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Abstract: 
 
This paper suggests a method for designing PSS to 
damp multi-machine power system oscillations.  The 
method is based on robust control theory. First, the 
conventional method for designing robust controller in 
LMI framework is illustrated. Then, the suggested 
method is given, in which, a PID output feedback 
controller is tuned using the LMI approach. Mostly, the 
classical methods are used to tune a PSS, but in this 
paper a robust approach is investigated to guarantee 
the robustness of the given PSS. The performance of the 
controller is tested on a sample power system. 
Simulation results show the effectiveness, robustness, 
and good performance of the suggested controller.  
 
Keywords: Decentralized control, Linear matrix 
inequalities, Large-scale system, Power system stabilizer 
(PSS), Robust control. 

 

1. Introduction 
Power system stabilizers (PSS) have been used for many 
years to add damping to electromechanical oscillations. 
They use auxiliary stabilizing signals to control the 
excitation system so as to improve power system dynamic 
performance. Commonly used input signals to the power 
system stabilizer are shaft speed and accelerating power. 
The power system dynamic performance is improved by 
damping system oscillations. This is a very effective 
method of enhancing small-signal stability performance [1]. 
 
 
 
 

 
 
 
In order to damp power system oscillations, most authors  
use the classical PSS, which is not robust due to 
uncertainties. Some others use methods such as pole 
placement [2], adaptive control [3], robust methods [4] and 
etc, for designing PSS. These methods lead to a high order  
PSS which is not applicable in practice. Sometimes, it 
isneeded to reduce the order of the controller to make it 
more useful for practical purposes [4]-[7], but the order 
reduction method decreases the controller performance in 
some aspects. 

 

Here, two methods for robust PSS design are investigated. 
First, the conventional robust approach is analyzed and the 
advantages and the disadvantages of the method are 
discussed. Then, the suggested approach is presented. Both 
approaches are based on robust control theory.  

 

The conventional approach is based on H∞ theory and 
formulates the problem in the LMI (Linear Matrix 
Inequalities) framework. It uses the LMI toolbox in 
MATLAB [8], to solve the optimization problem.  

 

In [9]-[13] different approaches for robust controller design 
in power systems are suggested. All of these approaches 
result in high-order dynamic PSSs which are very difficult 
to be implemented in practice.  

 

In this paper, the suggested approach is based on robust 
control theory and results in a simple and practical 
controller. A PID controller with unknown coefficients is 
considered to be installed on each subsystem in a large-
scale power system. The method uses the LMI approach to 
find the optimal controller coefficients. This method 
guaranties the robustness of the PSS and results in an 
output-feedback controller which is so simple for 
implementing in practice.  

 

The paper is organized as follows: The system model is 
described in Section II. The conventional robust control 
design method based on LMI approach and the suggested 
approach of tuning robust PID controller are presented in 
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section III, parts A and B, respectively. The method is 
applied to a simulated model of a sample power system in 
section IV. Finally, the conclusion is given in section V. 
 
2. Large-scale Power System Model  
A multi-machine power system is a large-scale nonlinear 
system. To evaluate the dynamic response of a power 
system of n generators and m total buses, the following 
equations (the synchronous generator d-q axis model and 
the exciter simple model) should be written for each 
generator [14]. ( 1i ,...,n= ). 
 
d i

i sdt
δ

ω ω= −                                                                  (1)  

( )

i
i Mi qi di di qi

di qi qi di i i s

d
M T E X I I

dt
E X I I D

ω

ω ω

⎡ ⎤′ ′= − −⎣ ⎦
⎡ ⎤′ ′− + − −⎣ ⎦

                            (2) 

( )i

qi
do qi di di di fdi

dE
T E X X I E

dt

′
′ ′ ′= − − − +                               (3) 

( )i
di

do di qi qi qi
dE

T E X X I
dt
′

′ ′ ′= − + −                                          (4) 

( )1fdi
ei ai refi i fdi ei fdi

dE
T K V V E K E

dt
− ⎡ ⎤= − − −⎣ ⎦                (5) 

 
For all generators, in addition to the dynamic equations, 
two sets of algebraic equations are appointed. 
 

