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Abstract. The assessment of relationships between satellite-derived vegetation indices and 
meteorological drought improves our understanding of how these indices respond to climatic 
changes. The combination of climate data and the Normalized Difference Vegetation Index 
(NDVI) product of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery 
provided an opportunity to evaluate the impact of drought on land degradation over the 
growing seasons. The main goal of this study was to investigate the effect of drought on 
vegetation degradation in Meyghan plain, Arak, Iran. For this purpose, climatic and satellite 
data were used. The annual Standardized Precipitation Index (SPI) was calculated for 20 years 
(1998-2017). Then, the NDVI maps were classified into three classes according to the 
Tokunaga-Thug method. These classes are: Class 1) no vegetation; class 2) low-density or 
poor rangelands, and class 3) semi-dense and dense vegetation cover such as agricultural 
lands. The relationship between the percentage of vegetation cover classes (classes 2 and 3) 
and the drought index of the previous year was assessed using the Pearson correlation test. 
The results showed that the correlation between these variables was significantly dependent 
on vegetation degradation in the poor vegetation area (R=0.51; P-value<0.05). In contrast, 
there was a negative significant relationship between drought and the percentage of dense 
areas of vegetation (R=-0.46; P-value<0.06). Hence, it was concluded that the sensitivity of 
the low-density area (poor rangeland) to drought was more than dense vegetation covers 
(agricultural lands). Its reason is that the most important source of water supply for natural 
rangelands is the atmospheric precipitation that has been reduced due to the occurrence of 
droughts in recent years.  
 
Key words: Normalized Difference Vegetation Index, Drought Monitoring, MOD13A3, 
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Introduction 
Destruction of vegetation cover is 
considered as one of the major factors of 
land degradation and desertification in arid 
and semi-arid regions of the world 
(Ahmed, 2015, Barbosa et al., 2015, Lian 
et al., 2017). The recent meteorological 
droughts had a significant effect on 
economics, agriculture, environment, 
natural resources and society (Medellín-
Azuara et al., 2016; Patil et al., 2014; Yan 
et al., 2016; Zhang et al., 2016). Therefore, 
long-term monitoring of vegetation and 
meteorological drought is very useful for 
assessing the response of different 
ecosystems to climate change and drought 
risk assessment. This phenomenon has 
affected many arid and semi-arid regions 
of the world. Drought monitoring has 
various types such as agricultural, 
hydrological and meteorological droughts. 
Regarding the fact that drought is a 
recurring and common event for all climate 
zones, especially in arid and semi-arid 
areas, its continuous monitoring and 
investigation of its effects are of very 
importance (Keshavarz et al., 2017; 
Marengo et al., 2017; Yang et al., 2018). 
Several indices are presented for this 
purpose. The most common 
meteorological drought index is the 
Standardized Precipitation Index (SPI) 
(Bahrami et al., 2019; Ibrahimi and Baali, 
2018). 
 The evaluation of vegetation cover 
dynamics and drought together can lead to 
a better understanding of land degradation 
trends. Recently, the use of remote sensing 
technology in the long-term monitoring of 
the physical characteristics of the earth's 
surface and the identification of their 
pattern of variation based on the series of 
satellite-based images has been growing 
globally (Gouveia et al., 2017; Mariano et 

al., 2018; Ribeiro et al., 2019). Because 
the use of traditional methods for mapping 
vegetation and investigating the trend of 
the changes over a long period is difficult 
and costly, but remote sensing technology 

