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Abstract:

This paper suggests a method for designing PSS to
damp multi-machine power system oscillations. The
method is based on robust control theory. First, the
conventional method for designing robust controller in
LMI framework is illustrated. Then, the suggested
method is given, in which, a PID output feedback
controller is tuned using the LMI approach. Mostly, the
classical methods are used to tune a PSS, but in this
paper a robust approach is investigated to guarantee
the robustness of the given PSS. The performance of the
controller is tested on a sample power system.
Simulation results show the effectiveness, robustness,
and good performance of the suggested controller.
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1. Introduction

Power system stabilizers (PSS) have been used for many
years to add damping to electromechanical oscillations.
They use auxiliary stabilizing signals to control the
excitation system so as to improve power system dynamic
performance. Commonly used input signals to the power
system stabilizer are shaft speed and accelerating power.
The power system dynamic performance is improved by
damping system oscillations. This is a very effective
method of enhancing small-signal stability performance [1].

In order to damp power system oscillations, most authors
use the classical PSS, which is not robust due to
uncertainties. Some others use methods such as pole
placement [2], adaptive control [3], robust methods [4] and
etc, for designing PSS. These methods lead to a high order
PSS which is not applicable in practice. Sometimes, it
isneeded to reduce the order of the controller to make it
more useful for practical purposes [4]-[7], but the order
reduction method decreases the controller performance in
some aspects.

Here, two methods for robust PSS design are investigated.
First, the conventional robust approach is analyzed and the
advantages and the disadvantages of the method are
discussed. Then, the suggested approach is presented. Both
approaches are based on robust control theory.

The conventional approach is based on H, theory and
formulates the problem in the LMI (Linear Matrix
Inequalities) framework. It uses the LMI toolbox in
MATLAB [8], to solve the optimization problem.

In [9]-[13] different approaches for robust controller design
in power systems are suggested. All of these approaches
result in high-order dynamic PSSs which are very difficult
to be implemented in practice.

In this paper, the suggested approach is based on robust
control theory and results in a simple and practical
controller. A PID controller with unknown coefficients is
considered to be installed on each subsystem in a large-
scale power system. The method uses the LMI approach to
find the optimal controller coefficients. This method
guaranties the robustness of the PSS and results in an
output-feedback controller which is so simple for
implementing in practice.

The paper is organized as follows: The system model is
described in Section II. The conventional robust control
design method based on LMI approach and the suggested
approach of tuning robust PID controller are presented in
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section III, parts A and B, respectively. The method is
applied to a simulated model of a sample power system in
section IV. Finally, the conclusion is given in section V.

2. Large-scale Power System Model

A multi-machine power system is a large-scale nonlinear
system. To evaluate the dynamic response of a power
system of n generators and m total buses, the following
equations (the synchronous generator d-q axis model and
the exciter simple model) should be written for each
generator [14]. (i=1,...,n).
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For all generators, in addition to the dynamic equations,
two sets of algebraic equations are appointed.
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Finally, the net active and reactive powers at each of the
network buses in terms of the voltage magnitude,
conductances and admitances are given by:

n
Py =Y Vi¥Vy(Gyy cos 0y, + By, sin 0, (10)
h=1
n
0; = > ViV (Gy sin 0y, — By, cosby,)
h=1 (11)

Some information about the parameters definition is given
in the appendix. The details of this model are given in [14].
The large-scale power system is consisted of different
subsystems, the dynamic model of each, is given by (1)-(5).
In power systems, the power system stabilizers (PSS) are
used to add damping to electromechanical oscillations. The
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generator and PSS block diagrams and their
interconnections are shown in Fig. 1. A PSS block receives
its input from the generator block and transmittes the
change of reference voltage, which is the input to generator
block. Here, the generator rotor speed is considered as the
input to the PSS.
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Fig. 1:. Generator and PSS block diagrams [15]

It is clear that the utilization of a very detailed model in the
design of PSSs is impractical. For this reason,
approximated models, and in particular, linearized models
have often been used for the power system. For analyzing a
power system, first the operating point should be obtained
by load flow analysis. Next, equations (1)-(11) are
linearized in the vicinity of the operating point to give:

4| r Bl ax] [B,
dt |= + Au
C Dl dy 0

o

(12)

Where Ax and Ay are state variations and algebraic
parameter variations in the neighborhood of the operating
point, respectively. Au (system input) is the variation of
reference voltage (AVref ) in (5).

