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ABSTRACT 
Quercetin is a typical flavonoid with diverse biological effects, attributable to its free radical scavenging 
activity. Bioavailability of quercetin aglycone and its glycosides is an important factor for its antioxidant 
activity in vivo. A severe limitation exists and is imputable to very poor absorption of quercetin when ad-
ministered orally. To overcome this limitation, development of a value added herbal formulation in combi-
nation with phospholipids has been made which has better absorption and utilization profiles. Free radical 
scavenging activity of quercetin–phospholipid complex (equivalent to quercetin 10mg and 20 mg/kg body 
wt.) and free quercetin (10 mg and 20 mg/kg body wt.) was evaluated in oxidative stress condition in al-
bino rats induced by carbon tetrachloride intoxication. The degree of protection of liver was estimated by 
evaluating status of enzymes like super oxide dismutase (SOD), catalase; lipid peroxidation profile in 
terms of thiobarbituric acid reactive substances (TBARS), reduced glutathione, glutathione peroxidase, 
glutathione reductase and glutathione–S–transferase. Quercetin–phospholipid complex restored the re-
duced enzyme levels of liver glutathione system as well as impaired levels of other enzymes which are 
significant with respect to carbon tetrachloride treated group (p < 0.05 and < 0.01). For all enzymes 
tested, the complex at different dose levels produced better effects than free quercetin at same doses. 
Thus the results obtained ascertain the superiority of quercetin–phospholipid complex over free quercetin 
in terms of better free radical scavenging activity. 
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Quercetin is a typical flavonoid ubiquitously present 
in fruits and vegetables. Numerous in vitro studies have 
revealed diverse biological effects of quercetin, includ-
ing apoptosis induction, antimutagenesis, protein kinase 
C (PKC) inhibition, lipoxygenase inhibition, histamine–
release inhibition, superoxide dismutase (SOD)–like 
activity, modulation of cell cycle, angiogenesis inhibi-
tion, and inhibition of angiotensin converting enzyme II 
[ 1]. Quercetin intake is therefore suggested to be bene-
ficial for human health and its antioxidant activity 
should, at least partly, yield such a variety of biological 
effects [ 2]. The antioxidant activity of quercetin can be 
either explained by its chelating action, because transi-
tion metal ions such as the iron ion play a crucial role in 
the generation of reactive oxygen species (ROS) by 
Fenton–type reaction. In addition, the catechol group is 
recognized to contribute directly to the chelating action 

of quercetin [ 3]. In fact, a number of studies have dem-
onstrated that quercetin inhibits lipid peroxidation effec-
tively by scavenging free radicals and/or chelating tran-
sition metal ions [ 4]. The evaluation of the extent of 
absorption and the intestinal metabolism of quercetin 
glycosides is essential to evaluate its physiological func-
tion. It is generally recognized that intact flavonoid gly-
cosides are hardly absorbed from the small intestine 
because of the sugar moieties which elevate their hy-
drophilicity. 

However, a severe limitation exists and is imputable 
to the poor or very poor absorption of these active con-
stituents when administered orally or by topical applica-
tion. The reasons for this poor absorption are partly due 
to a bacterial degradation of the phenol moiety of the 
molecule and a complex formation with other sub-
stances present in the gastrointestinal tract thus prevent-
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ing them from being absorbed. Most animal and human 
trials of oral dosages of quercetin aglycone show ab-
sorption in the vicinity of 20 percent. An early trial in 
rabbits showed 25 percent of a 2–2.5 g oral dose was 
accountable for in the urine [ 5]. 

The effectiveness of any herbal medication is de-
pendent upon delivering an effective level of the active 
compound. If the absorption and utilization of these 
compounds is increased that will only give better re-
sults. The botanicals have a major role to play in the 
management of varied diseases but require further ex-
ploration of value added delivery systems from natural 
resources [ 6,  7]. 

