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ABSTRACT: In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTSs) under the
action of axial load areinvestigated. To thisend, anonlocal Fliigge shell model is developed to accommodate the small
length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement
derived from the Fliigge-type buckling equations. Through comparison of the results obtained from the present analytical
solution and the ones from molecular dynamics (MD) simulations, the appropriate values of nonlocal parameter are
proposed for (8, 8) armchair SWCNTs with different kinds of boundary conditions. The effects of nonlocal parameter
and boundary conditions on thecritical buckling load are a so examined. M oreover, in spite of the uncertainty that exists
in defining the in-plane stiffness and bending rigidity of nanotube; by adjusting the nonlocal parameter, the present
nonlocal shell model is shown to be capable of predicting the MD simulations results.

Keywords: Axial buckling; Nonlocal elasticity; Rayleigh=Ritzmethod; Sngle-walled Carbon nanotube; Flugge shell.

INTRODUCTION

Notwithstanding the appearance.of the first
evidence for the tubular nature of carbon filamentsin
1952[1], the 1991 lijimapaperinNature[2] re-ignited
research interest in the scientific community of
nanoscience and nanotechnology. This is largely due
to the superior physical .and chemical properties of
carbon nanotubes (CNTs) over other existing materials.
In terms of mechanical properties, CNTs have shown
to be among the lightest, stiffest and strongest
materials yet measured with high elastic modulus of
greater than 1 TPacomparable to that of diamond and
strengths many times higher than the strongest steel
at a fraction of the weight. CNTs are expected to
withstand large strains of up to 10% [3]. They arealso
quiteflexibleand can return to their original shape after
bending and buckling [4].

The theoretical predictive models based on
continuum mechanics are computationally efficient
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and are gaining more popularity in recent years. Yao
and Han [5] presented an elastic multi-shell model to
study the buckling of multi-walled CNTs under
torsional load coupling with temperature change.
Based upon the finite-deformation shell theory, Lu et
al. [6] studied the buckling of double-walled CNTs
subjected to compression or torsion. On the basis of a
continuum cylindrical shell model, buckling and post-
buckling of multi-walled CNTswasinvestigated by He
et al. [7]. Using asingle-beam model, Ansari et al. [8]
analyzed the thermal effect on nonlinear oscillations
of CNTs with arbitrary boundary conditions. Also,
there aremany other researchesin which the vibrational
and buckling response of CNTsare studied viaclassical
elagticity continuum[9-17].

One of the major drawbacks of the classical
continuum mechanics, however, isthat it is scale free
and cannot accommodate size effects. As the
dimensions of structures are scaled down to the
submicron level, size effects become increasingly
important. A more sophisticated version of continuum
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mechanics capable of accommodating size effects is
the nonlocal continuum mechanicsinitiated by Eringen
[18, 19]. The successful application of nonlocal
continuum mechanics has been reported by many
research workers [20-32]. These studies have been
conducted based upon the beam models [21, 22, 26,
31], the shell models[23-25, 27, 29, 32] and the plate
models[28, 30].

In the present work, a nonlocal shell model is
developed based on the accurate Fliigge shell theory
to obtain the critical axial buckling load of SWCNTSs.
To analytically solve the problem, the Rayleigh-Ritz
method is implemented to the variational form
equivalent to the Fliigge type stability equations. To
derive the appropriate values of nonlocal parameter,
the developed nonlocal model is calibrated with
molecular dynamics (MD) simulation results. Due to
the vagueness that exists in the specification of the
proper values for the in-plane stiffness and bending
rigidity of CNTs in the literature, the effects of these
properties on the axial buckling behavior of SWCNTs
are fully investigated in this paper.

EXPERIMENTAL

According to Eringen [18, 19], the concept of
nonlocality isinherent in solid state physics where the
nonlocal attractions of atomsare prevalent. Unlike the
conventional elasticity theory, in the nonlocal
continuum theory it is assumed that the stress at a
point is a function of strains at all points in the
continuum. The nonlocality is taken into account by
applying the nonlocal ‘constitutive equation given by
Eringen[19]

(1 —(epa)*Vioc =t (1)

where t is the macroscopic stress tensor at a point;
gy iSthe nonlocal parameter or characteristic length
which leads to consider the small scale effect; In the
limit when the characteristic length goes to zero, the
nonlocal elasticity reduces to the classical (local)
elasticity. The stress tensor is related to the strain by
generalized Hooke’s law as

t=5:¢ 2

here 5 is the fourth order elasticity tensor and “:’
denotes the double dot product. Hooke’s law for the
stress and strain relation is hence expressed by [19]

454

E vVE
2 2 0

Oy Oex 1-ve 1-v Exx

- VE E
Tg0 ¢ — (e0a) V" { 60 » = 1—v2 112 0 00
Tx Txg E Yx6

2(14v)
©)

Where E is Young’s modulus of the material and v
is the Poisson’s ratio. Also, x and & are longitudinal
and angular circumferential coordinates. g,.., a5, and
gL arenorma and shear stresses and &, £54, and

rwa arenormal and shear strains. The Laplace operator
in the polar-coordinate system is given by
2= g% /ax" + 6°/(R°@8%), and R is the radius
measured from the mid-plane of the cross section in
the following CNT analysis.