is a useful tool for this purpose (Cracknell, 
2007).  
 Numerous indices have been developed 
to quantify vegetation cover dynamics and 
meteorological drought. The most utilized 
indices for vegetation and drought 
monitoring are Normalized Difference 
Vegetation Index (NDVI) and SPI, 
respectively. Currently, the products of 
MODIS sensor including vegetation 
indices (NDVI and EVI) have been 
effectively used for the assessment of 
vegetation dynamics monitoring and their 
responses to drought at various scales 
(Chen et al., 2017; Dubovyk et al., 2015; 
Gulácsi and Kovács, 2015; Mu et al., 
2016; Ko et al., 2017; Damavandi et al., 
2016; Safari Shad et al., 2017). For 
example, Dubovyk et al. (2015) used 
MODIS-EVI time-series data to study the 
trend of vegetation changes in southern 
Africa. They found that the main cause of 
the vegetation destruction in this region 
has been the growing population pressure. 
They also reported that a significant 
decline in atmospheric precipitation has 
occurred in the northern part of South 
Africa. In general, they found that the 
observed vegetation variations in most 
parts of southern Africa were rather 
attributed to land transformations than 
climatic variability. Brede et al. (2015) 
have studied the relationship between the 
Enhanced Vegetation Index (EVI) and the 
drought index of SPI to investigate the 
effect of drought on the Amazon forest. 
The results of their study showed that there 
was no significant relationship between 
EVI and SPI. However, Dutta et al. (2015) 
found that the combined use of SPI and 
NDVI has a high performance in 
predicting drought conditions in semi-arid 
regions. The relative importance of SPI, 
NDVI, and Land Surface 
Temperature (LST) to assess the 
agricultural drought condition was reported 
by Park et al. (2016). Long-term 
monitoring of poor pastures and 
agricultural lands in Yazd-Ardakan plain 
by using NDVI derived from other 
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satellites such as Landsat has been 
investigated by Khosravi et al. (2017). The 
SPI index was used to analyze the effect of 
drought on these changes. Their results 
showed that the sensitivity of poor pastures 
to drought changes was higher than 
farmlands. They reported that the overuse 
of groundwater resources was the main 
reason for decreasing the sensitivity of 
farmlands to meteorological droughts. 
Zhang et al. (2017) investigated the effects 
of drought on vegetation indices including 
Normalized Difference Water Index 
(NDWI), NDVI, EVI, and LST in 
southeast China. The results showed that 
during the studied period (2009-2010), the 
vegetation indices decreased while the 
LST index increased. The spatial response 
of SPOT-VEGETATION NDVI to rainfall 
variations in India was investigated by 
Kundu et al. (2018). They indicated the 
different patterns of dynamics of 
vegetation status in this region in response 
to this climate variable. 
 Due to the importance of 
meteorological drought and the evaluation 

of its effect on vegetation degradation, the 
main objectives of the present research 
were: 1) to study the vegetation changes 
during the pick time of vegetation growth 
from 2000 to 2017; and 2) to investigate 
the relationship between meteorological 
drought and vegetation cover variations in 
Arak Meyghan plain, Iran. 
 
Materials and Methods 
Meyghan plain is located in Markazi 
Province in Iran (49º 15′-50º 15′ 00″ E and 
33º 45′ -34º 45′ N). The Meyghan plain 
area is 106.4 Km2. There are 13 
climatology and synoptic stations and 10 
land use or land cover in this area whose 
distribution is shown in Fig (1). Based on 
the 18 years data (2000-2017), the average 
annual rainfall, temperature, and 
evapotranspiration of the study were 299.6 
mm, 14.8°C and 837.2 mm, respectively. 
According to the de Martonne method, the 
climate of this area is semi-arid (de 
Martonne's aridity index: 12.44). 
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Fig. 1. (a) The location of the study area in Iran; (b) in the Markazi province; (c) Distribution of synoptic stations 
in the Meyghan plain; and (d) Landuse/cover map of study area 

 
The general steps of this research are: 
1. SPI Calculation  
2. obtaining satellite data and their 

processing and  
3. Determining the relationship between 

the SPI and vegetation classes changes.  
The details of each step are explained 
below. 
For SPI Calculation, the monthly 
precipitation data were acquired from the 
Iran meteorological organization. These 
data were utilized to compute the SPI 
values and to determine the drought 
conditions. For this purpose, the annual 
precipitation value was estimated for each 
station, at first. In the next step, the 
average value of precipitation was 
calculated for the study area using the 