This work was undertaken to ascertain the superior-
ity of value added quercetin formulation as a complex 
with phospholipid, over free quercetin in terms of anti-
oxidant activity, in stress condition in albino rats pro-
duced by carbon tetrachloride intoxication. The degree 
of protection of liver was estimated by evaluating status 
of enzymes like super oxide dismutase (SOD), Catalase, 
lipid peroxidation profile in terms of Thiobarbituric acid 
reactive substances (TBARS), reduced glutathione, glu-
tathione peroxidase, glutathione reductase and glu-
tathione–S–tansferase. 

MATERIALS AND METHODS 

Test Samples and Standards 

Quercetin (Sigma Chemical, St. Louis, MO, USA) 
was suspended in distilled water with Tween 20 (1% 
v/v). Quercetin –phospholipid complex was prepared by 
a method described later. Quercetin suspension and 
formulation (both10 and 20 mg/kg body weight) acted 
as the test samples administered orally. Normal group 
received the vehicle alone in a comparable volume (1 
mL/100 g body weight), orally. 

Chemicals 

Hydrogenated soy phosphatidyl choline (HSPC) was 
purchased from Lipoid, Germany; ethylene diamine 
tetra acetic acid (EDTA), thiobarbituric acid, tri-
chloroacetic acid; sodium car boxy methyl cellulose, 
sodium dodecylsulphate, n–hexane and other chemicals 
were obtained from Loba Chemie, Mumbai, India and 
S.D. Fine Chem., Biosar, India. Dichloromethane was 
obtained from Qualigen Fine Chemicals, Mumbai, In-
dia. Glutathione, glutathione reductase, bovine serum 

albumin, tris base, nitro blue tetrazolium, 5 5-dithiobis 
(2-nitrobenzoic acid), phenazine methosulphate, folin–
ciocalteu reagent were purchased from SRL chemicals, 
Mumbai, India. 

Preparation of Quercetin–Phospholipid Complex 

Complex of quercetin with phospholipids was pre-
pared by a novel method [ 8]. In short, 1 mole of 
quercetin was refluxed with 1 mole of HSPC in 20 mL 
of dichloromethane till all the quercetin dissolved. The 
volume of the resulting solution was reduced to 2–3 mL 
and 10 mL of n–hexane was added to above solution to 
get the complex as precipitate. The complex was then 
filtered, dried under vacuum and stored in air tight con-
tainer for further use. 

Animals 

In bred male albino rats (Wistar strain) weighing 
180–200 g were used for this study. Animals were 
housed in groups of 7–8 in colony cages at an ambient 
temperature of 20–25° C and 45–55 % relative humidity 
with 12 hrs light / dark cycles. They had free access to 
pellet chow (Brook Bond, Lipton India) and water ad 
libitum. The experimentation on animals was performed 
based on the observations of animal ethical committee. 

Dosing 

The adult male Wistar rats were divided into six 
groups of six animals each. Group I received only dis-
tilled water with Tween 20 (1% v/v) p.o. for seven days 
and served as normal. Group II animals received single 
dose of equal mixture of carbon tetrachloride and olive 
oil (50% v/v, 5 mL/kg i.p.) on the seventh day. Group 
III and IV animals were treated with quercetin suspen-
sion in distilled water with Tween 20 (1% v/v) at a dose 
level of 10 and 20 mg/kg respectively, per day p.o., for 
seven days. On the seventh day, a single dose of equal 
mixture of carbon tetrachloride and olive oil was given 
(50% v/v, 5 mL/kg i.p.). Group V and VI animals were 
treated with quercetin–phospholipid complex at doses of 
10 and 20 mg/kg respectively, per day p.o., for seven 
days and on the seventh day, a single dose of equal mix-
ture of carbon tetrachloride and olive oil (50% v/v, 5 
mL/kg i.p.) was administered. 

Antioxidant Activity 

All animals were killed by cervical decapitation un-

Table 1. Effect of quercetin–phospholipid complex on glutathione status of CCl4-intoxicated rats. Values are Mean±SEM (n=6). 