( ) ( )
( ) 0

i i si di i qi i di qi i di i

di i qi di qi i qi i

V cos R I sin I cos X I sin I cos

E sin X X I sin E cos

θ δ δ δ δ

δ δ δ

′+ + − − −

⎡ ⎤′ ′ ′ ′+ − + =⎣ ⎦

             (6) 

( ) ( )
( ) 0

i i si qi i di i di di i qi i

qi i qi di qi i di i

V sin R I sin I cos X I sin I cos

E sin X X I cos E cos

θ δ δ δ δ

δ δ δ

′+ − + + −

⎡ ⎤′ ′ ′ ′− − − =⎣ ⎦

           (7) 

i i di i i qi i i Li iP V [ I sin( ) I cos( )] P (V )δ θ δ θ= − + − +                (8) 

i i di i i qi i i Li iQ V [ I cos( ) I sin( )] Q (V )δ θ δ θ= − + − +              (9) 
 

Finally, the net active and reactive powers at each of the 
network buses in terms of the voltage magnitude, 
conductances and admitances are given by: 

( )∑
=

+=
n

h
ihihihihhii BGVVP

1
sincos θθ                           (10) 

( )∑
=

−=
n

h
ihihihihhii BGVVQ

1
cossin θθ

                       (11) 
Some information about the parameters definition is given 
in the appendix. The details of this model are given in [14]. 
The large-scale power system is consisted of different 
subsystems, the dynamic model of each, is given by (1)-(5). 
In power systems, the power system stabilizers (PSS) are 
used to add damping to electromechanical oscillations. The 

generator and PSS block diagrams and their 
interconnections are shown in Fig. 1. A PSS block receives 
its input from the generator block and transmittes the 
change of reference voltage, which is the input to generator 
block. Here, the generator rotor speed is considered as the 
input to the PSS.  
 
 
 
 

 

 

 
 
 
 

Fig.  1:. Generator and PSS block diagrams [15] 
 

It is clear that the utilization of a very detailed model in the 
design of PSSs is impractical. For this reason, 
approximated models, and in particular, linearized models 
have often been used for the power system. For analyzing a 
power system, first the operating point should be obtained 
by load flow analysis. Next, equations (1)-(11) are 
linearized in the vicinity of the operating point to give: 
 

0
u

d x A B x B
udt

C D yo

Δ Δ
Δ

Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

                                    (12) 

 
Where xΔ  and yΔ  are state variations and algebraic 
parameter variations in the neighborhood of the operating 
point, respectively. uΔ  (system input) is the variation of 
reference voltage ( refVΔ ) in (5).  

Eliminating yΔ in (12), one has: 

( )1
u

u

d x A BD C x B u
dt

A x B u

Δ Δ Δ

Δ Δ

−= − +

= +

                                        (13) 

                                                                                     
Equation (13) is the dynamic model of the whole system. 
The matrix A~  for an n machine system is of the following 
form: 

1 12 1

21 2 2

1 2

n

n

n n n

A G G
G A G

A

G G A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                             (14) 

 
Where, 

ijG  is the interaction between subsystems i and j 

(generators i and j). Specifically, the dynamic model for 
subsystem 1 is: 

 
Gen+Excit

er

PSS 

refoV

refVΔ

refV
tV

x

+

+ +

-
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1

1 1 12 2 1 1 1n n u
d x

A x G x G x B u
dt
Δ

Δ Δ Δ Δ= + + + +                     (15) 

 
The term 212 xG Δ  is the interaction effect of subsystem 2 on 
subsystem 1. In this paper, all the terms of the form jij xG Δ  

are treated as disturbances and robust controllers are 
designed to cope with them. 
It is obvious from the model (1)-(5) that the interaction 
terms are resulted from the direct and quadrature axis stator 
currents. Since the current of each generator is bounded 
[16], the interaction terms in each subsystem are bounded. 
Due to this important fact, the interaction terms can be 
treated as bounded disturbances. In section III, a robust 
controller is designed to overcome these disturbances. 
Considering the interactions as disturbances, the details of 
system model “ ( )iP s ” in each subsystem ‘i’, are given in 
the following: 
State equation:  

( ) ( ) ( ) ( )2 1

1

2

1i i i i i i i

i i i

i i i

x t A x t B u t B w t i n
z C x
y C x

= + + =

=

=

  (16) 

System states: i i i qi di fdix E E EΔδ Δω Δ Δ Δ ′⎡ ⎤′ ′= ⎣ ⎦   

Input: i refiu VΔ=   

Disturbance: iw int eraction of other subsystems=   
Measured output: iiy ωΔ=  
Desired output: iiz δΔ=  
The i iA ,B , and iC  matrixes can be computed using (1)-(5) 
and (12)-(13). 
 