arithmetic mean method. At the last, SPI 
values at different time scales (1 to 12 
months and annual) were calculated using 
the Drought Index Package (DIP) software 
(Morid et al., 2007).  
 This index is developed by McKee 
(1995) and is approved by the world 
meteorological organization as a useful 
tool for the assessment of the intensity and 
duration of drought events. For this reason, 
we utilized it for assessing the 
meteorological drought conditions in our 
study area. The classification and 
interpretation of SPI values are shown in 
Table (1). The negative values of SPI 
indicate conditions drier than the median, 
whereas positive values SPI indicate wetter 
than median conditions. 
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Table 1. Classification and interpretation of the drought intensity based on SPI values 
Drought Condition SPI value 
Extremely dry <-2 
Severely dry (-1.99) to (-1.50) 
Moderately dry (-1.49) to (-1.00) 
Near normal (-0.99) to (0.99) 
Moderately wet (+1.00) to (1.49) 
Very wet (1.50) to (1.99) 
Extremely wet >2 

 
 The NDVI is a common vegetation 
index that is widely used for investigation 
of the spatial-temporal variations of 
vegetation (Birtwistle et al., 2016, 
Matsushita et al., 2007, Wang and 
Tenhunen, 2004, Yao et al., 2018). Hence, 
in the present study, this index was used to 
investigate the long-term vegetation cover 
monitoring at the peak time of plant 
growth in the study area (in May from 
2000 to 2017). The NDVI that is calculated 
as the normalized difference of reflectance 
in the red and near-infrared bands, takes 
values between −1 and +1 (Rouse, 1974).  
 The NDVI values that are between (0.1-
0.25) indicate poor vegetation cover 
conditions. The values greater than 0.25 
and less than 0.40 indicate semi-dense 
vegetation. High values of NDVI (>0.4) 
represent the dense vegetation cover 
(Tokunaga and Thug, 2002).  
 NDVI product of Moderate Resolution 
Imaging Spectroradiometer (MODIS) 
imagery (MOD13A3) was acquired from 
http://earhdata.nasa.gov/. Considering that 
the study region is located on the one 
frame of the MODIS Imagery and the 
study period is 18 years (2000-2017), a 
total of 18 frames from monthly NDVI 
products of this sensor were downloaded 
from the mentioned site. 
 In the present study, the NDVI index 
was classified into three classes including 
no vegetation cover (NDVI<0.1), poor 
vegetation (NDVI: 0.1-0.25) and semi-
dense and dense vegetation cover 
(NDVI>0.25). The area of each class was 
calculated via multiplying the number of 
pixels in pixel dimensions (1×1 km). 
 In this study, regression analysis was 
used to investigate the effects of the 
independent variable (SPI) on the 

dependent variable (vegetation cover 
changes). the coefficient of determination 
(R2) between measured and predicted 
values were used to determine the overall 
accuracy of the regression model. R2 value 
can vary from 0 to 1 (or 0-100%) and 
indicates how many percents of the 
variation of the dependent variable can be 
explained by the linear relationship 
between independent and dependent 
variables.  
 The Pearson correlation coefficient (R) 
is an important tool that measures the 
linear correlation between independent 
(SPI) and dependent (NDVI) variables. 
The correlation coefficient between SPI 
and NDVI for each station over the whole 
study period were calculated. Finally, 
using the Inverse Distance Weighting 
(IDW) method, a spatial correlation map 
was prepared for the study region. 
 In addition to this criterion, in the 
present research, the standard error of the 
regression coefficient and F values of 
regression equations was calculated by 
using SPSS20 software.  
Results and Discussion 
The correlation coefficients between the 
area of different vegetation classes and the 
SPI at periods of 1- to-12 months and 
annual scale are presented in Table (2). As 
seen, there was no significant correlation 
between SPI values (at time scales of 1 to 
12 months) and the area percentage of poor 
and dense vegetation classes (P-
value>0.05). However, there was a positive 
significant relationship between annual SPI 
and poor vegetation area and as well as, a 
negative significant relationship between 
annual SPI and dense vegetation area (P-
value>0.05). Therefore, the yearly SPI was 
selected to analyze the effect of 
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meteorological drought on vegetation 
changes in the study area. Our findings are 
consistent with some previous reports 
(Khosravi et al., 2017, Farrokhzadeh et al., 

2018) that used the annual drought index 
to study the impact of meteorological 
drought on vegetation changes in the 
months of the growing season.  

