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Abstract 

Highly crystalline Gd3+-doped cadmium oxide micro-structure was synthesized by calcining 
the obtained precursor of a sol–gel reaction. The reaction was carried out with cadmium 
nitrate (Cd(NO3)2·4H2O), gadolinium oxide, and ethylene glycol (C2H6O2) reactants without 
any additives at 80°C for 2 h. The resulting gel was calcined at 900°C with increasing 
temperature rate of 15°C/min for 12 h in a furnace. As a result of heating, the organic section 
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of the gel was removed, and the Gd3+-doped cadmium oxide micro-structure was produced. 
The obtained compound from the sol–gel technique possesses a cubic crystalline structure at 
a micro scale. XRD study indicates that the obtained Gd3+-doped CdO has a cubic phase. 
Also, the SEM images showed that the resulting material is composed of particles with 
cluster structure. Also, FT-IR spectroscopy was employed to characterize the Gd3+-doped 
CdO micro-structures. 
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Background 

Recent research on luminescent nanomaterials provides challenges to both fundamental and 
breakthrough development of technologies in various areas such as electronics, photonics, 
display, lasing, detection, optical amplification, and fluorescent sensing in biomedical 
engineering and environmental control [1]. Gadolinium oxide (Gd2O3) has been frequently 
used as host material due to abundant resource in nature. Further, Gd is a known contrast 
agent for magnetic resonance imaging (MRI), and thus the rare-earth ion-doped Gd2O3 can be 
used in dual, MRI, and fluorescence imaging applications [2] and as a drug carrier [3]. In 
addition, pure and doped Gd2O3 films have been studied as high dielectric constant gate 
dielectric films, phosphor films, and scintillating films [4,5]. The films of transparent 
conductive oxides (TCO) such as cadmium oxide (CdO) have been extensively studied 
because of their use in semiconductor optoelectronic device technology [6]. Among the TCO, 
CdO films have been successfully used for many applications, including use in gas-sensing 
devices, photodiodes, transparent electrodes, phototransistors, and photovoltaic solar cells 
[7]. Also, CdO is an n-type semiconductor with a cubic crystal structure, possesses a direct 
band gap of 2.2 eV [8]. Besides, CdO shows very high electrical conductivity even without 
doping due to the existence of shallow donors caused by intrinsic interstitial cadmium atoms 
and oxygen vacancies [9]. In previous studies, the synthesis of Sn-doped CdO thin films [10], 
Bi3+-doped CdO thin films by sol–gel spin coating method [11], copper-doped CdO 
nanostructures [12], ZnO-doped CdO materials [13], titanium-doped CdO thin films [14], 
ZnO-CdO-TeO2 system doped with the Tb3+and Yb3+ ions [15], N-doped CdO [16], 
samarium-, cerium-, europium-, Fe-, and Li-doped CdO nanocrystalline materials [17-21], In-
doped CdO films [22], fluorine-doped CdO [23], gallium-doped CdO thin films [24], Gd-
doped CdO thin films with different method, dopant amount and structural morphology [25], 
Li-Ni co-doped CdO thin films [18], aluminum-doped CdO thin films [26], fluorine-doped 
CdO Films [27] have been reported. 

In this work, crystalline Gd3+-doped CdO micro-size layer has been synthesized by sol–gel 
method, with cadmium nitrate (Cd(NO3)2·4H2O), Gd2O3, and ethylene glycol (C2H6O2) as 
raw materials without using any catalyst or template at a heat treatment temperature of 900°C 
with increasing temperature rate of 15°C/min for 12 h, which is a very simple and economical 
method. Also, we discuss about dopant-concentration effect on the morphology of the 
synthesized materials. The product was characterized by XRD, SEM, and FT-IR techniques. 
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Methods 

All chemicals were of analytical grade, obtained from commercial sources, and used without 
further purification. Phase identifications were performed on a powder X-ray diffractometer 
D5000 (Siemens AG, Munich, Germany) using CuKα radiation. The morphology of the 
obtained materials was examined with a XL30 scanning electron microscope (Philips, 
Amsterdam, Netherlands). Also, FT-IR spectra were recorded on a Tensor 27 (Bruker 
Corporation, Germany). 