3. Robust Control  
 
3.1. Robust Control via LMI Formulation 
[8, 17] - Conventional Approach 
Robust control theory dills with minimizing the closed-loop 
RMS gain from w  to z  (Fig. 2). The signal z is a set of 

desired variables that needs to be controlled in the presence 
of a disturbance. The objective is to design a control law 
“ u ” based on measured variables “ y ” such that the effects 
of the disturbance w  on the desired variables z , as 

expressed by the norm of its transfer function zwT  is 
minimized. 
 
 
 
 

 
 
 

 
 
 
 

Fig. 2: Closed-loop system via robust control 
 
Partition the plant P(s) as: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)s(U
)s(w

)s(T)s(T
)s(T)s(T

)s(Y
)s(Z

yuyw

zuzw                              (17) 

The closed-loop system transfer function will become: 

ywyuzuzwzw T)KTI(KTTT 1−−+=                                   (18) 

The optimal ∞H  control seeks to minimize 
∞zwT over all 

stabilizing LTI controllers K(s). Alternatively, the 
suboptimal control problem specifies some value 0>γ  
such that the closed-loop system is internally stable and 

γ<
∞zwT .  

In the LMI approach, the plant is given in state-space form 
by: 

uDwDxCy
uDwDxCz

uBwBAxx

22212

12111

21

++=
++=

++=
                                                 (19) 

x  is the system states vector, z and y  are the desired and 
the measured outputs, respectively. w  and u  are the 
disturbance and the system input, respectively. 
The objective is to design a controller in the following state 
space model, such that the effects of the disturbance w  on 
the desired variables z , as expressed by the infinity norm 
of its transfer function

∞zwT , are bounded. 

yDCu
yBA

KK

KK
+=
+=

ς
ςς

                                                          (20) 

Combining the system and the controller models, provided 
that ),( 2BA  is stabilizable and ),( 2CA  is detectable, the 
following closed-loop state-space model will be achieved: 
 

wDxCz
wBxAx

clclcl

clclclcl
+=
+=

                                                    (21) 

 
The ∞H  performance is directly optimized by solving the 
following LMI problem: 
Lemma 1 [8, 17]: The closed loop RMS gain from w  to z 
does not exceed γ  if and only if there exists a symmetric 
positive definite matrix ∞X such that: 
 

 
P(s) 

K(s) 

z 

y u 

w
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0
2

<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+

∞

∞∞∞

IDXC
DIB

CXBAXXA

clcl

T
cl

T
cl

T
clcl

T
clcl

γ

                                (22) 

 
The order of the dynamic controller that will be obtained by 
this method is the size of the system and hence very large 
in general. To avoid this large-size controller, the following 
method is suggested. 
 
3.2. Robust PID output controller design 
via LMI approach- Suggested Approach  
 
In practice, the power system stabilizer is not usually a 
large dynamic controller. It is usually a PID controller. 
Here, the LMI approach is used to tune the PID parameters 
in each subsystem such that the following performance 
index is minimized: 
 

zwmin Tγ =                                                               (23) 
 
Consider a large-scale system consisted of n subsystems. 
Let the controller in each subsystem, be a PID with 
unknown coefficients (Fig. 3). 
 

( ) ( )2
1 3i i

k
u s k k s y s

s
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

                                       (24) 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3: Structure of the closed-loop system in each subsystem 
 
Augmenting all the subsystems, the large-scale system 
model would be: 

1
2

cl cl
cl
cl

x Ax Bu
z C x
y C x

= +
=
=

                                                           (25) 

 
The aim of this paper is to find the unknown parameters 

ik , such that the closed-loop system be stable and the norm 
of the transfer function from w  to z  in the closed-loop 
system be bounded. To avoid complexity in the parameters, 

the 2H  norm is considered. These problems can be 
formulated with simpler matrix inequalities. The solution to 

2H  optimal problem is equivalently given by [18]. 

Lemma 2 [18]: The H2 norm of the system given in (25) 
will be bounded if there exits two positive definite matrixes 
P and R that satisfy two inequalities, while a performance 
index is minimized. Briefly, 

( ){ }

0 0

T TR R ,P P
T T T

min trace R

R B P A P PA CSubject to and
PB P C I

= =
⎛ ⎞ ⎛ ⎞+> <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

     (26) 

 
According to [18], these two inequalities guarantee the H2 
norm of the system to be bounded, so they guarantee the 
robustness of the system. 