Consider an élastic cylindrical shell of mid-plane
radius , length , thickness , as shown in Fig. 1.
According to the classic shell theory, the three-
dimensional displacement components, and inthe,
and directionsrespectively are of theform [33]

ow
u,(x,6,2z) = u(x,6) — ™ (x,6)

1 (x,6,2) = v(x, 6) _ZZ_Z(""’) @

u,(x,0,z) =w(x,6,2)

where u.v,w are the reference surface

displacements. The kinematic relations are given by
[33]

ou a%w
. ox 0x2
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x6 p - . . P
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The stress and moment resultants can be obtained
by [33]

h/2
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Fig. 1: Schematic of a single-walled carbon
nanotube treated.

Moreover, in the nonlocal elastic shell theory, the
stress and moment resultants are defined based on the
stress components in equation (3), and therefore can
be expressed as follows by using the kinematic
relationsin the Fliigge shell theory [19,33]
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Where I isthe bending rigidity of shell.
If x and & denotethelongitudinal and circumferential

coordinates, respectively, the governing equations on
the basis of the Flugge shell theory are given as[33]

0N,y 1 3dNg, 0%u

dx R 06 ~  9x?

1 6N99 6N}°9 1 6M99 1 6Mk9 _ 62?? (8)
R a0 dx R? 99 R adx = 9x?

aZMxx 1 62M99 2 aZng Ngg _ 2%w

0x? " R? 902 "R ax00 R~ 09x?

Where P represents the applied axial |oad.
By the use of equations (7), equations (8) can be
stated in terms of the three field variables (u. v, w) as
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where I, (p.g = 1.2.3} arethe partial operators,
which are givenin Appendix.

The Rayleigh-Ritz method is among the so-called
variational approachesthat are prevalently used in the
analysis of continuous systems. In order to apply the
Rayleigh-Ritz method; it is first necessary to obtain
the variational statement equivalent to the partial
differential equationsthat are governed by the buckling
of SWCNTs.

According to the semi-inverse method [26], a
variational trial-functional M{u,w,w) can be
constructed as follows

M(w, v,w) = Hg(u,v,w) + Mg, (w,v,w) (10

inwhich
1 (T Eh 1 vEh
HK(u, V,W) = EJ; J; [mll'x + Em(vﬂ +w )] Uy +

Eh (u,@ )2+[ vEh - 1 Eh N
20+ R ") T T Rz (e

1 v
-w )] E(U,a +w ) + D(W,xx +F W,BB) W xx

D[/1 2(1—)D
+ 3| |77 ) Weo + VW |Weo + T(W,xe -

, 2D 1
- Ur) - F(Vw,xx + R_ZW,BB)V,B dnde

(1
and

1 (T 5 , 1
Mg (w,v,w) = —f f P (u,x) —(e0@)” || Uax + =5 Ugg |Urx| +
g 2y Jg R

(v»-\”)2 - (eoa)2 [(v,xx + %U,ee)v,x.\:] + (W.x)z -

(eo a)2 [(W.xx + % W,BB) W,xx]) dﬂdt
12)

Thefield variablesof an SWCNT, i.e. u, v and w, are
taken as
u=4a 9P cos(n@)

dx

v =8B ¢t(x) sin(n@) (13)
w = C ¢(x) cos(ng)
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Where A, B and £ are the constant parameters, n

the circumferential wave number and ¢(x) istheaxial

function that satisfies the geometric boundary
conditions of the CNT under consideration. The axial

function @(x) is selected as the characteristics beam
functionas[34]
A 2
¢(x) = a, cosh (LX) + a, cos (ﬁ) _
L L
/1 X A x
Cm [(13 sinh (,LL) + aysin (ILL)]

in which a; (i = 1,....4} are constants with value

14

01, 1 or —1 depending on the tube ends, 4., shows the
roots of the transcendental equations obtained from

the CNT boundary conditions and ¢,. denotes the

parameters corresponding to . The parameters, and
that are chosen according to the CNT boundary
conditionsaregivenin Table 1. Substituting equations
(13) into equation (10) and then minimizing the energy
functional with respect to the unknown coefficients,
and result in the following algebraic equations

ot ot an
15

ac
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The above equations can be recast in the form of a
generalized eigenvalue problem. By solving the
eigenvalue problem, the critical axial buckling loads of
SWCNTSs can be extracted.and the associated
eigenvectors yields the corresponding buckling mode
shapes.

