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Abstract: 
 
Context-dependent modeling is a widely used 
technique for better phone modeling in continuous 
speech recognition. While different types of context-
dependent models have been used, triphones have 
been known as the most effective ones. In this paper, a 
Maximum a Posteriori (MAP) estimation approach 
has been used to estimate the parameters of the untied 
triphone model set used in data-driven clustering. The 
use of better prior parameters derived from two sets 
of more reliably trained biphone models has helped in 
this process. The result is better parameter tying 
where the tied-state triphone system built in this 
manner outperforms a similar system in which 
ordinary Maximum Likelihood (ML) approach was 
used to estimate the untied triphone system 
parameters. The technique may also be useful in other 
tying schemes used in context-dependent modeling. 
 
Keywords:  Bayesian training, Prior parameter 
estimation, Context-dependent modeling, Triphones, 
Biphones, State tying, Continuous speech recognition 
 

1. Introduction 
It is a widely known issue that co-articulation, i.e. the 
effect of neighboring sounds in the pronunciation of a 
phone, can radically change its acoustic properties. The 
speech recognition systems that rely on phoneme-based 
models may hence be adversely affected by this 
phenomenon. In order to alleviate this problem, context-
dependent modeling has been used as the choice in 
continuous speech recognition. Many different types of 
context-dependent models have so far been implemented, 
including biphones, triphones, quinphones, etc. [1] [2]. 
Furthermore, other sub-word models that can partly 
model context, such as syllables and demi-syllables, have 
also been used [3] [4] [5]. However, triphones have 
gained much attention as one of the best performing 
context-dependent modeling methods.  
While context-dependent models are more accurate 
models in comparison to context-independent ones, an 
important issue dealing with these models is found to be 
their large number in a continuous speech recognition 
system. Furthermore, to obtain a more accurate 

recognition system, one needs to use relatively complex 
output distributions, such as mixture-Gaussians, which 
can give a further substantial increase to the number of 
parameters within the system. 
Several efforts have aimed to overcome the main problem 
of context-dependent and mixture-Gaussian modeling, 
i.e. the large number of system parameters that can result 
in poor parameter estimation. Most of the available 
triphone systems utilize a tying approach to reduce the 
overall number of system parameters and obtain robust 
parameter estimations [6] [7]. Others have used 
techniques such as model-interpolation and quasi-
triphones to try help train better triphone models [8] [9]. 
These techniques have shown certain improvements in 
overall triphone system performance with tying 
approaches leading the list. It is also worth mentioning 
that in recent years, the issue of further improving the 
context-dependent models has not been dealt with 
extensively as the tying approaches are believed to have 
taken the context-dependent system performance close to 
its limits. The approaches introduced in more recent 
researches have also generally tried to improve the 
performance of tied-parameter systems.  
Tying, itself, involves different approaches. Several 
levels of tying have been introduced in order to reduce 
the overall number of parameters in the system [10]. 
Starting from model level, lower levels of tying have 
been more successful due to their better sharing of details 
among different parts of speech units. In a HMM-based 
recognition system these include states, state transition 
probabilities, mixture components and even pdf 
parameters such as mean vectors, covariance matrices 
and mixture weights. Taking into account that lower level 
tying involves more complication in programming, tying 
in state and mixture component levels have been used 
most widely in speech recognition systems. 
Among more recent efforts to improve the context-
dependent systems performance, in [11] and [12] the 
syllabic structure of Persian and Thai languages have 
been explored to improve context dependent modeling. 
Willet et al. have used concept analysis as a mathematical 
means for improving tree-based state clustering [13]. 
López de Ipiña et al. used a data massaging feature in 
decision tree clustering to emphasize the data and a fast 
and efficient Growing and Pruning algorithm for the 
decision tree construction [14]. 
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An initial step in the process of tying is clustering. The 
so-called data driven approach tries to provide an initial 
set of triphone parameters using available training data 
[10]. Then, clustering is performed based on this set of 
parameters. Obviously, due to the lack of training data, 
this approach suffers from weak clustering. An 
alternative approach uses a tree clustering approach based 
on the phonetic properties of the target language [2]. This 
approach has the advantage of not depending only on the 
initial inappropriately trained models, but it also needs a 
carefully designed clustering tree for the target language. 
Bayesian approaches such as MAP estimation, due to 
their higher performance in sparse data conditions, have 
also been used for parameter estimation in similar 
situations. It has been shown that starting from 
monophones as priors in a MAP estimation framework, 
better triphone models can be obtained in comparison to 
maximum likelihood estimation [15] [16]. Another 
Bayesian approach has been introduced that uses a 
common optimality criterion to construct triphone models 
using models of less context-dependency, i.e. left and 
right biphones and monophones [17]. Due to smaller 
number of parameters in such models, they have more 
robustly-trained parameters and hence can lead to better 
triphone modeling. 
While parameter tying is a well known and vastly used 
approach in context-dependent modeling, in a data-driven 
tying approach a set of initial triphones are needed in 
order to enable us perform clustering. This is usually 
obtained by first cloning monophones, i.e. using the 
parameters from the same monophone model for all the 
models of its allophones. Then, in a subsequent training 
phase, these triphone models are trained using the 
available training data. Approaches such as monophone 
model cloning and inhibiting parameter updates during 
training, in the cases of the availability of very few 
observations, lead to more improved triphones. The 
resultant models are then used as the basic set for 
clustering and tying [10]. The major drawback of this 
approach is that due to the large number of parameters in 
the triphone system and in spite of utilizing such 
approaches as monophone cloning and update inhibition 
for few examples, the training of the initial triphone 
models may not be robust, which can adversely affect the 
clustering process. This has been the main reason for 
using MAP estimation in place of ML for this initial 
training stage, which is also believed to have a 
considerable impact on the tying process. 
In this paper, we have shown that using enhanced prior 
models for the MAP estimation approach can even lead to 
better initial triphone models and consequently better tied 
models. The prior model set is obtained using an 
approach similar to that followed to create a quasi-
triphone model set [9]. Although backing off to simpler 
context dependent models, i.e. monophones and 
biphones, has been introduced before for the construction 
of more detailed models, such as triphones [18], we have 
introduced a specific backing off approach to construct 
improved prior parameters for the MAP estimation 
process. Due to the desirable characteristics of MAP 

