
Arc
hive

 of
 S

ID

Frequency comparison of light transmission in a
defected quasi-one-dimensional photonic crystal
slab

Rostam Moradian1,2,3

Email: Moradian.rostam@gmail.com

Jamileh Samadi1,2,∗

Email: jamilehsamadi@yahoo.com

1Department of Physics, Faculty of Science, Razi University, Kermanshah 67149-67346,
Iran

2Nano Science and Technology Research Center, Razi University, Kermanshah 67149-
67346, Iran

3Computational Physical Science Research Laboratory, Department of Nano-Science,
Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531,
Tehran, Iran

∗Corresponding author. Department of Physics, Faculty of Science, Razi University,
Kermanshah 67149-67346, Iran

Abstract

In a new theoretical investigation, we study light transmission through a photonic crystal (PC) slab
with limited boundaries at width. By using a tight binding model, photon dispersion relation and
photon Green function for a perfect system are obtained. Then, based on the Lippmann-Schwinger
formalism, we calculate the effects of disordering on light transmission in the PC channel. We found
that the ratio of the electric field for a defected system with respect to a perfect system at a pecu-
liar frequency is maximized for the wave vector corresponding to the first Brillouin zone (BZ) edge
showing photon localization. The electric field difference of the first and second neighboring sites
with respect to the defect site on the first BZ edges are depicted in several plots indicating frequency
dependence which can be applicable in frequency filtering or resonating cavity studies.
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Background

The design of two-dimensional (2D) or three-dimensional periodic dielectric arrangements with proper
choice of materials, lattice symmetry, embedded defect creation, and boundary situations in photonic
crystals (PCs) enables the control of light flow at an elevated level. PC research is one of the most
interesting and applicable issues. Since the pioneer proposals for inhibition of light emission [1] and
localization of light [2], different approaches on PCs have been investigated. In recent experimental re-
search, more attention has been given to photon localization in PC microcavities and wave guides [3-5],
nanocavities [6], and disordered or amorphous PCs [7-9]. Theoretical investigations have mostly used
perturbation theory completed with Green tensor [10,11], tight binding method [12-14], Wannier func-
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tion [15], and Lippmann-Schwinger formalism [16]. Well-engineered designs and proper materials lead
to less refraction at the boundaries; therefore, light transports through the bulk by interference in the in-
ternal structure while the occurrence of boundaries affects the dispersion relation as reported for metallic
PC resonators [17] and also limited boundaries with antireflection structures [18]. Here our task is the
investigation of light transmission along the length of a perfected PC slab with a width limited by a
high-dielectric-constant material at boundaries. Vanishing of the electric field of incident light at the
boundaries due to total reflection leads to quantization of photon modes for the perpendicular wave vec-
tor. Then, by exhibiting a defect on one of the PC slab sites, we show that light transmission completely
differs for special modes at the defect and its neighboring sites. The ratio of incident modes of defected
systems with respect to clean systems can be calculated from the difference of these individual modes
by applying the appropriate photonic Green function. The organization of the paper is as follows: In
the ‘Methods’ section, we extended the method implemented in [12] to discretize Maxwell’s equations
of our system. One of these equations is used for transverse magnetic (TM) modes to introduce an
eigenvalue-eigenfunction equation of the PC slab in tight binding method. Then, photonic Green func-
tion and photonic dispersion relation are obtained for the described system. In the last step, defected
system electric field is related to the perfect system electric field by applying an equation based on the
Lippmann-Schwinger formalism. In the‘Results and discussion’ section, application of this equation is
investigated by several plots of the electric field and intensity at the defect site and its neighboring sites
for different cases, followed by the the ‘Conclusions’ section.

