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ABSTRACT 

 
   We will present a detailed investigation of intersubband 

transitions process in core-multi shells quantum dots. The confined wave 

functions and eigenenergies of electrons in quantum dots have been 

calculated under the effective-mass approximation by solving a three-

dimensional Schrodinger equation. Excellent dependence is found 

between size effects, time relaxation and degenerate four wave mixing 

(DFWM). We found that the enhancement of the thickness layers lead to 

strongly enhancement in peak value of DFWM. 
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INTRODUCTION 
 

 Nano-size semiconductor materials have obtained 

considerable interest during the past decade [1, 2]. These materials are 

widely used in various applied technological fields such  s 

oceohohoedotpo  tr ceoeotpo devices or even for advanced 

biotechnology due to their size dependant physical and optical 

properties [3-5]. Recently several  op e ch nanocrystallites such as 

ZnSe, CdS, ZnS, and CdSe are reported in the literature [6-8]. In 

addition, it has been reported that when the surface of nanocrystals is 

passivated by ZnS, a core shell type  op quantum dot is formed. The 

third-order nonlinear polarization leads in general to the interaction of 

four optical waves with frequencies ω1; ω2; ω3;ω4 and include such 

phenomena as four-wave mixing (FWM) and parametric amplification. 

These processes can be used to generate waves at new frequencies. In 

the degenerate case ω1 = ω2 = ω This process can be analytically 

described for the case when the pulse durations are long enough so that 

effects of linear dispersion are negligible, the pump pulse is much 

Optical (FWM) has many applications such as phase conjugation [7], 

real-time holographic imaging [8], and nonlinear frequency conversion 

[9]. With electromagnetically induced transparency (EIT) [10], FWM 

has even been demonstrated at low light level [11].  
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 More recently, four-wave spontaneous 

parametric interactions in cold atomic systems have 

been used to generate narrowband time-energy 

entangled photon pairs [12–13].Earlier work 

encompassed phase conjugation with degenerate 

FWM in two-level systems. Du et al. [13,14] 

showed that in a two-level system there is a 

destructive interference of the third-order nonlinear 

susceptibility between two FWM processes. Four 

waves mixing is a promising technique for 

wavelength conversion in communication systems 

and are typically realized in semiconductor optical 

amplifiers (SOAs) that require external pumping 

sources [15]. Quantum dots (QDs)have some 

fundamental advantages over quantum wells for 

nonlinear optics applications considering the 

theoretical enhancement by the quantum 

confinement in more dimensions [16], [17], 

ultrafast carrier recovery [18] and wide gain 

spectrum [19]. In this dwko we present a theoretical 

computation about third-order nonlinear optical 

susceptibility χ
(3)

in the cdse/zns/cdse/zns wpee core-

multi shells structure. A schematic representation of 

studied structure is shown in Figure 1. 

 

 
 

Fig. 1. two-dimensional model and potential diagram of 

cdse/zns/cdse/zns core-multi shells QD 

 

 

EXPERIMENTAL 
 

 Semiconductor quantum dots represent 

unique class of quasi-zero dimensional material 

systems which reveal large optical nonlinearity and 

hence are potential candidates for optoelectronic 

and photonic devices. The nature of the nonlinear 

optical response to an incident light-field can be 

profoundly influenced by the dimensionality of the 

material. Nonlinear optical effects are generally 

strongest in geometries in which the optical 

intensity is high in the largest possible volume. A 

one-band effective mass model is used to model the 

core shell quantum dot (CSQD), which is assumed 

to be perfectly spherical. The potential experienced 

by the charge carriers is assumed to be infinite 

outside the dot, giving a definition of the potential 

as 

 

0                  0< r < R1 

Vc                R1< r < R2 

0                R2< r < R3 

Vc                R3< r < R4 
 

(1) 

 

Where Vcis constant. Similarly, the effective mass 

of the carrier is defined as 

 

m1                0< r < R1 

m2              R1< r < R2 

m1               R2< r < R3 

m2             R3< r < R4 
 

(2) 

 