RESULTSAND DISCUSSION

In this section, the accuracy of the present solution
is assessed first. Further several numerical results are
presented to illustrate the buckling behavior of
SWCNTswith SS, CC, CSand CF boundary conditions.
The schematics of the considered end conditions are
shown in Fig. 2. The mechanical properties and
thickness of SWCNTs used in the numerical
evaluationsperformed herein aretakento be E= 3.4TPa,
v=0.3, D=0.85€V, h=0.1 nm[32, 35-38], except otherwise
stated.

Validation of the present approach by MD simulationsresults

In this subsection, the effectiveness of the present
nonlocal shell model is assessed by MD simulations
taken from [39] and the proper values of nonlocal
parameter are proposed.
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Fig. 2: Schematic of SWCNTs with (a) SS, (b) CC, (c)
CS and (d) CF end conditions.

Thecritical axial bucklingloadsof simply-supported,
clamped-free and clamped (8,8) armchair SWCNTs

versus nanotube aspect ratio (L/d) are plotted in Figs.
3 and 4. To makethe model morerealigtic, the nonlocal
parameter e, needs to be calibrated such that the

nonlocal shell model predicts the results of MD
simulations. The least-square method is used to
determine the best value for the nonlocal parameter so
that the sum of the squares of the errors between the
results from MD simulations and the corresponding
ones from the nonlocal shell model isminimized for a
relatively large range of . From these figures, the
nonlocal shell model developed herein is capable of
predicting theresults of MD simulations provided that
the nonlocal parameter is properly calibrated. The
values of the nonlocal parameter are, and,
corresponding to the simply-supported, clamped-free
and clamped SWCNTS, respectively. Thisindicatesthat
the significance of the small size effects on the critical
buckling loads of SWCNTSs is dependent on the
boundary conditions of CNT. AsshowninFigs. 3 and
4, the local shell model (e,a=0) tends to overestimate
the critical buckling loads of SWCNT, especially when
its aspect ratio decreases. In addition, Fig. 4 shows
that asthe small-scal e parameter increases, the critical
buckling load obtained from the nonlocal shell model
becomes smaller than that fromitslocal counterpart.

Ilustrative examples

Example 1: In this example, a comparison is made
between the results calculated by the present Fliigge
shell model and those computed from the Donnell shell
model developedin[39]. Thevaluesof critical buckling
loads corresponding to SWCNTs with different end
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conditions cal culated based upon the MD simulations
and nonlocal continuum theory including the Donnell
and Flugge shell models are tabulated in Table 2. It is
observed that the results generated by the Fliigge shell
model arein closer agreement with the ones computed
viaMD simulations.
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Fig. 3: Critical axial buckling loads from continuum shell
model and MD simulation for (8,8) armchair simply-
supported and clamped-free SWCNTSs.
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Fig. 4: Critical axia buckling loads from continuum
shell model and MD simulations for (8,8) armchair
clamped SWCNTSs.

FromTable 2, at higher values of aspect ratio where
the effect of nonlocality diminishes, the Donnell shell
model tendsto overestimate the critical buckling loads
of nanotubes. Thisrevealsthat inthe buckling analysis
of SWCNTSs, applying the Flugge shell theory increases
the accuracy of the results as compared to the
corresponding Donnell one. From this table, for the
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case of clamped boundary conditions, at lower values
of aspect ratio (i.e. L/d = 6.5,8.3 and 10.1) the
difference between the results of the nonlocal shell
models and those of MD simulations becomes more
pronounced. Furthermore, for al the selected boundary
conditions, the values of nonlocal parameter related to
the Flugge shell model are lower than those of Donnell
shell model.

Example 2: Presented graphically in Fig. 5 is the
critical buckling load of asimply supported SWCNT
versus awide range of its aspect ratio L/R for several
nonlocal parameters. The values of the nonlocal
parameter are assumed.to be varied from g;a =0
(corresponding to theclassical/ local continuum model)
to epz = 2 mm. According to thisfigure, two types of
buckling are readily distinguishable: the shell-like
buckling which is almost independent of nanotube
aspect ratio and-the column-like buckling which is
strongly sensitive to the aspect ratio. For CNTs of
relatively short length for which the shell-like buckling
is dominant, the profound effects of the small length
scaleon thecritical buckling loads of the CNT are seen
from Fig. 5, especially for shorter CNTs and higher
values of nonlocal parameter. As the aspect ratio
increases, the effect of small length scale diminishes
so that the buckling envelopes tend to converge. In
other words, the critical buckling loads of long CNTs
for which the column-like buckling becomes dominant
are insensitive to the effect of the small length scale.
Unlike the classical continuum model, the present
nonlocal shell model is capable of predicting the strong
dependence of the critical buckling loads on nanotube
aspect ratio whether short or long.