Methods

Discretization of Maxwell’s equations

The structure under our consideration is a PC system consisting of periodic dielectric rods with finite
thickness in a two-dimensional slab. Figure 1a shows a PC slab sandwiched between two high-dielectric-
constant layers parallel to the x-axis direction. Also, due to total reflection, the electric field vanishes at
the boundaries. Although the slab is limited in width, the x-axis direction is unlimited. A point defect
can be easily exhibited by inserting an air rod instead of one of the dielectric lattice sites (Figure 1b)
while the nearest neighboring dielectric rods are numbered. We begin our investigation by following
Maxwell’s equations for electric field E and magnetic field H:

1

ε(r)
∇× {∇× E(r)} =

ω2

c2
E(r), (1)

∇×
{

1

ε(r)
∇×H(r)

}
=
ω2

c2
H(r), (2)

where ω is the light frequency, c is the light velocity, and εr(r) is the dielectric constant. By assuming
that the dielectric constant εr(r) is independent of the z coordinate, we rewrite the first equation for a
two-dimensional slab. We just study the TM mode since the mentioned PC structure with dielectric rods
is appropriate for TM modes [19,20]. This formalism is general, and for TE modes the same procedures
have to be reviewed. Extending the method implemented in [12], we discretize Equation 1 since for TM
modes the main components of fields are (Ez,Hx,Hy); therefore, the electric field and the other two
components can be solved by the following differential equations:

1

ε(r)

(
∂2Ez

∂x2
+
∂2Ez

∂y2

)
+
ω2

c2
= 0,
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Hx =
−i
ωµ0

∂Ez

∂y
, Hy =

i

ωµ0

∂Ez

∂x
. (3)

Figure 1 A PC slab. A PC slab consisting of high-dielectric rods between low-dielectric background
which is sandwiched in two high-dielectric-constant layers parallel to the x-axis direction, (a) the perfect
system and (b) the imperfect system, while the central rod is removed. The neighboring sites are not
removed but are indicated by numbers.

The corresponding equation for Ez in the form of operator equation with a Hermitian differential oper-
ator could be defined as [12]

LTMf =

(
ω

c

)2

f, (4)

where L and the function f for TM modes are defined by

LTM = − 1√
ε(r)

(
∂2Ez

∂x2
+
∂2Ez

∂y2

)
1√
ε(r)

, f =
√
εr(r)Ez. (5)

This equation has to be discretized in the x direction, and the position of the center of the lth site in the
x direction is indicated by xl = la0 and in the y direction by yα = α a0, where a0 is the lattice constant
and l and α are integers. While l is an infinite number, α is finite. By using the following discretization
of Equation 5,

a20
∂2

∂x2
ξ(x)f(x) → ξαl+1f

α
l+1 − 2ξαl f

α
l + ξαl−1f

α
l−1,

a20
∂2

∂y2
ξ(y)f(y) → ξα+1

l fα+1
l − 2ξαl f

α
l + ξα−1

l fα−1
l , (6)

where fαl =
√
ξαr,lE

α
z,l and ξαl = 1√

ξα
r,l

, then a finite differential equation is obtained:

vαl f
α
l − tα,αl,l+1f

α
l+1 − tα,αl,l−1f

α
l−1 − tα,α+1

l,l fα+1
l − tα,α−1

l,l fα−1
l

=

(
ωa0
c

)2

fαl , (7)

where the coefficients are defined as

vαl = 4(ξαl )
2, tα,αl,l+1 = ξαl ξ

α
l+1, tα,αl,l−1 = ξαl−1ξ

α
l ,

tα,α+1
l,l = ξα+1

l ξαl , tα,α−1
l,l = ξαl ξ

α−1
l . (8)

General form of tight binding model for a PC slab

For mapping of light propagation in a PC to a tight binding model, we introduce photon creation and
annihilation operators aα†l and aαl for the site (la0, αa0) with the following bosonic particle commutation
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relations:

[aαl , a
α′†
l ] = δα,α

′†
l,l′ , [aα†l , a

α′†
l ] = 0, [aαl , a

α′
l′ ] = 0. (9)

When the Hermitian operator L̂ acts on the photonic field stateket | f >, we have the following
eigenvalue-eigenfunction equation:

L̂ | f >=
(
ωa0
c

)2

| f >, (10)

where L̂ and | f > are defined by

L̂ =
∑
l;α

(vαl a
α†
l a

α
l )−

∑
l,m;α,β

(tα,βl,ma
α†
l a

α
l ), (11)

| f >=
∑
l;α

fαl a
α†
l | 0 >, (12)

where | 0 > is the photonic vacuum state. The result is equivalent to the finite differential equation (7).
To distinguish defected and perfect systems, index zero is used for the perfect system. Equation 11, in
terms of perfect system operators and onsite and hopping energies, is given by

L̂ = L̂0 +
∑
l;α

(v′αl − vαl )a
α†
l a

α
l −

∑
l,m;α,β

(t′α,βl,m − tα,βl,m)aα†l a
β
m, (13)

where prime v′αl = 4(ξ′αl )2 and t′α,βl,m = ξαl ξ
′β
m . For convenience, two parentheses on the right-hand side

of Equation 13 are substituted with εαl and δtα,βl,m , respectively:

L̂ = L̂0 +
∑
l;α

εαl a
α†
l a

α
l −

∑
l,m;α,β

δtα,βl,ma
α†
l a

β
m. (14)

The matrix element of Equation 14 is Lα,β
l,m = Lα,β

0l,m + εαl δ
α,β
l,m − δtα,βl,m . This equation could be written

in the following operator form:

L̂ = L̂0 + ν̂, (15)

where ν̂ is defined by

ν̂ = ε̂− δ̂t. (16)

Now an efficient propagator, the Green function [21], is defined:((
ωa0
c

)2

− L̂

)
G(ω) = 1̂

G0(ω) =

((
ωa0
c

)2

− L̂0

)−1

. (17)

In the following part, we determine the Green functions for the described system to calculate the defected
slab electric field.
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PC slab Green function

According to Equation 10, we act the operator L̂0 on stateket | f0k >, and since the eigenvalue equals(ωka0
c

)2, we proceed a quantum mechanical treatment to obtain the PC slab Green function:

(E − L̂0) | f0k >=
((

ωa0
c

)2

−
(
ωka0
c

)2
)

| f0k >,

where E = (ωa0c )2 and k characterizes the field mode. Including all modes, we have

(E − L̂0)
∑
k

(
1(ωa0

c

)2 − (ωka0
c

)2
)

| f0k >< f0k |=
∑
k

| f0k >< f0k |,

then the Green function is defined:

G0(k) =
∑
k

(
1

(ωa0c )2 − (ωka0
c )2

)
| f0k >< f0k | . (18)

The field stateket | f > or the electric field ket can be determined according to [20], but since the electric
field vanishes at the limited boundaries, the following relation is adequate for the electric field stateket:

| fkx,ν(xαl , yαl ) >=
∑
l,ν

Ckx,ν exp(ikxx
α
l ) sin

(
πν

w
yαl

)
| ukx,ν(xαl ) >, (19)

where Ckx,ν is the normalization factor, ν is an integer indicating discrete modes along y axes, and w
is the slab width. By defining r⃗ as a one-dimensional (1D) Bravias lattice site position and d⃗αl as a sub-
site position with respect to the 1D Bravias lattice site in such a description as Figure 2 which shows
mapping of a PC slab to a 1D Bravis lattice site, the electric field ket Equation 19 is also written as

| fkx,ν(r⃗) >=
∑
l,ν,α

Ckx,ν exp(ikxx
α
l ) sin

(
πν

w
d⃗αl

)
| ukx,ν(r⃗ − r⃗l − d⃗αl ) >; (20)

therefore, a general relation for the perfect slab Green function component is

G0α,β
l,m =

∑
kx,ν

(
1(ωa0

c

)2 − (ωka0
c

)2
)

| Ckx,ν |2

× < ukx,ν(r⃗ − r⃗l − d⃗αl ) | fkx,ν(x
γ
l , y

γ
l ) >

× < fkx,ν(x
θ
m, y

θ
m) | ukx,ν(r⃗ − r⃗l − d⃗βl ) >; (21)

however, for the case of the electric ket Equation 19, we have a simpler form of this component:

G0α,β
l,m =

∑
kx,ν

(
1(ωa0

c

)2 − (ωka0
c

)2
)

| Ckx,ν |2 exp[ikx(xαβlm)]

× sin

(
πν

w
yαl

)
sin

(
πν

w
yβm

)
. (22)
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This Green function, is used to relate that defected system field to the perfect system field by the
Lippmann-Schwinger formalism.