estimation that can start from prior models and gradually 
improve as more training data appears, the triphones 
trained in this manner are expected to perform better in 
comparison to ML-trained triphones. This can, in turn, 
lead to a better data-driven tied-parameter triphone 
system. 
 

2. MAP versus ML Estimation 
The Bayesian framework for the estimation of HMM 
parameters has this advantage over Maximum Likelihood 
(ML) estimation that makes use of a set of prior 
parameters. Given a set of observation sequences, O = 
{o1,…,oT}, the maximum likelihood estimate for the 
HMM parameter set (say λ) is found by setting 
 
 

( | ) 0.P λ
λ

∂
=

∂
…1 To , ,o  (1) 

 
In a Bayesian framework, however, the Maximum a 
posteriori (MAP) estimate for the HMM parameter set is 
found by maximizing the posterior distribution of 
parameters given the set of observation sequences (O), 
i.e.  

( | ) 0.P λ
λ

∂
=

∂
…1 To , ,o  (2) 

According to the well-known Bayes rule, 
( | ) ( )

( | ) ,
( )

P P
P

P

λ λ
λ =

O
O

O
 (3) 

where P(λ) is a prior distribution function for the set of 
model parameters. Using the above concept, it has been 
shown that the MAP estimation for the HMM parameters 
can be found using a set of prior parameters [19]. As an 
example, the MAP estimation for mean parameters of the 
mixture-Gaussian pdfs is given by 

1
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ik tik iktt
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+
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∑
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μ