Eliminating Ay in (12), one has:

4 pe=(4 —BD*‘C)AH B,Au

di (13)

Adx+ B, Au

Equation (13) is the dynamic model of the whole system.

The matrix 4 for an n machine system is of the following
form:

4 G Gy,
a=|Cn O (14
Gnl Gn2 An

Where, G, is the interaction between subsystems i and j

(generators 1 and j). Specifically, the dynamic model for
subsystem 1 is:




d A.Xfl

dt (15)

= A1AX1 +G12AX2 +"'+G1nAXn +BluAM1

The term G ,Ax, is the interaction effect of subsystem 2 on
subsystem 1. In this paper, all the terms of the form G;Ax,

are treated as disturbances and robust controllers are
designed to cope with them.

It is obvious from the model (1)-(5) that the interaction
terms are resulted from the direct and quadrature axis stator
currents. Since the current of each generator is bounded
[16], the interaction terms in each subsystem are bounded.
Due to this important fact, the interaction terms can be
treated as bounded disturbances. In section III, a robust
controller is designed to overcome these disturbances.
Considering the interactions as disturbances, the details of

system model “ P, (s)” in each subsystem ‘i’, are given in

the following:
State equation:

Xi(t)=Al~xl~(t)+32iul~(t)+31iwi(l) i=1---n
zZ; = Clixi (16)
Vi = Cyx;

System states: x; :[Ac?i Aw; AEy AEy AE fdi:|’
Input: u; = AV, .4

Disturbance: w; =int eraction of other subsystems
Measured output: y; = Aw;

Desired output: z; = A0;

The 4;,B;, and C; matrixes can be computed using (1)-(5)
and (12)-(13).

3. Robust Control

3.1. Robust Control via LMI Formulation
[8, 17] - Conventional Approach

Robust control theory dills with minimizing the closed-loop
RMS gain from w to z (Fig. 2). The signal z is a set of

desired variables that needs to be controlled in the presence
of a disturbance. The objective is to design a control law
“u ” based on measured variables “ y > such that the effects

of the disturbance w on the desired variablesz , as
expressed by the norm of its transfer function ||T ZW" is

minimized.

P(s)

K(s)

A

Fig. 2: Closed-loop system via robust control
Partition the plant P(s) as:
Z(s) _ Tzw(s) Tzu(s) w(s)
{m)} ) {Tyw( s) Tyl s)}{ws)}
The closed-loop system transfer function will become:
T, =T+ T, K(I-T,K)"'T,, (18)

zw

(17

The optimal H,, control seeks to minimize ||T zw"oo over all

stabilizing LTI K(s). Alternatively, the
suboptimal control problem specifies some value ¥ >0

controllers

such that the closed-loop system is internally stable and
17l <7

In the LMI approach, the plant is given in state-space form
by:

X =Ax+Bw+ Bou
z=Cx+Dyyw+ Djpu (19)

v =Cox+ Dyw+ Dyyu

x is the system states vector, z and y are the desired and
the measured outputs, respectively. w and u are the
disturbance and the system input, respectively.

The objective is to design a controller in the following state
space model, such that the effects of the disturbance w on
the desired variables z , as expressed by the infinity norm
of its transfer function T, | , are bounded.

¢=Ags+Bgy (20)
u ZCKg‘f‘DKy

Combining the system and the controller models, provided
that (A4, B,) is stabilizable and (A4,C,) is detectable, the

following closed-loop state-space model will be achieved:

xcl =AyXe +Boyw

@n

z= Cclxcl +DCIW

The H, performance is directly optimized by solving the

following LMI problem:
Lemma 1 [8, 17]: The closed loop RMS gain from w to z
does not exceed y if and only if there exists a symmetric

positive definite matrix X _such that:
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A X, +X, A4, B, X,C}
Bl -1 D} |<o0 (22)
Ccheo Dc] _721

The order of the dynamic controller that will be obtained by
this method is the size of the system and hence very large
in general. To avoid this large-size controller, the following
method is suggested.

3.2. Robust PID output controller design
via LMI approach- Suggested Approach

In practice, the power system stabilizer is not usually a
large dynamic controller. It is usually a PID controller.
Here, the LMI approach is used to tune the PID parameters
in each subsystem such that the following performance
index is minimized:
y = min|T,,,| (23)
Consider a large-scale system consisted of n subsystems.

Let the controller in each subsystem, be a PID with
unknown coefficients (Fig. 3).