Parameters Normala Controlb Quercetinc Quercetind Quercetin–
phospholipid complexc 

Quercetin–
phospholipid complexd

GSH (nmol/mg protein)  48.63±6.01** 25.76±2.85 35.44±1.15 44.98±2.64** 42.90±1.76** 46.23±3.07** 
GPx (nmol of NADPH oxi-
dized/min/mg protein) 314.7±9.485** 176.5±9.095 262.31±6.25** 301.6±10.66** 292.3±7.978** 310.6±8.927** 

GST (nmol of CDNB conjugate
formed/min/mg protein) 

 297.4 ±17.21** 163.5±8.328 218.30±10.54* 280.9±16.57** 245.8±12.07** 289.2±9.075** 

GRD (nmol of oxidized glutathione
[GSSG] utilized/min/mg protein) 23.62±0.9854**11.27±0.4743 13.54±0.68 20.57±0.7135** 16.09±0.4598** 22.37±1.124** 

* p < 0.05, ** p < 0.01 (significant with respect to CCl4-treated group) 
a distilled water with Tween 20 (1%), p.o. 
b CCl4-treated; carbon tetrachloride and olive oil (50% v/v), 5 ml/kg i.p. 
c 10 mg/kg, p.o. 
d 20 mg/kg, p.o. 
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The results of antioxidant activity of Quercetin –
phospholipid complex -intoxicated rats are 
shown in Table 1, Fig d Fig 3. The histopa-
tho

athione activity in liver homogenates was re-
ted animals when com-
 nmol/mg protein from 

bas

 significantly 
d animals when com-
ent (10 and 20 mg/kg 

dos

der light ether anesthesia on the eighth day. Immedi-
ately after killed, the livers were dissected out for histo-
pathological observation as well as for biochemical es-
timation. The liver was washed in the ice–cold saline, 
and the homogenate prepared in 0.1M Tris–HCl buffer 
(pH 7.4). The homogenate was centrifuged and the su-
pernatant was used for the assay of marker enzymes 
namely reduced glutathione (GSH), glutathione peroxi-
dase (GPx), glutathione S–transferase (GST), glu-
tathione reductase (GRD), superoxide dismutase (SOD), 
catalase (CAT) and thiobarbituric acid reactive sub-
stances (TBARS). Protein concentration was determined 
[ 9] using purified bovine serum albumin as standard. 

The concentration of glutathione was measured with 
a spectrophotometer (412 nm) using 5, 5V-dithiobis (2- 
nitro benzoic acid)–glutathione disulfide reductase re-
cycling assay for glutathione [ 10]. Glutathione concen-
tration was expressed as concentration of glutathione 
per mg protein. Glutathione peroxidase activity was 
assayed and the enzyme activity was calculated as nmol 
Nicotinamide adenine dineucleotide hydrogen phos-
phate (NADPH) oxidized/min/mg protein using a molar 
extinction coefficient of 6.22×103 M/cm [ 11]. Glu-
tathione–S–transferase activity was estimated and en-
zyme activity was calculated as nmol 1-chloro-2, 4-
dinitro benzene (CDNB) conjugate formed /min /mg 
protein using a molar coefficient of 9.6×103 /M/cm [ 12]. 
Glutathione reductase (GRD) was measured as reported 
[ 13] and the concentration was expressed as nmol of 
GSSG utilized/min/mg protein. Thiobarbituric acid re-
active substance (TBARS) was used as an index of lipid 
peroxidation (LPO). Malondialdehyde (MDA) concen-
tration was measured spectrophotometrically [ 14]. The 
levels of lipid peroxides were expressed as nmoles of 
TBARS/mg protein using extinction co-efficient of 
1.56×105 M-1cm-1. SOD and catalase were assayed and 
expressed as unit/mg protein [ 15,  16]. 

Histological Studies 

Immediately after killing, the livers were dissected 
out and preserved in neutral buffered formalin. Livers 
were serially sectioned and microscopically examined 

after staining with hematoxylin and eosin with a magni-
fication of 400×. 

Statistical Analysis 

The data were expressed as mean ± standard error 
mean (S.E.M.). The statistical analysis was carried out 
using one way analysis of variance (ANOVA) followed 
by Dunnett’s test. p-Values < 0.05 were considered as 
significant. 