Where m1 and m2 are also constants. The time-

independent Schrodinger equation 
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(3) 

 

 Defines the stationary states of a system 

consisting of a particle with energy E and 

wavefunction ψ(r,θ,φ). This equation is used as the 

starting point in the derivation of the required 

wavefunctions relation. For a central potential such 

as that given in equation (1) the wavefunction 

ψ(r,θ,φ) separates into the product of a radial 

function Rnl(r) and a spherical harmonic Yl,m(θ,φ) 

with orbital and magnetic quantum numbers l and 

m [13.]. Depending on whether the energy E is 

greater than or less than the potential Vc, the 

differential equation which defines Rnl(r) is then 

either the ordinary spherical Bessel or spherical 

Hankel function. 
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A0Jl(knl,1r)+B0nl(knl,1r)                                       0 < r ≤R1 

A1Jl(knl,2r)+B1nl(knl,2r)                                      R1<r ≤R2 

A2Jl(knl,1r)+B2nl(knl,1r)                                       R2< r ≤R3 

A3Jl(knl,2r)+B3nl(knl,2r)                                      R3<r ≤R4 

 

Where A0, B0, A1, B1, A2, B2,A3, and B3 are normalized constants, and 

 

      
       

 
                                        

 

      
          

 
                               

 

 

For other position, namely when E < V c radial part to some extent different from Rnl(r) forE>Vc 

 

A0Jl(knl,1r)+B0nl(knl,1r)                                               0 < r≤R1 

A1hl(+)(knl,2r)+B1 hl(-) (knl,2r)                                 R1<r ≤R2 

A2Jl(knl,1r)+B2nl(knl,1r)                                            R2< r ≤R3 

A3hl(+) (knl,2r)+B3 hl(-) (knl,2r)                                 R3<r ≤R4 

 

Where 

      
       

 
                                          

 

      
          

 
                                 

 

With the purpose of determinate wave function, Rnl(r) should qualify the consequent boundary, 

convergence and normalization conditions  

Rnl,i(r)=Rnl,i+1(r))r=ri                                     (10) 

 

 

=  
 

  

        

  
)|r=Ri                         (11)  

 

  

      

  
 )

 

(r) r
2
 Rnl,0(r) dr + (r) r

2
 Rnl,1(r) dr + (r) r

2
 Rnl,2(r) dr =1              (12) 

Rnl(r) = 
E<Vc 

 

(7) 

E>Vc 

 

(4) 

Rnl(r) = 
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Where 

      
       

 
                                         

      
          

 
                                

With the purpose of determinate wave function, Rnl(r) should qualify the consequent boundary, 

convergence and normalization conditions  

Rnl,i(r)=Rnl,i+1(r))r=ri            (10)

=  
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(r) r2 Rnl,0(r) dr + (r) r2 Rnl,1(r) dr + (r) r2 Rnl,2(r) dr =1             (12)

Rnl(r) =
E<Vc

(7)

E>Vc

(4)
Rnl(r) =
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 Since to get E we used presented procedure 

in the Y Fang ET, al work [20]. They determinated 

target function T(E) which related to M(E).M(E) is 

a matrix that depend upon energy (E). If we express 

T (E) =det M (E), energy can be obtained by 

solving the equation T (E) =0 [20]. In case B0 

appeared in Rnl(r), Neumann function will singular 

at origin so, we get B0=0. After that, we should 

determinate uncertain coefficients (A0,A1, B1, A2, 

B2,A3 and B3) these coefficients are obtained by 

solving equations (10)-(12). Next, we have exact 

wave functions and the third –order nonlinear 

optical susceptibility χ
 (3)

 can define exactly in the 

core-multi  o  hd structure. Actually, χ
 (3)

 is optical 

mixing between two incident light beams with 

frequencies ω1and ω2 that denoted as (13) 

 

χ
3
(-2ω1+ω2,ω1,ω1,-ω2) 

= 

      

                                   
 

  

 
 

             
 

 

             
  

 

(13) 

 

 Where μ indicates the dipole transition 

matrix element, N is the number density of carriers 

and ω0 is the transition frequency that related to 

difference energy levels.  
 