24
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Fig. 3: Structure of the closed-loop system in each subsystem

Augmenting all the subsystems, the large-scale system
model would be:

).Cc] = Axcl + Bu
z=Cxy
y=0Cxy

(25)

The aim of this paper is to find the unknown parameters
k;, such that the closed-loop system be stable and the norm
of the transfer function from w to z in the closed-loop
system be bounded. To avoid complexity in the parameters,
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the H, norm is considered. These problems can be

formulated with simpler matrix inequalities. The solution to
H, optimal problem is equivalently given by [18].

Lemma 2 [18]: The H, norm of the system given in (25)
will be bounded if there exits two positive definite matrixes
P and R that satisfy two inequalities, while a performance
index is minimized. Briefly,

min

o {trace(R)}

26)
T T T (
Subject to rRBP >0 and A P+PAC <0

PB P C -1

According to [18], these two inequalities guarantee the H2
norm of the system to be bounded, so they guarantee the
robustness of the system.

In this paper, it is needed to findk,, so the H, optimal

problem should be modified a little, as follows:

Lemma 3: To guarantee the robustness of the system, find
k; parameters, P and R in each subsystem such that the

following inequalities are satisfied:
min  {trace(R)}
"k

R=R",P=P
R B'P
subject to >0
PB P
A"P+pP4 CT
and <0
C -1

and A<O0

The third inequality guaranties the 4 matrix to be negative
definite. This assures the stability of the system.
Looking deeply to the second inequality, it is observed that

there are the combination of P and (k) parameters, so the

above problem is not in a suitable format for linear matrix
inequality approach. To solve this problem, one solution
would be the ILMI (Iterative LMI) approach [19]-[20]
which divides the problem to two simpler optimization
problems, each being linear in the decision variables and
then solves the problem iteratively. Actually, this approach
changes the problem from optimal to a suboptimal one.

4. Simulation Results

The one-line diagram of the system under study is shown in
Fig. 4. The system consists of two subsystems, which are
separated by a dotted line. System parameters are tabulated
in the appendix.
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This diagram belongs to the southern part of Iran power
system. The buses 4 and 6 are the points of attachment of
this network to other parts of Iran grid. These two points
are modeled by coherency method and the parameters of
model are obtained by trial and error [14].
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Fig. 4: Test system diagram
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The system is modeled by equation (1)-(11). The subsystem
with generator number 1 is defined as the first subsystem
and the other subsystem is defined as the second. The
following open-loop transfer function model is achieved for
the first subsystem:

(28)

~10(1.045 +1.75)
(S)z 0001s° 7 3 2
. s” +.005s" +.05s° +.195° +1.35s +1.4
First, the conventional LMI method which was discussed in
section III part A is applied on the above transfer function.
The designed dynamic controller of order 5 for the first
subsystem in the state-space form of (20) is:

C=[.0457 .0276 .0972 —.0601 —.014]

Note that due to the order of the system, which is 5, the
obtained H, controller is of order 5, too. By modeling

details, the order of the controller will become higher and
equals the order of the plant. However, the PID controller
always has order two. Using a more complicated plant
model, which has a higher order, results in new PID
parameters ( k; ).

To design the PID output controller (the suggested method
of this paper), the canonical controllable form is obtained,
which is given in the following and the A4 matrix is given
on the top of the next page.

1
IAOOOCDCDI

C=[0 -17.4¢4 -10394 0 0 0]
D, =D, =0

Using lemma 3, the algorithm is summarized in the
following steps:

1-Select three k,; parameters such that the inequality 4 <0
is satisfied.

2-Keeping kl. constant, minimize trace(R) with respect to
Pand R in (27) and find R and P.

3- Keeping p,q constant, minimize l‘race(R)with respect

.0317 —-.0183 .0367 .007 .0012 i=1---5
1.9075 -1.1814 2.1289 .0143 —-.0037 to ki, PU{ . } and R in (27).
A=|-4877 .3012 -.545 -.0078 .0001 = -5
4305 —2688 .4786 .0114  .0008 4-If the chosen stopping criterion is verified, stop else go to
-.6147 .3934 -6801 -.0502 -.0079 step 2.
—.0485
-3.0918
B=10%x| .7887
—.7008
1.0162
) 1 0 0 0 0 |
0 0 1 0 0 0
e 0 0 0 1 0 0
) 0 0 0 1 0
0 0 0 0 0 1
175e4xk, (-1.4+103%, +17.5k)x10" (-1.3+10.39%, +17.5k,)x10° (~.2+103%,)x10° -.05 -.005|
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To test the performance of the controllers, a disturbance is
applied to the system. The disturbance is a change in the
field voltage of generator number 1. In Fig. 5 the rotor
angle deviation of the first subsystem (Generator no. 1),
without PSS is shown. It is obvious that the system needs a
long time to damp the oscillations.