Figure 2 A 1D Bravias lattice site. Mapping of a PC slab to a 1D Bravias lattice site is shown schemat-
ically. The horizontal axis is infinite, while the vertical axis is finite.

Lippmann-Schwinger equation

The electric field component in the z-axis direction, ψ(r⃗αl ), is determined by multiplying < ukx,ν(r⃗ −
r⃗l − d⃗αl ) | from the left to the stateket | fkx,ν(xαl , dαl ) >:

ψ(r⃗αl ) =< ukx,ν(r⃗ − r⃗l − d⃗αl ) | fkx,ν(xαl , dαl ) >; (23)

inserting Equation 19, we have

ψ(r⃗αl ) = Ckx,ν exp(ikxx
α
l ) sin

(
πν

w
dαl

)
. (24)

Perturbation modifies the electric field, but with first-order approximation of the Lippmann-Schwinger
formalism, we relate the defected system electric field to perfect system’s. For this purpose, we write

(G0−1 − ν)ψl =

((
ωa0
c

)2

−
(
ωka0
c

)2
)
ψl. (25)

Using ψl
∼= ψ0

l and ωk
∼= ω0

k, we have L0ψl
∼= (ωka0

c )2ψl and((
ωa0
c

)2

−
(
ωka0
c

)2
)

=

((
ωa0
c

)2

− L0

)
= G0−1

,

where the right-hand side of Equation 25 is equal to G0−1
ψl; then, all ends to the Lippmann-Schwinger

equation:

ψ̂l = ψ̂0
l +G0νψ̂0

l . (26)

For calculating G0, we should have the proper dispersion relation of the slab that is illustrated in Fig-
ure 1. Therefore, by Equations 7 and 19 and some mathematics, we obtain the desired relation:

ωkx,ν =
c

a0

(
vαl − 2tα,αl,l±1 cos (kxa0)− 2tα,α±1

l,l cos

(
πν

w
a0

)) 1
2

, (27)

which is based on tight binding method and is applicable only for the described slab.

Application of the method to a PC slab

In order to relate the wave function of a defected system to a perfect system, Equation 26 is rewritten
while a perturbation term is included:

ψ̂α
l = ψ̂0

α

l +
∑

l′,l′′;β,γ

Ĝ0
α,β

l,l′ (ε
β
l′δ

β,γ
l′,l′′ − δtβ,γl′,l′′)ψ̂

0
γ

l′′ . (28)

We apply this model for a quasi-one-dimensional PC slab consisting of periodic dielectric rods in which
the dielectric constant εr = 8.9 and the central defect site is an air cylinder with a circle cross section.
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The slab is infinite along the x direction, but due to layering high-dielectric-constant material sheets
on its borders parallel to the x direction, it has a finite y direction. Although we have considered the
first neighboring sites, the difference of the dielectric constant term for neighboring sites, δtβ,γl′,l′′ , can
be generalized in such a way that other neighboring sites can be included. For numerical calculation

of Ĝ0
α,β

l,l′ , Equation 20 or 22 is used in which due to the action of the photon creation and annihilation
operators aα†l and aαl on the center of sites, dαl is the distance between the center of the sites. The
quantized parameter ν for ky = πν