 
Table 2. The results of correlation analysis between SPI at different time scales and area of vegetation classes 

(%) 
Time scales of SPI Poor vegetation area (%) Dense vegetation area (%) 

SPI 1 0.205ns -0.049 ns 
SPI 3 0.027 ns 0.098 ns 
SPI 6 0.215 ns -0.119 ns 
SPI 9 0.119 ns 0.008 ns 

SPI 12 -0.029 ns 0.144 ns 
Annual SPI 0.494 * -0.465 * 

*=significant at 5% probability level. 
 
Based on annual SPI values (Table 3), the 
years 2006 with an annual SPI value of 1.8 
was detected as the humid year during the 
study period (1998-2017). In contrast, the 
worst amount of droughts in the Meyghan 
plain occurred in 2007, 2010, 2017 and 
1999 (SPI: -2.3, -1.3, -1.04 and -0.7, 

respectively). During these years, the 
phenomenon of drought has occurred in 
many regions of Iran, including in 
Hamedan province, near the study area of 
the present research(Nazari et al., 2017), 
which confirms the results of this research. 

 
Table 3. Annual SPI values of study area 

Year Annual SPI Year Annual SPI Year Annual SPI Year Annual SPI 
1998 -0.50 2003 0.25 2008 -0.83 2013 0.50 
1999 -0.70 2004 0.40 2009 0.23 2014 -0.12 
2000 0.66 2005 0.01 2010 -1.30 2015 1.10 
2001 1.40 2006 1.80 2011 -0.30 2016 0.63 
2002 0.15 2007 -2.30 2012 -0.56 2017 -1.04 
 
In the second step, in order to detect the 
effect of meteorological drought on 
vegetation cover, NDVI maps were 
prepared and classified into three groups: 
1) No vegetation (NDVI<0.1); 2) Poor 
vegetation(NDVI: 0.1-0.25); and 3) Semi-

dense and dense vegetation(NDVI>0.25). 
The classified NDVI maps of Meyghan 
plain from 2000 to 2017 are shown in Fig. 
2. The percentage of area for all classes is 
demonstrated in Fig. 3.  
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Fig. 2. Classified NDVI maps of Meyghan plain from 2000 to 2017 
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Table 4. Percentage area of vegetation covers classes in the Meyghan plain 
  Class1 Class2 Class3 

2000 10.6 82.3 7.1 
2001 6.4 83.7 9.9 
2002 2.2 75.1 22.7 
2003 2.1 77.9 20.0 
2004 1.8 69.1 29.1 
2005 2.3 81.5 16.2 
2006 2.3 73.1 24.6 
2007 1.9 59.6 38.6 
2008 5.0 84.4 10.7 
2009 1.7 57.7 40.6 
2010 1.8 58.5 39.7 
2011 1.8 58.5 39.7 
2012 2.0 73.2 24.7 
2013 2.0 70.0 28.1 
2014 1.7 75.6 22.7 
2015 2.3 66.6 31 
2016 10 65.0 25 
2017 1.6 71.0 27.4 

 
As shown in Figure (2) and Table (4), the 
highest percentage of dense vegetation is 
related to the second half of the study years 
(after the 2008 drought). This could be due 
to an increase in groundwater utilization 
for agricultural purposes in this region of 
Iran (Rajabi and Ghorbani, 2016). 
However, the highest area of poor 
vegetation class refers to the first half of 
study years (before 2008) because of the 
persistence of the droughts in these years 
was higher than the early years (Table 3). 
In other words, our findings indicated that 
the recurrence of droughts, especially in 
recent years, was one of the important 
causes for reducing the area of poor 
pastures in the study area. 
 Given the used NDVI products in the 
present study are related to the middle of 

spring (May), drought index in the 
previous year should be utilized for 
investigating the impact of drought on 
vegetation cover. Hence, the correlation 
between the two variables was investigated 
with a lag time. In other words, areas 
percentage of the classes of poor (Class2) 
and semi-dense and dense vegetation 
(Class3) for the study period was studied 
with the calculated SPI from 1999 to 2016 
using the simple regression analysis. The 
annual values of SPI versus percentage 
area of vegetation covers and their scatter 
plots are shown in Figs. (3 and 4), 
respectively. The obtained results of the 
regression analysis between these variables 
are summarized in (Table 5). 
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Fig. 3. Annual values of SPI versus percentage area of (a) poor vegetation covers; and (b) dense vegetation cover 