 (4) 

where μik is the prior mean parameter, τik is a weighting 
prior parameter and γikt  is the probability of being in state 
i and mixture component k at time t given the observation 
οt. 
Equation (4) can be directly compared to the mean 
estimation equation within a ML framework, such as 
Baum-Welch estimation. This comparison would result in 
that the first parts of both numerator and denominator of 
Equation (4) are the main difference between these two 
approaches, as far as the pdf mean parameters are 
concerned. As mentioned, these are the parts related to 
the prior parameters involved in MAP estimation. This 
also means that the MAP estimate for the mean parameter 
can be interpreted as a weighted interpolation between 
the ML estimate and the prior value of the mean. If both 
the prior mean value (μik) and the prior weight (τik) are 
chosen appropriately, then with small amounts of γikt, 
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which is in fact the mixture component (or state, in a 
single-Gaussian system) occupation count, the prior mean 
dominates. With increasing the available training data 
and the value of γikt, the weight of the ML estimate part is 
increased and the role of the prior is weakened. This 
desirable specification of MAP estimation makes it 
appropriate for the cases where the amount of training 
data is limited. In such cases, the sparsity of the available 
training data could cause the ML approach to give 
unrealistic estimates, which can lead to system 
performance degradation. The MAP estimation equations 
for other continuous density HMM parameters can also 
be found in [19] and a somewhat similar interpretation 
can be given for them. 

3. Prior Parameter Estimation 
The above discussion obviates the importance of the prior 
parameters in MAP estimation and their main role in 
superiority of MAP estimation over ML estimation in 
sparse data conditions. However, the estimation of 
appropriate prior parameters in such cases is not trivial. 
In practical approaches, to overcome this problem, 
usually, an empirical Bayes approach is followed [20] 
[21]. Using this approach, several techniques have been 
adopted to acquire better sets of priors in similar 
applications (e.g. [22] [23]). However, these techniques 
usually involve complicated algorithms and need several 
types of systems to allow parameter calculations. The 
simpler approach adopted in [24] is found to be sufficient 
in this case. Here, the parameters are calculated using an 
already available initial recognition system. As an 
example, the prior parameters used in (4) are calculated 
as follows 

( )ik ikE= mμ  (5) 

1,ik ikτ ψ= −  (6) 

where ψik represents a parameter of the prior normal-
Wishart distribution. Meanwhile, in practice, it was found 
that a unique value for τik would perform equally well. 
The values for μik, however, are the means of the initial 
recognition system pdfs. 

4. Triphone System Construction 
Due to the importance of the initial system used for prior 
parameter calculations, we have tried to construct a better 
initial system. In the traditional triphone modeling 
approach, a baseline monophone system is used as the 
initial system. Then, the parameters of the monophone 
model of the base phone in any triphone compound are 
copied as the parameters of that model. This process is 
often called cloning. Hence all the initial triphones with 
the same middle phone would have the same set of 
parameters (i.e. all allophones of a single phone). Starting 
from this point, the parameters of the triphone system are 
estimated using a maximum likelihood approach. Hence, 
the cloned triphone system is in fact the same monophone 
system and further training of the parameters faces the 

grave problem of training data sparsity. We have 
proposed an enhanced set of prior parameters, derived 
from biphone models, as the initial models for MAP 
estimation of the triphone models. 
Consider a context-independent phonetic unit 
(monophone) is called u. Then we call the left context-
dependent phonetic unit (biphone) as  
l < u and the right context-dependent one as  
u > r. In this case, the left and right context-dependent 
unit (triphone) would be known as  
l < u > r. Ming et al. have shown that given a phone-
level acoustic observation o, applying certain simplifying 
independence assumptions, one can write [17] 

( | ) ( | )
( | )

( | )
.p l u p u r

p l u r
p u

< >
< > =

o o
o

o
 (7) 

This means that triphone models can be replaced by left 
and right biphones and monophones during likelihood 
calculations. They have also shown that for an 
observation sequence of o1…oT, the state-based 
likelihood function can be written as: 