The designed robust controller based on LMI framework,
formulated in section III part A, is applied on the system
and its simulation result is shown in Fig. 6.

To achieve an applicable controller which is robust under
perturbations, the LMI toolbox is used to design PID
controllers (The suggested approach in this paper-section
III part B). The result is shown in Fig. 7.
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Fig. 5: Deviation of rotor angle of the system without PSS
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Fig. 6: Deviation of rotor angle of the system with high order
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Fig. 7: Deviation of rotor angle of the system with PID PSS
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Fig. 8: Deviation of electrical power of the system without PSS
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Fig. 9: Deviation of electrical power of the system with PID
PSS

As it is seen from the simulations, the rotor angle of the
system without PSS has many oscillations to reach the
steady state response (Fig. 5). In the other two Figures (Fig.
6-7), the rotor angle oscillations are damped so faster than
the system without PSS.

The electrical power deviations of the system without PSS
and the PID PSS, are shown in Fig 8 and Fig 9,
respectively. In the system without controller, the electrical
power has too much oscillations and it takes a long time for
oscillations to be damped. It is obvious that using the PID
controller, the oscillations of electrical power deviation are
damped so fast and these brief oscillations are acceptable in
practice.

It is seen from simulations that the rotor angle and the
electrical power of the system without PSS has many
oscillations to reach the steady state response, but the
oscillations are damped so fast when a controller is applied
on the system. When the high order conventional robust
controller or PID controller is applied to the system, even
in the first cycle, the peak of oscillation is limited.

Comparing Fig. 6 and Fig. 7, it is seen that the response of
the system with H, controller is a bit better than the
system with PID controller. The difference between theses
two responses is so negligible. On the other hand, the PID
controller cost less than the H, one. So, it is not




economical to use the H_, controller.

From the simulation results, it is shown that the controllers
are effective, robust and has good performance. The
suggested controller of this paper is robust and simple and
can be implemented in practice.

The conventional H,, controller is a dynamic one and has

a very complicated structure. Its order equals the number of
the system states and in this paper it is of order 5. By
modeling details, it will become more complicated, too. So,
it is very difficult to imply it in practice. The PID controller
has a simpler structure. As the performance and robustness
of this controller is acceptable and its structure is so simple,
it is advised to be used.

5. Conclusion

This paper investigates two methods of designing robust
PSSs for damping multi-machine power system
oscillations. The first one is the robust conventional
approach which is formulated in LMI frame. The second
one, which is the suggested approach of this paper, is an
output feedback PID controller that is tuned using the LMI
approach.

The performance of both controllers is tested on a sample
power system model. The sample model has two
subsystems. The simulation results for one of the
subsystems are shown. Simulation results show that both
controllers are effective, robust and have good
performance. The first controller has smaller oscillations
than the second one, but as it is a high-order dynamic
controller, its implementation is difficult. The second
controller (PID) is so easy to be implemented in practice, so
it is advised to be used for practical purposes

Appendix
Table A.1: Generators dynamic parameters
Paramet Name Un | Gen. | Gen.
er it | No.1 | No.2
X, d axis reactance | PU | 2.29 1.7
X q q axis reactance | PU | 2.12 1.65
X' d axis transient pU | 028 | 0255
d reactance ) )
X q axis transient PU | 038 036
q reactance ) )
) d axis
X g subtransient PU | 0.207 | 1.67
reactance
) q axis
X q subtransient PU | 0.189 | 0.127
reactance
R, Rotor resistance (r)r? 0'(;01 0'(;01
Rf Field resistance ?1? 0. 1534 0.185
' d axis transient Se
T, time constant c 0.88 1.5
T q axis transient | Se 0.63 11
q time constant C ) )
. d axis Se
T, subtransient time . 0.021 | 0.035
constant
. q axis Se
T . subtransient time . 0.021 | 0.035
constant
. d axis transient Se
T, short circuit time . 6.61 11
constant
. q axis transient Se
T o short circuit time . 0.6 0.67
constant
o Moment of i 1.43 294
inertia ) )
D Damping - | 047 | 0376
constant
Table A. 2: Exciter parameters
Parameter Unit Value
K y PU 400
T, Sec 0.02
K, PU 1
T, Sec 1.3
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