RESULTS 

 on CCl4
 1, Fig 2 an

logical studies of rat liver have been shown in Fig 
4A–F. 

Reduced Glutathione (GSH) 

Glut
duced significantly in CCl4-trea
pared to normal animals (25.76

e level of 48.63 nmol/mg protein). Treatment with 
free quercetin (20 mg/kg) as well as Quercetin –
phospholipid complexes (10 mg/kg and 20 mg/kg) 
showed significant increase in GSH levels (p < 0.01) in 
the liver homogenate when compared to CCl4-treated 
animals which has been shown in Table 1. 

Glutathione Peroxidase (GPx) 

GPx activity in liver homogenates was
(p < 0.01) reduced in CCl4-treate
pared to normal. Quercetin treatm

e levels) significantly increased (p < 0.01) the GPx 
level when compared to CCl4-treated animals. 
Quercetin–phospholipid complexes (10 mg/kg, 20 
mg/kg) also showed significant increase in GPx levels 
(p < 0.01) in liver homogenate in comparison to CCl4–
treated animals. At lower dose of quercetin, the complex 
increased the activity of GPx a little less than the double 
dose of free quercetin (Table 1). 

Fig 1. Effect of quercetin–phospholipid complex on TBARS. Values 
are Mean±SEM (n=6); * p < 0.05 [Significant with respect to Control 
(CCl4-treated group)], Complex denotes quercetin–phospholipid com-
plex. 

Fig 2. Effect of quercetin–phospholipid complex on SOD. Values are 
Mean±SEM (n=6). ** p < 0.01 [Significant with respect to control 
(CCl4-treated group)]. a Unit - One unit of the enzyme activity is de-
fined as the enzyme reaction which gave 50% inhibition of NBT re-
duction in one minute under the assay conditions. Complex denotes 
quercetin–phospholipid complex. 
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nsferase (GST) 

GST activity in liver homogenates was significantly 
d animals when com-

ment at 10 mg/kg 
0.05) the GST 

lev

nimals. Treatment 
ificantly increased (p 
pared to CCl -treated 

ani

n 
f 
s 

we

 compared to normal animals (3.579 
of 6.211 unit/mg pro-
in at 10mg/kg did not 

pro

nimals as compared to normal (p< 0.01). In pre-
ree and complexed quercetin (10 and 
el of CAT increased significantly (p < 

0.0

) 
with well-preserved cytoplasm, 
d central vein. In CCl treated 

gro

ies” (ROS) collec-
tively denotes oxygen-centered radicals such as super-
oxide (O2

-) and hydr . well as nonradical 
species derived from  hydrogen peroxide 
(H

generation of free radicals 
app

Glutathione-S-Tra

(p < 0.01) reduced in CCl4-treate
pared to normal. Quercetin pre- treat
dose level significantly increased (p < 

els but more significant result obtained when the 
animals treated with complex at the same dose level (p< 
0.01). At 20 mg/kg dose, both free and complex 
quercetin showed significant increase in GST levels (p < 
0.01) in liver homogenate (Table 1). 

Glutathione Reductase (GRD) 

GRD activity in liver homogenates was reduced sig-
nificantly (p < 0.01) in CCl4-treated a
with free quercetin (20 mg/kg) sign
< 0.01) the GRD levels when com 4

mals. Quercetin –phospholipid complexes too (10 
mg/kg and 20mg /kg) showed significant increase in 
GRD levels (p < 0.01) in liver homogenate (Table 1).  

Thiobarbituric Acid Reactive Substance (TBARS) 

TBARS level of liver homogenates in CCl4-
challenged rats significantly increased (p < 0.05) whe
compared to normal rats (4.170 nmol of MDA/ mg o
protein). Treatment with free quercetin (20 mg/kg) a

ll as quercetin–phospholipid complexes (10 mg/kg 
and 20 mg/kg) showed significant (p < 0.05) decrease in 
TBARS levels in liver homogenate when compared to 
CCl4-treated animals (11.77 nmol of MDA/mg of Pro-
tein) (Fig 1). 