1
1

( ) ( )
( | ) ,

( )
t t

t t

t

l u u rT
s s

s s u
s t s

b b
p a

b
λ

−

< >

=

= ∑ ∏" t t
1 T

t

o o
o o

o
 (8) 

where λ is the parameter set of the triphone model, s is 
the occupied state at the time t, aij is the state transition 
probability and bs describes the state occupation 
probability of the specified state of the specified model. 
In (8), the observation probability is found using the 
observation densities from the states of all three models, 
i.e. the context-independent one and the two left and right 
context-dependent models. This approach, although very 
efficient in memory requirements, needs three probability 
calculations, in place of one, for every step of the 
recognition algorithm. As these calculations make up the 
major part of the computation time during the recognition 
phase, this might result in high computation costs. 
The composed probabilities section of (8), assuming sets 
of 3-state left-right models, can be written separately for 

each state as 
uruul bbb 111 /)( ><

, 
uruul bbb 222 /)( ><

 and 
uruul bbb 333 /)( ><

. Then, as a rational simplifying 
assumption, one can consider the states 2 and 3 in a right 
biphone model and the states 1 and 2 in a left biphone 

model as context-independent, i.e. 
uul bb 22 =<

, 
uul bb 33 =<

, 
uru bb 11 =>

 and 
uru bb 22 =>

. Hence, the 

above state probabilities will reduce to 
ulb <

1 , 
ub2 , 

rub >
3 . 

In other words, the models of a triphone system can be 
constructed using appropriate states from the models of 
monophone, left biphone and right biphone systems. 
Taking into account the simplifying assumptions made, 
the triphone system made using the above proposal will 
not be an accurate one. Hence, in place of building our 
main triphone system in the above fashion, we have 
decided to construct the initial triphone system in this 
manner so that it can be used later for prior parameter 

Archive of SID

www.SID.ir



ن     86ن بستاتا بهار و -ه  اول  شمار-م سال چهار-ين برق و الكترونيك ايرانمن مهندس  مجله انج

Journal of Iranian A
ssociation of Electrical and Electronics Engineers – V

o1.4- N
o.1- Spring and Sum

m
er 2007

 

  
23

estimation in a MAP training framework for our 
triphones. Having only one monophone initial system, we 
decided to construct two separate left- and right-biphone 
systems to provide parameters needed for prior parameter 
calculations. 
The procedure followed to construct the triphone system 
is shown in Fig. 1. All the phone models are assumed 3-
state left-right continuous density HMMs. Firstly, 2 
biphone model sets were trained independently using all 
the training data. The biphones were right-context and 
left-context sets of models respectively and were trained 
starting from cloned biphones using the parameters of an 
already available monophone system [25]. The triphone 
system was synthesized by concatenating the states from 
the left and right biphones. In this approach, the 
parameters of the leftmost state were provided by the 
leftmost state of the left biphone model with the same 
seed and left context phones. Similarly, the parameters of 
the rightmost state were provided by the rightmost state 
of the right biphone model with the same seed and right 
context phones. Assuming the models to have three 
states, the parameters of the middle states were replaced 
by those of the state 2 of corresponding monophone 
models available in the right biphone set. The reason for 
this is that as we have used word-internal biphones, at the 
left word boundaries in the case of left biphones, and at 
the right word boundaries in the case of right biphones, 
monophone models appear among the biphones and can 
be used in the process. Although it seems that the use of 
monophones from both these model sets would be more 
appropriate, due to a limitation in our modeling of 
Persian (Farsi) words, some monophones were not 
present in the left biphone set. This limitation did not 
allow a word to start with a vowel, but with a glottal stop 
preceding the vowel. Note that the glottal stop is also 
counted as a phoneme in Persian phonetics. Hence, the 
vowels are absent among the monophone models seen in 
the left-context biphone model set. Therefore, only the 
monophone models from the right biphone model set 
were used. 

 
Fig. 1: The procedure followed in synthesizing initial 

triphones from biphones. 

5. Tied Triphone System 
The system resulted from the above-mentioned procedure 
was used to calculate the prior parameters needed for 
MAP estimation as exemplified by (5) and (6). However, 
the MAP-estimated system involves a large number of 
parameters that in turn result in poor parameter estimates. 
The tying process consists of an initial clustering step 
which groups the corresponding states of all triphones 
with similar seed phones (all allophones of the same 
phone) in separate clusters and a further step to tie the 
parameters of the states grouped in each cluster. The 
clustering procedure is a data-driven agglomerative one, 
similar to those explained in [11] and [10]. This 
procedure consists of the following steps: 
1. Allocate one cluster per state. 
2. Find all inter-cluster distances. 
3. Find the smallest inter-cluster distance (d(i,j)). 
4. If d(i,j) is not less than T, stop. 
5. Otherwise, merge clusters i and j and find all 
inter-cluster distances with this cluster. 
6. Continue from 3. 
Here, T is a predefined inter-cluster threshold used to 
control the clustering process. The distances between 
states were calculated using divergence distance measure. 
This algorithm was applied to all sets of states chosen as 
explained and continued until converged. In the end, the 
state parameters of all states in the same cluster were tied 
and another phase of training was carried out. 
 