 

  
Fig. 4. Scatter plots of the SPI and percentage area of (a) poor vegetation covers; and (b) dense vegetation cover 
 
Table 5. The results of regression analysis between the annual SPI and percentage area of vegetation classes 

Statistic parameters Class(2) Class(3) 
Pearson′s R  +0.49 -0.46 
Std error 0.90 1.20 
F values 4.8 4.13 

P-value 0.04 0.06 
 
The results of this stage of the present 
research showed that the percentage area 
of poor vegetation was positively 
correlated with the previous SPI index (R2 
=0.24; p-value<0.05), while a negative and 
significant correlation was found between 

this index and percentage area of another 
class (semi-dense and dense vegetation) 
over the study period (R2=0.21; p-
value<0.06). These findings indicate that 
drought may be an important driver for 
vegetation degradation of the low density 
area of Meyghan plain. Because the source 
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of water supply for this type of land use is 
the atmospheric precipitation, which has 
declined due to the occurrence of recent 
droughts. It seems that a negative 
relationship between SPI and the 
percentage area of class (3) was due to the 
agricultural land development and the 
construction of urban green spaces in 
which their sources of water supply are 
mainly groundwater. The same results 
have been reported by Khosravi et al. 
(2017) and Dubovyk et al. (2015). Our 
results are also agree with the findings of 
Ansari and Golabi (2019), who reported 
that the significant changes have occurred 
between the years 2007-2015 around the 
Meighan wetland (in the central part of our 
study area) due to the conversion of 
rangelands to agriculture lands. They also 
found that there was a considerable 
increase in wastewater, wetland, and 
manmade changes in the following order; 

75.69%, 96.20% and , 41.89%. Moreover, 
our findings showed the existence of 
opposite correlations in different regions of 
the study area (Fig. 5). As displayed, the 
positive correlation coefficients are mainly 
observed in the western regions and the 
negative correlation coefficients are mainly 
observed in the eastern regions of the study 
area. Different vegetation densities in 
different regions of the study area and their 
susceptibility to drought may be one of the 
main causes. In other words, differences in 
the sensitivity degree of different 
vegetation (e.g., dense and/or poor 
vegetation) to drought phenomenon may 
lead to opposite correlations in the study 
region. These results are similar to the 
results of Yan (2016) who found the 
existence of positive and negative 
correlations between rainfall and 
vegetation in the Huang-Huai-Hai River 
Basin, China.  

 

 
 

Fig. 5. Spatial Correlation coefficients between SPI and NDVI at synoptic stations and Meighan plain during the 
study period 

Archive of SID

www.SID.ir



Journal of Rangeland Science, 2020, Vol. 10, No. 2                                                Ebrahimi Khusfi and Zarei/214 

Conclusion 
In the present research, we examined the 
effect of meteorological drought on land 
depredation based on the monthly NDVI 
product of the MODIS and climate data 
over the 18-year (2000-2017). The 
classification of vegetation cover using 
Tokunaga and Thug method was 
performed and the relationship between the 
area of defined classes and the drought 
index was investigated based on Pearson 
correlation analysis. The results showed 
that drought had a significant effect on 
reducing vegetation cover in low-density 
areas. According to Pearson's test, it was 
found that a significant decline in these 
regions of Meyghan plain was due to the 
occurrence of droughts during this period. 
However, dense vegetation areas were not 
affected by the meteorological drought. In 
recent years, the exploitation of deep and 
semi-deep wells for irrigating agricultural 
lands in most regions of Iran has been 
growing. Although such actions have led 
to adverse environmental impacts such as 
reducing the level of aquifers, as well as 
the degradation of groundwater quality 
(Amirataee and Zeinalzadeh, 2016, Chao 
et al., 2018), it has also been able to reduce 
their sensitivity to meteorological droughts 
by supplying crop water requirements. 
Hence, it can be said that one of the 
possible reasons for reducing the 
sensitivity of these areas to the drought 
phenomenon is this issue. Our findings 
also showed that only 24% and 21% of 
changes in poor and dense vegetation areas 
were due to meteorological drought 
effects. One reason may be the low spatial 
resolution of MODIS images. It seems that 
the use of images with higher spatial 
resolution such as Landsat and ASTER 
could show a higher correlation coefficient 
among these variables. Other causes can be 
changes in other climatic parameters such 
as air temperature, evaporation, surface 
wind speed, changes in physical 
characteristics of the earth's surface as well 
as human activities, which are suggested to 
be investigated in the future research. 

