + y2 is
the distance of the electron from the center of the disk,
V0 = (2 k Q)/R is the electrostatic potential created by
the disk at its center (r = 0), and k is Coulomb’s electric
constant. The uniformly charged circular-disk region with
an area identical to the square is shown in Figure 2. The
square domain with area L2 = π R2 is shown in Figure 3.
Since the disk has the same area as the square, the radius of
the disk is fixed to R = L/

√
π . As before, the most strongly
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Figure 2 Uniformly charged circular region with area, π R2,
where R is the radius of the disk. If the origin of the coordinative
system is chosen at the center of the disk, we have
(x/R)2 + (y/R)2 ≤ 1.

confined electrons are those localized at the center of the
disk (r = 0):

UD

(
r = 0, R = L√

π

)
= −2

k Q q0
R

≈ −3.54491
k Q q0

L
, (10)
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Figure 3 Uniformly charged square with area, L2 = π R2, same
as the disk. L is the length of the square and R is the radius of the
disk. If the origin of the coordinative system is chosen at the center of
the square, we have −√

π/2 ≤ x/R ≤ +√
π/2 and

−√
π/2 ≤ y/R ≤ +√

π/2.
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where the final value above was obtained after replacing
R = L/

√
π . Compare the above approximated result in

Equation (10) to the exact value, U(x = 0, y = 0) ≈
−3.52549 k Q q0/L from Equation (6). While such an ini-
tial result is encouraging, the overall quality of the approx-
imation employed should be more thoroughly assessed
by comparing the values of the exact confining potential,
U(x, y), at arbitrary points (x, y) to the corresponding val-
ues obtained from the approximated circular confining
potential, UD(r = √

x2 + y2, R = L/
√

π), at that location.
For the sake of a direct comparison, as before, we mea-
sure the confinement energies in units of k Q q0/L. After
straightforward transformations, we rewrite:

UD(X, Y )=−kQq0
L

2
√

π

∫ ∞

0

dt
t

J0
(√

X2 + Y 2√π t
)

J1(t),

(11)

where X = x/L and Y = y/L are the dimensionless coor-
dinates suitable for the square case. In Figure 4, we plot the
circular-disk confining potential, UD(X, Y ), as a function
of the dimensionless distance,

√
X2 + Y 2.

Based on simple arguments, we expect the approxi-
mated circular-disk potential to be a very good description
of the exact non-circular potential in the central region of
the domain and far away from the center of the domain.
The most substantial differences are expected to occur at
locations that correspond to edges such as sides of the
square or corners of the square. We gauged the quality
of UD(X, Y ) by comparing it to the exact square poten-
tials, U(X, Y = 0) and U(X, Y = X), that represent
the two boundary directions along the square’s surface.
The data clearly show that the agreement between the
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Figure 4 The circular confinement potential, UD(X, Y ). This
potential is created by a uniformly charged disk that approximates
the exact non-circular potential originating from a square domain.
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Figure 5 Exact square confinement potentials and
approximated circular confinement potential. Exact square
confinement potentials, U(X , Y = 0) and U(X , Y = X), together with
the approximated circular confinement potential, UD(X , Y), created
by a uniformly charged disk.

exact confinement potential and its approximated circu-
lar counterpart is very good everywhere with more pro-
nounced variations at the edges of the domain. In Figure 5,
we plot the realistic potentials, U(X, Y = 0) and U(X, Y =
X), together with their approximated circularly symmetric
disk confining potential, UD(X, Y ).

Conclusions
The results indicate that the approximated circular sym-
metric potential is an excellent substitute for the realistic
square potential almost everywhere, except the domain
boundaries. Obviously, the particular analytic form of the
realistic square potential, U(x, y), is complicated given the
dependence on both coordinates, rather than simply the
distance from the center of the quantum dot. Thus, it
is very appealing to find reliable substitutes for such a
confinement that are simple and correctly capture key fea-
tures. The approximated circular symmetric disk potential
considered in this work appears to be a very reason-
able choice for its simplicity and quality. Thus, we believe
that the approximated simplified circular potential can be
a reliable substitute for the computationally unyielding
exact one for a square-patterned 2D semiconductor quan-
tum dot in those cases where the speed of computational
calculations, such as numerical diagonalizations [32] or
other methods, is paramount.
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