 
Table 1: Model count and performance evaluation results 

for monophone and biphone systems. 

 

6. Implementation 
The above algoriththm was utilized to build a Persian 
(Farsi) continuous speech recognition system. The system 
structure was based on a medium-sized vocabulary 
Persian speech database, FARSDAT [26]. The database 
was first inspected thoroughly and the utterances from all 
strong-accented outliers were removed. Then, it was 
partitioned into training and test sections with a total of 
about 1800 and 900 sentences respectively, with different 
speakers in the two sections. The available monophone 
system [25], consisted of 32 models for 30 basic Persian 
phonemes plus silence and between-word pause and was 
built using the above-mentioned training data. All the 
models, except that of the between-word pause, were 3-
state left-right HMMs without skip transitions. The model 
for the between-word pause was a single-state HMM with 
a possibility of being bypassed. 

 
Mono-
phone 
System 

Left 
Biphone 
System 

Right 
Biphone 
System 

Number of 
Models 32 618 625 

Recognition 
Accuracy (%) 46.9 65.7 64.4 
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The first implementation stage consisted of building 
untied models for all available word-internal triphones 
within the database using the monophone models. Firstly, 
as mentioned in the last section, two biphone systems to 
include left and right contexts were built. This included 
cloning all the biphones using their seed monophone 
models and performing 4 iterations of Baum-Welch re-
estimation. This resulted in 618 left and 625 right 
biphones. Later, the triphones had to be built using the 
available biphone systems. Note that the total number of 
available word-internal triphones in the section of the 
database used in our experiments was 2433. 
Before proceeding with the triphone model construction, 
the performance of both monophone and biphone systems 
were evaluated. Table 1 summarizes the results obtained. 
As expected, the biphone models apparently 
outperformed the context-independent ones in speech 
recognition evaluations.  
The triphone system was built using the technique 
pointed out in section 3. The resultant system was then 
used as both the training initial system and the system for 
calculating prior parameters during the MAP estimation 
process. Four iterations of MAP estimation were then 
performed with the MAP parameters calculated at each 
stage using the results of the last stage. During these 
MAP estimation processes, the prior parameter �ik was 
set to different values from 2 to 20 for all the states of the 
system. However, the values of 5 and 10 where found to 
perform better in this case. Other prior parameters were 
calculated similar to the approach followed in [24]. 
The final stage included constructing a tied parameter 
triphone system using the untied triphone system already 
available, as pointed out in Section 5. The clustered states 
were then tied reducing the number of system states from 
7297 to 1079, which is less than 15%. Then, 4 iterations 
of Baum-Welch re-estimation was carried out to further 
train the tied-state system parameters. 

7. Experimental Results 
The system was originally implemented as a single-
Gaussian system. The reason was that the extension of 
the system to mixture Gaussians, at any stage, could be 
carried out by a mixture-incrementing approach and 
further training of the system parameters. 
The speech data in both the training and test sections of 
FARSDAT corpus were first downsampled from their 
original sampling rate of 44.1 KHz to 16 KHz and pre-
emphasized and blocked into frames of 25 msec. with 
overlaps of 15 msec. A Hamming window was then 
applied to the signal and 12 Mel-cepstral coefficients plus 
log energy were then computed and the delta and delta-
delta parameters added to them to extend the total size of 
the frame feature vectors to 39. 
All the results reported in this paper are derived with no 
language model applied. The reason for this has been the 
results of our earlier experiments, which showed that the 
application of a simple language model, such as a word 
pair grammar, would have led to relatively high 
recognition rates. This would have prevented us from 
observing the effects of applying our algorithms to the 