w is summed over all discrete modes of separate sites on the y direction.
Figure 3a,b shows plots of dispersion relation in terms of kx presented for two different numerical
integers ν = 0, 1, 2, 3, 4 and ν = 1, 2, 3, 4, 5, respectively. Mode numbers start upward to higher values.
There is no degeneracy for modes in Figure 3a, but since the third and fifth modes are degenerate, in
Figure 3b four modes are plotted. We calculated the electric field of the defected system at different
sub-sites for a slab with five sub-sites. Figure 4 shows the ratio of electric field, and Figure 5 shows
the ratio of electric field intensity with respect to its clean system at defect site l = 0 in sub-site α = 3
(central site). In Figure 4 at normalized frequency 0.819, the peak’s height is maximum 10.2, while it
is 103 for the ratio of field intensity which is presented in Figure 5, where these peaks and other peaks
in the following figures correspond to the first Brillouin zone (BZ) edges. The ratio of field intensity for
site l = ±1 and sub-site α = 3 (right side or left side of the defect site) is presented in Figure 6. The
peak’s height is maximum 10 at normalized frequency 0.909. The following figures are presented for
the second case with ν = 1, 2, 3, 4, 5. Figure 7 shows the ratio of field intensity for the defect site; the
peak’s height is maximum 4,782 where the ratio of z-component of electric field is −69.2 at normalized
frequency 0.909. These are a considerable amount for amplification of incoming pulses at a certain
frequency and demonstrate bosonic localization because of the defect and the limited boundaries. The
defect disturbs the electric field of other sites which depends on frequency, so a comparison between
the ratio of electric field and field intensity of the defect site with the neighboring sites is shown in the
following figures where kx takes a constant value corresponding to the first BZ edge. This comparison
in Figures 8 and 9 are for the neighboring sites that are indicated by numbers 1 and 3 in Figure 1b which
are laid on the x direction having the same situation for the ratio of electric field and field intensity.
According to Figure 8, an important result is achieved, showing equality of electric field sign of the
sites with defect sites for lower frequencies but difference with opposite sign for higher frequencies.
Figures 10 and 11 show this comparison for the neighboring sites that are indicated by numbers 2 and
4 in Figure 1b and are laid in the y direction. But different from the first neighboring site on the x
direction, Figure 10 shows that the electrical field of these sites have opposite sign with the electric
field of the defect site for both the lower and higher frequency range. In Figures 12 and 13, electrical
field and field intensity of the second neighboring site on each corner of the defect site are compared
with those of the two mentioned first neighboring sites. As it is evident in Figure 12, these sites have
different electrical field with opposite sign with the first neighboring site in the x direction (no. 1 or 3
sites) but with equality sign for lower frequencies and opposite sign for higher frequencies with the first
neighboring site in the y direction (no. 2 or 4 sites).

Figure 3 The dispersion relations for different integer numbers. Dispersion relation in terms of kx is
plotted for two different numerical integers of ν corresponding to ky = πν

w . Mode numbers start upward
to higher values. (a) ν = 0, 1, 2, 3, 4. There is no degeneracy for modes. (b) ν = 1, 2, 3, 4, 5. The third
and fifth modes are degenerate.

Figure 4 The ratio of electric field for defect site. The ratio of electric field with respect to its clean
system at defect site l = 0 in sub-site α = 3 (central site) is plotted. The peak’s height is maximum 10.2
at frequency 0.819 corresponding to the edges of the first BZ (the third axis).
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Figure 5 The ratio of field intensity at defect site. The ratio of electric field intensity with respect to
its clean system at defect site is plotted. The peak’s height is maximum 103 at frequency 0.819.

Figure 6 The ratio of field intensity for the first neighboring site of right/left side of defect site.
The ratio of field intensity with respect to its clean system for the site l = ±1 and sub-site α = 3 (right
side or left side of the defect site) is presented. The peak’s height is maximum 10.0, with Ez

E◦
z
= −3.2 at

normalized frequency 0.909.

Figure 7 The field intensity for defect site. The ratio of electric field intensity with respect to its clean
system at defect site, corresponding to ν = 1, 2, 3, 4, 5 of Figure 3b. The peak’s height is maximum
17,100, with Ez

E◦
z
= 130.8 at frequency 0.819.