Synthesis of GdxCd1 − xO sub-micron layer (x = 0.02, 0.04, 0.08, and 0.1%) 

Cd(NO3)2·4H2O with molar concentrations of 4.83, 4.73, 4.68, and 4.63 mmolar (Mw = 
308.482 g mole−1), Gd2O3 with molecular concentrations of 0.049, 0.098, 0.0195, and 0.244 
mmolar (Mw = 362.5 g mole−1), and 10 ml C2H6O2 were added into 400 ml distilled water. 
Then, the solution was stirred at 80°C for 2 h until a dried gel was obtained. The gel was 
brown color and spongy. The dried obtained gel was treated thermally at 900°C for 12 h. 
After the reaction was completed and cooled slowly to room temperature, the obtained 
material was pulverized. The sample was a black-colored powder. 

Results and discussion 

Powder XRD analysis 

In order to investigate the structural properties of Gd3+-doped CdO micro-structures, X-ray 
diffraction measurements varying the diffraction angle (with 3° interval) from 4° to 70° were 
performed. The Gd3+-doped CdO diffraction peaks at 2θ values of 33.10°, 38.39°, 55.32°, 
65.96°, and 69.31° at x = 0.08 mmole compared to 2θ values of 32.97°, 38.27°, 55.25°, 
65.86°, and 69.21° corresponded to pure CdO matching with the 111, 200, 220, 311, and 222 
of cubic CdO (JCPDS-05-0640), indicating the formation of CdO- and Gd3+-doped CdO with 
excellent crystallinity. Figure 1 represents the powder XRD (PXRD) patterns of the obtained 
material after the 12-h reaction time at 900°C and at xGd = 0.02, 0.04, 0.08, and 0.1 mmole, 
respectively. Figure 1 spectrum d shows that increasing the dopant amount to xGd3+ = 1 mmol, 
the diffraction peaks at 2θ values of 29°, 47°, and 57° match with 222, 440, and 622 assigned 
to cubic Gd2O3 [1-3]. So, the doping limitation is x = 0 to 0.08 mmole. Crystal sizes were 
measured via Debye-Scherrer's equations, which are as follows: 29.0, 27.8, and 27.65 nm for 
x = 0.02, 0.04, and 0.08 mmole dopant concentration, respectively. Also, the interplanar 
spacing in the crystalline material is calculated via Bragg's law (nλ = 2dhkl sin θ) selecting the 
peaks h, k, and l at 200. The radius of Gd3+ (r = 0.94 Å [28]) is smaller than the radius of 
Cd2+ (r = 1.1 [28] Å); compared to those of the pure particles, the diffraction lines in the 
powder XRD patterns of Gd3+-doped CdO shift to higher 2θ in doped CdO. So, we have the 
following equations: ∆2θ = 38.39 (doped) − 38.27 (pure) = 0.12° and ∆d = 2.34903 (pure) − 
2.34196 (doped) = 0.00707 Å. The shift in the diffraction lines might be attributed to the 
smaller radius of the dopant ion, compared to the ionic radius of the Cd2+, which may cause a 
contraction of the unit cell and so decrease the lattice parameters in the Gd3+-doped CdO 
materials. The pattern shows the polycrystalline of cubic CdO structure (NaCl structure of a 
space group Fm3m). According to JCPDS-05-0640, the lattice constants for an undoped CdO 
sample were a = 0.46950 nm. Also, we used CelRef software version 3, using XRD patterns 
2θ and h, k, and l values, to refine the cell parameters. Pure CdO cell parameters calculated as 
a = 0.46941 nm and for doped CdO (in x = 0.08 mmole) were a = 0.46912 nm. The 
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calculations showed that the unit cell volume of pure CdO is 0.1034 nm3 and that of the 
doped CdO is 0.10324 nm3. So, we can conclude that there is a contraction in the unit cell 
when doping Gd3+ in CdO. The PXRD measurements confirm that a pure phase of the cubic 
CdO is formed [28-34]. 

Figure 1 PXRD patterns of the synthesized pure CdO and GdxCd1 − xO micro-material. 
(a) Pure CdO, (b) x = 0.02, (c) x = 0.04, (d) x = 0.08, and (e) x = 0.1 mmole. 