system. This is found to be due to the artificial nature of 
the database, which is primarily designed to act as a 
phonetically balanced database for speech research and 
not a recognition-specific one [25]. 
The results of our experiments, together with the result of 
tree-clustering reported in [27], in similar training and 
test conditions, are shown in Table 2. Note that the 
system reported in [27] is the only context-dependent 
recognition system based on decision tree clustering that 
has been tested in conditions similar to ours and may be 
regarded as the Persian counterpart of the system reported 
in [2].  It is worth remembering that the baseline single-
Gaussian monophone system had a no-grammar 
recognition accuracy of 46.9%. The results are reported 
as percent recognition accuracy and are given for untied 
triphones, i.e. the triphone models before the application 
of a tying procedure, and completely trained tied-state 
triphones. By ML, we mean models whose parameters 
are estimated within a Maximum Likelihood framework. 
The data-driven clustering and tying is one of the usual 
techniques used for tied-state triphone building where 
initial models are cloned using monophone models and 
trained using a ML approach. This approach is equivalent 
to the approach followed in many references such as [10]. 
The tying process is exactly the same for IMAP2 
approach. However, due to different untied models 
resulting from ML and MAP approaches, the tied systems 
are not necessarily identical in shared parameters among 
different states. The third triphone result belongs to 
decision-tree based clustering and tying as reported in [2]. 
This approach also uses the maximum-likelihood 
approach in initial triphone model building but the 
clustering approach is different.  
 
Table 2: Comparison of the results obtained by Improved-

MAP estimated triphone modeling scheme and the ordinary 
tied-state triphone modeling. 

 
As can be seen, the Improved-MAP estimated untied 
triphone system (named IMAP1) outperforms the similar 
ML system (ML) by more than 3%. Obviously, the 
performance of the untied triphone system lags that of 
both the biphone systems due to much larger number of 
models, i.e. 2433 versus 618 to 625, leading to under-
training for the triphone system. 
The MAP estimation result reported is obtained using 
τik=5 for all cases. Furthermore, in spite of the high 

Untied 
Triphones Tied-state Triphones

 M
L 

IM
A

P1 

D
ata-driven (M

L) 

IM
A

P2 

Tree-clustered 
[27] 

Recog-
nition 

Accuracy 
(%) 

58.4 61.7 70.2 72.1 71.1 
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capability of MAP estimation in sparse data conditions, 
the update of parameters is inhibited when a triphone is 
seen less than 3 times within the training data. This is to 
prevent unreliable parameter estimates from happening. 
After tying the parameters and further training the 
system, the final results still show about 2% improvement 
for the Improved-MAP-based system (IMAP2) over the 
ordinary triphone modeling (Data-driven). It also 
outperforms the widely-used phonetic tree clustering and 
tying approach.   

 
Fig. 2: Comparison of the mixture-Gaussian results 
obtained from improved-MAP estimated tied-state 

triphones (IMAP2) and the results of an ordinary ML 
estimated tied-state triphone system. 

 
Fig. 2 compares the performances of the two data-driven 
tied-state triphone systems in mixture-Gaussian case and 
with different numbers of mixture components in output 
distributions. Once again, the Improved-MAP estimated 
triphone system (IMAP2) consistently outperforms the 
ordinary data-driven tied-state system (DD-ML) with 
increasing numbers of mixture components. It should be 
noted that further increase in the number of mixture 
components did not improve the results considerably. 
This is caused by the limited amount of training data 
available. 

8. Conclusion 
The Improved-MAP estimated triphone system was 
implemented to asses the effect of MAP estimation with 
improved priors in building a triphone system using data 
driven tying approach. It was shown that this approach 
could improve the performance of the resultant triphone 
system in comparison to ordinary ML-based parameter 
estimation. The improvement is believed to be due to 
both better initial modeling and better tying. These are 
achieved by the use of better-trained untied triphones 
obtained by Improved-MAP estimation. 
Although the approach was applied to a word-internal 
triphone system, it is believed to work equally well for 
the case of word-external (cross-word) triphones. 
Furthermore, since the initial untied parameters are better 
estimated in this approach, its application to other 
clustering approaches such as tree-based clustering might 
also be useful. 
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