 
In this paper, it is needed to find ik , so the 

2H  optimal 
problem should be modified a little, as follows: 
 
Lemma 3: To guarantee the robustness of the system, find 

ik  parameters, P and R in each subsystem such that the 
following inequalities are satisfied: 

( ){ }

0

0

0

min
,,

<

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

Aand
IC

CPAPA
and

PPB
PBR

tosubject

Rtrace

TT

T

kPPRR TT

  (27)      

 
The third inequality guaranties the A matrix to be negative 
definite. This assures the stability of the system. 
Looking deeply to the second inequality, it is observed that 
there are the combination of P and ( ik ) parameters, so the 
above problem is not in a suitable format for linear matrix 
inequality approach. To solve this problem, one solution 
would be the ILMI (Iterative LMI) approach [19]-[20] 
which divides the problem to two simpler optimization 
problems, each being linear in the decision variables and 
then solves the problem iteratively. Actually, this approach 
changes the problem from optimal to a suboptimal one. 

 

4. Simulation Results  
The one-line diagram of the system under study is shown in 
Fig. 4. The system consists of two subsystems, which are 
separated by a dotted line. System parameters are tabulated 
in the appendix. 

 

( )iP s

2
1 3

i
i i

k
k k s

s
+ +  

iyiu  

-

iw iz  
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This diagram belongs to the southern part of Iran power 
system. The buses 4 and 6 are the points of attachment of 
this network to other parts of Iran grid. These two points 
are modeled by coherency method and the parameters of 
model are obtained by trial and error [14]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Test system diagram 
 

The system is modeled by equation (1)-(11). The subsystem 
with generator number 1 is defined as the first subsystem 
and the other subsystem is defined as the second. The 
following open-loop transfer function model is achieved for 
the first subsystem: 
 
( ) ( )

413119050050001
75104110

2345 ......
..

+++++
+−

=
sssss

ssG                 (28) 

First, the conventional LMI method which was discussed in 
section III part A is applied on the above transfer function. 
The designed dynamic controller of order 5 for the first 
subsystem in the state-space form of (20) is: 
 

0317 0183 0367 007 0012
1 9075 1 1814 2 1289 0143 0037

4877 3012 545 0078 0001
4305 2688 4786 0114 0008
6147 3934 6801 0502 0079

. . . . .
. . . . .

A . . . . .
. . . . .
. . . . .

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥

−⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

4

0485
3 0918

10 7887
7008

1 0162

.
.

B .
.
.

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= ×
⎢ ⎥
−⎢ ⎥

⎢ ⎥⎣ ⎦

 

[ ]0457 0276 0972 0601 014C . . . . .= − −  
Note that due to the order of the system, which is 5, the 
obtained ∞H  controller is of order 5, too. By modeling 
details, the order of the controller will become higher and 
equals the order of the plant. However, the PID controller 
always has order two. Using a more complicated plant 
model, which has a higher order, results in new PID 
parameters ( ik ). 
To design the PID output controller (the suggested method 
of this paper), the canonical controllable form is obtained, 
which is given in the following and the A matrix is given 
on the top of the next page. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0
0
0

B
 

[ ]0004391044170 eeC .. −−=  
02112 == DD  

 
 Using lemma 3, the algorithm is summarized in the 
following steps: 
1-Select three ik  parameters such that the inequality 0A <  
is satisfied. 
2-Keeping ik constant, minimize ( )Rtrace  with respect to 
P and R in (27) and find R and P. 
3- Keeping 6ip constant, minimize ( )Rtrace with respect 

to ik , 
⎭
⎬
⎫

⎩
⎨
⎧

=
=

51
51

j
i

Pij  and R in (27). 

4-If the chosen stopping criterion is verified, stop else go to 
step 2. 

 
 

 
 

( ) ( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−×+−×++−×++−×

=

00505103910210517391031105173910414517
100000
010000
001000
000100
000010

4
3

4
31

4
122 ........... kkkkkke

A

 

4

6 

2 

5 

3 

1 

G 

G
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To test the performance of the controllers, a disturbance is 
applied to the system. The disturbance is a change in the 
field voltage of generator number 1. In Fig. 5 the rotor 
angle deviation of the first subsystem (Generator no. 1), 
without PSS is shown. It is obvious that the system needs a 
long time to damp the oscillations. 
The designed robust controller based on LMI framework, 
formulated in section III part A, is applied on the system 
and its simulation result is shown in Fig. 6.  
To achieve an applicable controller which is robust under 
perturbations, the LMI toolbox is used to design PID 
controllers (The suggested approach in this paper-section 
III part B). The result is shown in Fig. 7. 
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Fig.  5: Deviation of rotor angle of the system without PSS 
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Fig.  6: Deviation of rotor angle of the system with high order 