Superoxide Dismutase (SOD) 

SOD level was significantly reduced in CCl4-treated 
animals when
unit/mg protein from base level 
tein). Treatment with free quercet

duce any significant result but the complex at the 
same dose significantly increased the SOD levels (p < 
0.01) in liver homogenate when compared to CCl4-
treated animals. At 20 mg/kg free quercetin as well as 
quercetin–phospholipid complexes showed significant 

increase in SOD levels (p < 0.01) in liver homogenate 
(Fig 2). 

Catalase (CAT) 

Significant reduction of CAT level occurred in CCl4-
treated a

 

treated groups of f
20 mg/kg), the lev

1) when compared to CCl4-treated animals (Fig 3). 

Histological Studies 

Through electron microscopy, histological observa-
tion of liver tissue of the control animal (Fig 4A
showed hepatic cells 
nucleus, nucleolus, an 4 

up, histological observation showed fatty degenera-
tion, damage of parenchymal cells, steatosis and hy-
dropic degeneration of liver tissue. The prominent dam-
age of central lobular region appeared in the liver (Fig 
4B). Pretreatment with free quercetin at lower dose 
showed little sign of amelioration (Fig 4C) whereas at 
20mg/kg, free quercetin restored the altered histopa-
thological changes (Fig 4D). Pretreatment with 
quercetin–phospholipid complex in varied doses abol-
ished the morphologic changes induced by CCl4 in a 
dose dependant manner (Fig 4E–F). 

DISCUSSION 

The term “Reactive Oxygen Spec

oxyl ( OH) as 
 oxygen, like

2O2), singlet oxygen (1O2) and hypochlorous acid 
(HOCl). The increase production of ROS seems to ac-
company most forms of tissue injury [ 17– 20]. Forma-
tion of free radicals has been implicated in a multitude 
of diseased states ranging from inflammatory/ immune 
injury to myocardial infarction and cancer. Some of the 
well known detrimental effects of excessive generation 
of ROS in biologic systems include peroxidation of 
membrane lipids, oxidative damage to nucleic acids and 
carbohydrates and the oxidation of sulfhydryl and other 
susceptible groups in proteins [ 18– 22]. Oxygen derived 
free radicals appear to possess the propensity to initiate 
and promote carcinogenesis. 

Carbon tetrachloride (CCl4) is particularly toxic to 
the liver, where it causes hepatocellular degeneration, 
centrilobular necrosis [ 23,  24] and impairs different 
enzymatic systems [ 25]. The 

ears to be pivotal in CCl4 hepatotoxicity: CCl4 is 
metabolized by cytochrome P450 to produce the tri-
chloromethyl radical, which initiates a cascade of free 
radical reactions resulting in an increase in lipid peroxi-
dation and a reduction in some enzyme activities [ 26]. 
Many investigators have looked for protective agents 
against CCl4 toxicity and a variety of compounds with 
potential antioxidant activity have been tested [ 27]. 
Quercetin (3, 5, 7, 30, 40-pentahydroxyflavone) is a 
member of the flavonoid family; can delay oxidant in-
jury and cell death by scavenging ROS and free radi-

Fig 3. Effect of quercetin–phospholipid complex on Catalase. Values 
are Mean±SEM (n=6). ** p < 0.01 [Significant with respect to control 
(CCl4-treated group)]. a Unit - One unit of the enzyme activity is 
defined as nmol of hydrogen peroxide (H2O2) decomposed in one 
minute under the assay conditions. Complex denotes quercetin–
phospholipid complex. 
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terminating the chain-radical reaction, and chelating 
nt than its glyco-

side counterparts because of its higher accessibility to 
cals, protecting against lipid peroxidation and thereby more active chain breaking antioxida

metal ions [ 28,  29]. In particular, quercetin has been 
shown to scavenge O2

., singlet oxygen (1O2) and .OH 
radicals, to prevent lipid peroxidation, to inhibit 
cyclooxygenase and lipooxygenase enzymes, and to 
chelate transition metal ions [ 30]. 