These studies could improve our 
understanding of the impact of multiple 
factors on changes in vegetation covers. It 
is expected that such research could 
improve our understanding of how 
multiple factors effects on the degradation 
or development of vegetation covers in 
arid and semi-arid regions. 
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های با استفاده از داده پوشش گیاهی تخریبارتباط بین خشکسالی هواشناسی و 

  در یک محیط نیمه خشکای اقلیمی و ماهواره
 

 ب، مهدی زارعی*الفزهره ابراهیمی خوسفی 

 ، (نگارنده مسئول)* منابع طبیعی، گروه مهندسی طبیعت، دانشگاه جیرفت، جیرفت، ایران استادیار دانشکدهالف

Zohreebrahimi2018@ujiroft.ac.ir 
 سبزوار، ایراناه حکیم سبزواری، استادیار مرکز تحقیقات مطالعات اجتماعی و علوم جغرافیایی، دانشگ ب 

 

و خشکسالی هواشناسی، درک ما نسبت  ای ماهوارههای پوشش گیاهی  ارتباط بین شاخصارزیابی  .چکیده

های اقلیمی و محصول  تلفیق داده. دهد افزایش می ها به تغییرات اقلیمی را به چگونگی پاسخ این شاخص

ارزیابی اثر خشکسالی بر تخریب  مودیس فرصتی را برای (NDVI)شاخص پوشش گیاهی تفاوت نرمال شده 

این تحقیق، بررسی اثر خشکسالی بر تخریب  ازهدف . پوشش گیاهی در طول فصل رشد فراهم آورده است

. ای استفاده شد های اقلیمی و ماهواره بدین منظور، از داده. ایران است دراراک پوشش گیاهی دشت میقان 

  های سپس نقشه. محاسبه شد( 0991-0202)ساله  02ی  دوره شاخص سالانه بارش استاندارد شده برای
NDVI بدون پوشش ) 0 کلاس: ها عبارتند ازاین کلاس. بر اساس روش توکونگاتانگ به سه طبقه تقسیم شد

از قبیل  های نیمه متراکم و متراکم پوشش) 3و کلاس  (پوشش کم تراکم یا مراتع فقیر) 0 ، کلاس(گیاهی

خشکسالی  با شاخص( 3و  0کلاس )های پوشش گیاهی  درصد مساحت کلاس ارتباط بین. (اراضی کشاورزی

نتایج نشان داد که همبستگی بین این دو . سال قبل با استفاده از آزمون همبستگی پیرسون بررسی شد

 ;R=0.51) پوشش گیاهی ضعیف بوده استبسته به تخریب اراضی در نواحی بامتغیر به مقدار قابل توجهی وا
P <0.05 .)همانند ) بین درصد مساحت مناطق با پوشش گیاهی متراکمدار  معنیو منفی  مقابل رابطه در

توان نتیجه گرفت که حساسیت مناطق کم  بنابراین می. (P<5/2)شدمشاهده سالی و خشک( اراضی کشاورزی

بوده ( اراضی کشاورزی)به خشکسالی بیشتر از حساسیت اراضی متراکم از پوشش گیاهی ( مراتع فقیر)تراکم 

جوی است که به دلیل وقوع طبیعی، نزولات  مراتعترین منبع تامین آب برای  آن است که مهم علت. است

 .یافته استهای اخیر کاهش  ها در سالخشکسالی

 

 ،توگ–روش توکوناگا خشکسالی،پایش  ،شاخص پوشش گیاهی اختلاف نرمال شده :کلیدی کلمات

MOD13A3مناطق نیمه خشک ، 
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