Micro-structure analysis 

Figure 2 reveals the SEM images of the cubic structure of the obtained crystalline CdO at 
900°C [33]. Remarkably, it was observed that the average particle size is 2 µm. As shown in 
Figure 2a,b, it is clear that the material is composed of particles with heterogeneous size. 
Figure 2c shows that the sample is nearly a layer-like structure with macro-pores which 
resulted from the calcination treatment. Figure 2d,e shows that the morphology is clearly like 
a layer, with the particle almost spherical in shape and size in a range of about 2 to 3 µm. 
SEM images in Figures 3, 4, and 5 reveal the general morphological aspect of the powder 
particles. SEM images of the synthesized Gd3+-doped CdO sub-micron materials are 
presented in Figure 3, 4, and 5. Figure 3 shows the SEM images of Gd0.02Cd0.98O sub-micron 
particle. The synthesis of the sol–gel system led to the formation of spheroidal-shaped 
particle clusters. As shown in Figure 3a,b, with low magnification, the sample is like a 
macro-porous structure, and it is clear that the particle sizes that formed the structure are 
heterogonous. With high magnification, this figure shows that there are small particles 
(uncus) on the surface of the particles. The average uncus particle size was estimated between 
200 and 300 nm. With higher magnification, Figure 3c,d shows that the multigonal particle 
sizes are about 1 µm. Compared to pure CdO, it seems that the morphology of the particles is 
changed from layer-like to macro-porous particles. Figure 4a,b shows Gd0.04Cd0.96O; due to 
increasing dopant concentration, the number of uncus particles is increased. The uncus sizes 
are a little smaller than those of Gd0.02Cd0.98O sub-micron particle. In Figure 4c,d, it is clear 
that with increasing dopant concentration, the morphology of the synthesized materials is 
almost unchanged. Figure 5a,b shows Gd0.08Cd0.92O; due to increasing dopant concentration, 
the morphology of the particles was changed to a layer-like structure. Also, in Figure 5c,d, it 
is clear that there are particles with spheroid structure. The particle sizes are heterogeneous 
and about 1 µm. In Figure 5d, it is clear that the width of the layer structure is about 3 µm. 
This Figure shows that there are small particles on the surface of the layer as uncus. The 
uncus particle sizes are heterogeneous and are estimated to be between 100 and 500 nm; 
considering the smallest uncus particle (100 nm), the uncus particles in Figure 5 are smaller 
than those of Gd0.04Cd0.96O. 

Figure 2 The SEM images of the synthesized CdO sub-micron materials. 

Figure 3 The SEM images of the synthesized Gd0.02Cd0.98O sub-micron materials. 

Figure 4 The SEM images of the synthesized Gd0.04Cd0.96O sub-micron materials. 

Figure 5 The SEM images of the synthesized Gd0.08Cd0.92O sub-micron materials. 
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Spectroscopic study 

Figure 6 shows the FT-IR spectrum diagram of the doped samples. The bands around 3,460 
and 1,650 cm−1 are due to the OH stretching vibration and OH deformation vibration, 
respectively. The absorption appearing around 1,510 and 1,410 cm−1 corresponds to CO 
asymmetric vibration. The band at 540 cm−1 is assigned to the Gd-O vibration mode of the 
cubic Gd2O3 [3]. Also, we know that the peaks at 800 to 1,400 are assigned to CdO [35]. 
Peak at 1,541 cm−1 corresponded to the residual organic components [36]. 

Figure 6 FT-IR spectra of the synthesized GdxCd1 − xO sub-micron materials. (a) x = 
0.02, (b) x = 0.04, (c) x = 0.08 mmole obtained after 12 h at 900°C. 

Conclusion 

In summary, micro-layers of Gd3+-doped CdO were synthesized successfully by employing a 
simple sol–gel method. We found that the dopant concentration affects the morphology of the 
final product. As shown by the SEM images, with increasing dopant concentration, the 
morphology of the cluster-like micro-crystals changed to partially layered structures. We 
found that compared to those of the micro-size material of pure CdO, the diffraction lines in 
the powder XRD patterns of Gd3+-doped CdO shifted to higher 2θ values. The shift in the 
diffraction lines might be attributed to the smaller radius of the dopant ion, compared to the 
ionic radius of the Cd2+, which may cause a contraction of the unit cell and so decrease the 
lattice parameters in the Gd3+-doped CdO materials. These materials are expected to have a 
potential application in dual, MRI, and fluorescence imaging applications and as a drug 
carrier. 
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