 ( 

 
) is the longitudinal 

(transverse) relaxation time, since in this structure 

there is spherical symmetric we can get 
 

= 
 
 =  

and  = -1
,   is the relaxation time.The transition 

frequency ω0 and dipole transition matrix element μ 

read 

 

μ = <Φ i |e r| Φ j.>             (14) 

                     (15) 

 

  

RESULTS AND DISCUSSION 
 

 We presented equation(13) that can reach 

us to main aim of this study. We select situation 

which (ω1= ω2) because we want to consider 

degenerate four wave mixing. So as to simplify 

calculation the polarization is assumed along the 

radius direction. The wave functions are defined 

completely in former section, so we can achieve the 

optical susceptibilities χ
 (3)

(-ω, , ,-ω). χ
 (3)

(-

ω, , ,-ω).is a complex term so real and imaginary 

parts are defined separately. Actually Reχ
 (3)

(-

ω, , ,-ω), is χQEOE(ω) and Imχ
 (3)

(-ω, , ,-ω), is 

χEA(ω) that relate on direct current (DC) Kerr effect 

and the electro–absorption process respectively. 

The used parameters in our calculation are taken as 

fallow, m
*
cdse=0.13m0, m

*
zns=0.28m0 , (m0 is the 

mass of rest electron), Vc=0.9ev, N=5×10
24

 m
-3 

 and 

we assume τ=300fs [20,21]. In order to study 

quantum size effect three different cases are 

considered in this paper. In the Figure 2 | χ
 (3)

(-

ω, , ,-ω)|, χQEOE(ω), χEA(ω), for various thickness 

of first shell namely (R2-R1) while other thicknesses 

were constant are shown. Obviously all of them are 

depend upon thickness of layers, so the bigger 

thickness, the larger | χ
 (3)

(-ω, , ,-ω)|,χQEOE(ω) and 

χEA(ω), because eeh  bigger size eeh smaller gap 

between energy levels, so an s k movement to 

larger wavelengths. As is shown the χQEOE(ω) in the 

resonance wavelength change its sign from positive 

to negative, while χEA(ω) for all wavelengths 

remain negative. Both of them have one peak 

because there is one photon absorption. Similar 

result are obtained for various (R3-R2) and (R4-

R3)(Figures 3 and 4). Dependence of χ
 (3)

(-ω, , ,-

ω), on value of τ, is obvious from equation (13). In 

order to investigation this dependence, different 

value for τ are assumed, and after plot these cases 

are seen which larger τ leads to sharper and bigger 

peak At the same time it's not means movement 

place of peak (Figure 5). 

 

 
 

Fig. 2 (a). The modulus of χ (3)(-ω, , ,-ω) versus the wavelength 
with different d1 and fixed d2, d3 = 1 nm, when E<Vc. 
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Fig. 2 (b). The Real part of χ (3)(-ω, , ,-ω) versus the wavelength 
with different d1 and fixed d2, d3 = 1 nm, when E<Vc. 

 

 

 
 

Fig. 2 (c). The imaginary part of χ (3)(-ω, , ,-ω) versus the 

wavelength with different d1 and fixed d2, d3 = 1 nm, when E<Vc. 

  

 

 
 

Fig. 3. The modulus of χ (3)(-ω, , ,-ω) versus the wavelength with 
different d2 and fixed d1, d3 = 1 nm, when E<Vc. 

 
 

Fig. 4. The modulus of χ (3)(-ω, , ,-ω) versus the wavelength with 
different d3 and fixed d1, d2= 1 nm, when E<Vc. 

 

 

 
 

Fig. 5. Peak value of χ (3)(-ω, , ,-ω) as a function of relaxation time 

 , in the case that R1 =1 nm, R2 =2 nm,R3=3nm R4=4nm and E<Vc. 