Figure 8 A comparison of electric fields for different sites. The ratio of electric field of defect site
(black line) and the first neighboring site on right or left side of the defect (yellow line) are compared
which indicates similarity at lower frequencies but difference at higher frequencies. kx is constant
corresponding to the first BZ edge.

Figure 9 A comparison of the ratio of field intensity for different sites. The ratio of electric field
intensity of defect site (black line) and the first neighboring site on the right or left side of the defect
(yellow line) are compared which indicates that the maximum field intensity of the neighboring site is
at higher frequency. kx is constant corresponding to the first BZ edge.

Figure 10 A comparison of electric fields for different sites. The ratio of electric field of defect site
(black line) and the first neighboring site on upside or downside of the defect (green line) are compared
which indicates different signs of electric field for all range of frequency. kx is constant corresponding
to the first BZ edge.

Figure 11 A comparison of the ratio of field intensity for different sites. The ratio of electric field
intensity of defect site (black line) and the first neighboring site on upside or downside of the defect
(green line) are compared which indicates that the maximum field intensity of the neighboring site and
defect site are at the same frequency. kx is constant corresponding to the first BZ edge.

Figure 12 A comparison of electric fields for different sites. The similarities and differences of the
sign and amount of the electric field at three sites are compared: the first neighboring site of the right
or left (yellow line), the first neighboring site on upside or downside of the defect (green line), and the
second neighboring site on each corner side of the defect (dark blue line). kx is constant corresponding
to the first BZ edge.

Figure 13 A comparison of the ratio of field intensity for different sites. The ratio of electric field
intensity of the first neighboring site of the right or left (yellow line), the first neighboring site on upside
or downside of the defect (green line), and the second neighboring site on each corner side of the defect
(dark blue line) is compared. kx is constant corresponding to the first BZ edge.

Results and discussion

Based on the first-order perturbation theory and Lippmann-Schwinger formalism, we have presented a
new treatment for light transmission through a PC slab which introduces a new equation by including
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disorders of the system. The equation has a general form and is applicable to 2D PC systems with
different polarizations, but we simplify it for TM modes and extend the method to investigate effects of
a point defect on the light transmission along a boundary-limited slab length in which the slab system
is mapped to a quasi-1D system. The vanishing electric field at the boundaries due to total reflection
leads to quantization of a photon wave vector component perpendicular to the incident direction. By
discretizing Maxwell’s equations and mapping them to a tight binding model for the perfect system,
the proper dispersion relation and the slab Green function are obtained. This is a theoretical approach
similar to electronic semiconductor calculation; by then we have introduced a scheme which realizes
localization of photons and precise calculations site by site in the slab. For this purpose, we have
investigated the effects of a central defect on light propagation, and we find out that the electric field at
the defect site is maximized for the first BZ edges. Therefore, realization of photon localization in the
quasi-1D defected PC slab is maintained. The ratio of the electrical field at the first neighboring site
parallel to incoming modes is compared with the defect site which indicates that the electric field sign
for lower frequencies is the same but is different for higher frequencies with maximum field intensity at
higher frequencies with respect to the defect site. On the other hand, the ratio for the first neighboring
sites with a perpendicular direction to incoming modes indicates a different sign of electric field for all
ranges of frequencies but maximum field intensity at the same frequency with respect to the defect site.
Finally, the same procedure is plotted for the second neighboring site on the corners of the defect site
and is compared with the previously mentioned first neighboring site.

Conclusions

Using Lippmann-Schwinger formalism and tight binding approach, we calculate the field intensity in
a photonic crystal structure. The method of tight binding can be an appropriate way to calculate the
localization of light as well as an efficient way in investigating disorders in the photonic crystals. We
have introduced a new equation by including disorders of the system in a general form. In a designed
system with a defect in the central site while the boundaries are limited, we have demonstrated that
the enhancement of the electric field intensity takes place in the cavity-like defect site which can be
applicable in frequency filtering or resonating cavity studies. The calculation is also done for the first
and second neighboring sites of the defect site, and the results are compared with the defect site in which
considerable differences are obtained.
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