Dynamic PSS 
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Fig.  7: Deviation of rotor angle of the system with PID PSS  
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Fig. 8: Deviation of electrical power of the system without PSS 
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Fig. 9: Deviation of electrical power of the system with PID 

PSS 
 

As it is seen from the simulations, the rotor angle of the 
system without PSS has many oscillations to reach the 
steady state response (Fig. 5). In the other two Figures (Fig. 
6-7), the rotor angle oscillations are damped so faster than 
the system without PSS.  
The electrical power deviations of the system without PSS 
and the PID PSS, are shown in Fig 8 and Fig 9, 
respectively. In the system without controller, the electrical 
power has too much oscillations and it takes a long time for 
oscillations to be damped. It is obvious that using the PID 
controller, the oscillations of electrical power deviation are 
damped so fast and these brief oscillations are acceptable in 
practice. 

 
It is seen from simulations that the rotor angle and the 
electrical power of the system without PSS has many 
oscillations to reach the steady state response, but the 
oscillations are damped so fast when a controller is applied 
on the system. When the high order conventional robust 
controller or PID controller is applied to the system, even 
in the first cycle, the peak of oscillation is limited.  
Comparing Fig. 6 and Fig. 7, it is seen that the response of 
the system with ∞H  controller is a bit better than the 
system with PID controller. The difference between theses 
two responses is so negligible. On the other hand, the PID 
controller cost less than the ∞H  one. So, it is not 
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economical to use the ∞H  controller. 
From the simulation results, it is shown that the controllers 
are effective, robust and has good performance. The 
suggested controller of this paper is robust and simple and 
can be implemented in practice. 
The conventional ∞H  controller is a dynamic one and has 
a very complicated structure. Its order equals the number of 
the system states and in this paper it is of order 5. By 
modeling details, it will become more complicated, too. So, 
it is very difficult to imply it in practice. The PID controller 
has a simpler structure. As the performance and robustness 
of this controller is acceptable and its structure is so simple, 
it is advised to be used. 
 
5. Conclusion 
This paper investigates two methods of designing robust 
PSSs for damping multi-machine power system 
oscillations. The first one is the robust conventional 
approach which is formulated in LMI frame. The second 
one, which is the suggested approach of this paper, is an 
output feedback PID controller that is tuned using the LMI 
approach.  
The performance of both controllers is tested on a sample 
power system model. The sample model has two 
subsystems. The simulation results for one of the 
subsystems are shown. Simulation results show that both 
controllers are effective, robust and have good 
performance. The first controller has smaller oscillations 
than the second one, but as it is a high-order dynamic 
controller, its implementation is difficult. The second 
controller (PID) is so easy to be implemented in practice, so 
it is advised to be used for practical purposes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 
 

Table A.1: Generators dynamic parameters 
Gen. 
No. 2 

Gen. 
No. 1 

Un
it Name Paramet

er 
1.7 2.29 PU d axis reactance  dX  

1.65 2.12 PU q axis reactance  qX  

0.255 0.28 PU d axis transient 
reactance 

'
dX  

0.36 0.38 PU q axis transient 
reactance  

'
qX  

1.67 0.207 PU 
d axis 

subtransient 
reactance 

''
qX  

0.127 0.189 PU 
q axis 

subtransient 
reactance  

''
qX  

0.001
5 

0.001
7 

Oh
m Rotor resistance aR  

0.185 0.134
5 

Oh
m Field resistance fR  

1.5 0.88 Se
c 

d axis transient 
time constant  '

dT  

1.1 0.68 Se
c 

q axis transient 
time constant 

'
qT  

0.035 0.021 Se
c 

d axis 
subtransient time 

constant 
 ''

dT  

0.035 0.021 Se
c 

q axis 
subtransient time 

constant 

''
qT  

11 6.61 Se
c 

d axis transient 
short circuit time 

constant 

'
doT  

0.67 0.6 Se
c 

q axis transient 
short circuit time 

constant 

'
qoT  

2.24 1.43 - Moment of 
inertia H 

0.376 0.47 - Damping 
constant D 

 
Table A. 2: Exciter parameters 

Value Unit Parameter 

400 PU AK  

0.02 Sec AT  

1 PU EK  

1.3 Sec ET  
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