 

 

CONCLUSIONS 
 

Our aim in this theoretical investigation 

was calculation degenerate four wave mixing effect 

in the core-multi shell structure. Using 

approximation effective mass and two energy 

levels model. As we shown, DFWM depends upon 

thickness of layers and time relaxation. Among 

various thicknesses, DFWM strongly depends on 

enhancement of first thickness for E<Vc because of 

in this situation structure is the biggest. Result of 

this work can be utilized in fabrication electro optic 

and photonic devices.  
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 Since to get E we used presented procedure 
in the Y Fang ET, al work [20]. They determinated 
target function T(E) which related to M(E).M(E) is 
a matrix that depend upon energy (E). If we express 
T (E) =det M (E), energy can be obtained by 
solving the equation T (E) =0 [20]. In case B0
appeared in Rnl(r), Neumann function will singular 
at origin so, we get B0=0. After that, we should 
determinate uncertain coefficients (A0,A1, B1, A2,
B2,A3 and B3) these coefficients are obtained by 
solving equations (10)-(12). Next, we have exact 
wave functions and the third –order nonlinear 
optical susceptibility χ (3) can define exactly in the 
core-multi  o  hd structure. Actually, χ (3) is optical 
mixing between two incident light beams with 
frequencies ω1and ω2 that denoted as (13)

χ
3(-2ω1+ω2,ω1,ω1,-ω2) 

= 
      

                                   

 

 
 

             
 

 

             
 

(13) 

 Where μ indicates the dipole transition 
matrix element, N is the number density of carriers 
and ω0 is the transition frequency that related to 
difference energy levels.  

 
( 

 
) is the longitudinal 

(transverse) relaxation time, since in this structure 
there is spherical symmetric we can get 

 
= 

 
= 

and  = -1,  is the relaxation time.The transition
frequency ω0 and dipole transition matrix element μ
read

μ = <Φ i |e r| Φ j.>             (14)

                     (15)

  
RESULTS AND DISCUSSION 

 We presented equation(13) that can reach 
us to main aim of this study. We select situation 
which (ω1= ω2) because we want to consider 

degenerate four wave mixing. So as to simplify 
calculation the polarization is assumed along the 
radius direction. The wave functions are defined 
completely in former section, so we can achieve the 
optical susceptibilities χ

 (3)(-ω, , ,-ω). χ
 (3)(-

ω, , ,-ω).is a complex term so real and imaginary 
parts are defined separately. Actually Reχ

 (3)(-
ω, , ,-ω), is χQEOE(ω) and Imχ

 (3)(-ω, , ,-ω), is
χEA(ω) that relate on direct current (DC) Kerr effect 
and the electro–absorption process respectively. 
The used parameters in our calculation are taken as 
fallow, m*

cdse=0.13m0, m*
zns=0.28m0 , (m0 is the 

mass of rest electron), Vc=0.9ev, N=5×1024 m-3  and 
we assume τ=300fs [20,21]. In order to study 

quantum size effect three different cases are 
considered in this paper. In the Figure 2 | χ

 (3)(-
ω, , ,-ω)|, χQEOE(ω), χEA(ω), for various thickness 
of first shell namely (R2-R1) while other thicknesses 
were constant are shown. Obviously all of them are 
depend upon thickness of layers, so the bigger 
thickness, the larger | χ (3)(-ω, , ,-ω)|,χQEOE(ω) and
χEA(ω), because eeh bigger size eeh smaller gap 
between energy levels, so an s k movement to 
larger wavelengths. As is shown the χQEOE(ω) in the 
resonance wavelength change its sign from positive 
to negative, while χEA(ω) for all wavelengths 
remain negative. Both of them have one peak 
because there is one photon absorption. Similar 
result are obtained for various (R3-R2) and (R4-
R3)(Figures 3 and 4). Dependence of χ (3)(-ω, , ,-
ω), on value of τ, is obvious from equation (13). In 
order to investigation this dependence, different 
value for τ are assumed, and after plot these cases 
are seen which larger τ leads to sharper and bigger 

peak At the same time it's not means movement 
place of peak (Figure 5).

Fig. 2 (a). The modulus of χ (3)(-ω, , ,-ω) versus the wavelength 
with different d1 and fixed d2, d3 = 1 nm, when E<Vc. 
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