The biological properties of flavonoids are strictly 
related to their chemical structure and the choice of op-
portune structural features allows the optimization of 
biological activity, as well as of lipophilicity, water 
solubility and bioavailability. The bioavailability of 
lipophilic drugs when administered orally as solid dos-
age forms is notoriously low. There are usually several 
factors responsible for this, but a particularly wide-
spread problem is poor absorption due to slow and/or 
incomplete drug dissolution in the lumen of the gastro-
intestinal tract. In this case, improved bioavailability 
can be achieved by the use of delivery systems which 
can enhance the rate and/or the extent of drug solubiliz-
ing into aqueous intestinal fluids. In particular, the abso-
lute water insolubility of quercetin is a key step that 
may limit its bioavailability; for example, unlike other 
flavonoids such as naringenin and hesperetin, quercetin 
has a very poor capability to permeate through human 
skin [ 31]. Nevertheless, we should take into account the 
fact that food-derived quercetin is mostly present in its 
glycosides form and thus the effectiveness of its anti-
oxidant activity is greatly modified by the position of 
the sugar group attached to the basic diphenylpropane 
structure. Furthermore, quercetin aglycone seems to be 

the site of chain initiating and chain-propagating free 
radicals in membranous phospholipid bilayers [ 32]. 
Thus, the bioavailability of quercetin aglycone and its 
glycosides is an alternative factor determining the effec-
tiveness of their antioxidant activity in vivo [ 33]. In re-
cent years, several studies have shown that quercetin 
and other flavonoids are subject to metabolic conversion 
during their absorption in the intestinal epithelial cells 
before reaching to the liver and circulation [ 34,  35]. 
Therefore, knowledge of the extent of absorption and 
the intestinal metabolism of quercetin glycosides is es-
sential to evaluate its physiological function. 

A number of studies now support the view that 
quercetin glycosides are not absorbed intact in humans 
or, rather, are not able to reach the systemic circulation 
[ 36– 39]. Flavonoid glycosides from diet are believed to 
pass through the small intestine, and enter the cecum 
and colon, where they are hydrolyzed to aglycone by 
enterobacteria [ 40]. Flavonoid aglycone can be ab-
sorbed easily into epithelial cells in the large intestine, 
because its lipophilicity facilitates its passage across 
phospholipid bilayer of cellular membranes. Affinity of 
the glucosides to the epithelial cell membrane also 
seems to play a crucial role in the uptake of lipophilic 
compounds via passive diffusion. Murota et al. [ 41,  42] 
further showed that the lipophilicity of flavonoids and 
their affinity for liposomal membranes are well corre-
lated with their absorptivity into Caco-2 cells. Actually, 
quercetin glucosides possess lower lipophilicity and less 

Fig 4. (A) Liver micrographs of normal rats – Presence of hepatic cells with well-preserved cytoplasm, nucleus, nucleolus, and central vein. (B) 
Liver micrographs of control rats -Fatty degeneration, damage of parenchymal cells, steatosis, damage of central lobular region and hydropic 
degeneration of liver tissue.(C) Liver micrographs of free quercetin (10 mg/kg) treated rats   – Little amelioration of the altered histopathological
changes. (D) Liver micrographs of free quercetin (20 mg/kg) treated rats – Restoration of the altered histopathological changes. (E) Liver micro-
graphs of quercetin- phospholipids complex (10 mg/kg) treated rats – Restoration of the altered histopathological changes. (F) Liver micrographs 
of quercetin–phospholipids complex (20 mg/kg) treated rats – Normal hepatic cells with restored cytoplasm, central vein. 
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l  intoxication. Phospholipids complexes of 
que

ging property of this molecule through a 
phyto formulation. The formulation was tested for its 
antioxidant activity al model. The 
results obtained, pro acy of this formula-
tion

cial assistance for this work. 
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of pharmacokinetic parameters to substantiate the claim 
of better absorption, followed by enhanced bioavailabil-
ity. 
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