Z ¢

= Py cp)

:

0

i 10

2

=} ega=10

_E ———eega = 0.5 nm
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Fig. 5: Effect of the nonlocal parameter on the critical

buckling load for a simply-supported SWCNT (& = 8.5 nm).
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Table 1: Values of m;, 4., and ¢, for SS, CC, FF, CS, CF and FS boundary conditions.

Boundary condition a;(i=1,..4) Am Cm
S8 a;=0a,=0
1 P2
a3 - 0, a4_ - _1 mi 1
a;=1,a,=-1 coshd,, —cosi,,
hi, =1 —_—
az;=1,a,=-1 coshy, coshin sinhd,, —sind,,

al—l,az—_l
24 —1,“4:_1
al—l,az—_l
24 —1,“4:_1

coshd,, —cosi,,
sinhA,, —sind,,

coshA,, —cosi,,
sinhA,, —sind,,
sinhA,, —sind,,
coshd,, +cosi,,

coshd,, —cosi,,
sinhA,, —sind,,

cosd,, coshd, =1

tand,, = tanhd,,

cosd,, coshi,;, = -1

tand,, = tanhi,,

Table 2: Critical buckling loads [nN] of (8,8) armchair SWCNTs with different boundary conditions calculated by the MD
simulations and nonlocal continuum models.

Boundary  Critical buckling load L/d
condition (nN) 6.5 g3 10.1 137 173 20.9 245 28.1 31.6 353 39.1
B2 314797 201078 . 139871 7.6032 43763 29126 20916 17015 13669 11504 09873
PP (epa=0540nm)  30.0646 184015  13.6406  7.7084 40875 3.5284 26400 20801 17056 14235 12160
85
BS (e =0520nm) 309614 199627 . 13.8808  7.7173 48912 33760 24637 18814 14833 11904 09738
BS 074455 . 781883 543710 300112 180081 123350 91807  7.1938 57207 46297 38385
PE(epa=0531nm) 767331 633080 482690 29.6402 197322 140570 104870  8.1307 635266 353180 44230
cc PS (gpa=0512nm) 792345 634812  49.8126 304480  20.1848 142775 105760  8.1541 64708 52183 42829
B2 57819 401430 279077 154001 9.0556 6.1014 45348 36476 28996 23552 19382
PY (epa=0550nm) . 52.067% 369465 266993 1550490  10.0879  7.1075 52872 41140 33087 27133 22757
cs PE (gpa = 547 nm) 520126 360085 265928 153266 98757 68769 50455 38662 30551 24560 20158
B2 73406 49448 3.4483 1.8322 1.0339 0.6760 04990 03807 03236 02814 02416
PE (gpa = 0.722 nim) 7.0698 44885 3.1323 1.8036 1.2087 0.8932 0.7045 05845 035026 04425 03985
CF PE (gpa = 0,680 nm 74101 46235 3.1627 1.7299 1.0885 0.7484 03449 04155 03273 02625 02150
cr 0

aCalculated based on MD simulations
b Calculated based on the Donnell shell model
¢ Calculated based on the Fliigge shell model

Example 3: For the results generated so far, the
nanotube in-plane stiffness Eh has been taken to be 340
Jm2. However, there exist some inconsistencies
concerning this quantity in the literature. The reported
CNT in-planestiffnessislargely scattered, ranging from
300 to 420 Jm? [40]. Figs. 6(a)-6(d) are presented to
investigate the influence of the in-plane stiffness
variation onthe critical buckling loads of a(8,8) armchair
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SWCNT with SS, CC, CSand CF boundary conditions,
respectively. Thisfigure showsthat for all the selected
boundary conditions, the critical buckling loads
calculated via the local shell model are sensitive to
the nanotube in-plane stiffness and also the larger
the in-plane stiffness, the higher the critical buckling
loads. The differenceis more considerablefor shorter
length CNTs. However, regardless of the ambiguity
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that exists in defining nanotube in-plane stiffness, via
calibrating the nonlocal parameter, the present nonlocal
shell modél iscapable of predictingthe MD simulations
results. Table 3 presents the critical buckling loads
corresponding to SWCNTswith simply-supported end
conditionsfor two different val ues of in-plane stiffness.
As can be seen in this table, in contrast to the local
shell model, even in the presence of uncertainty in
defining thein-plane stiffness, the nonlocal shell model
hasthe potential to predict the MD simulationsresults
provided that the nonlocal parameter is appropriately
adjusted.

Example 4: Previous study revealsthat the bending
rigidity of SWCNTs should be regarded as an
independent material parameter not related to the
representative thickness by the classic bending rigidity
formula, i.e. D = ER*/12(1 —+?), and the actual
bending rigidity of SWCNTsislower thanitsclassical
counterpart [41]. Thus, due to the not-well-defined

()
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nanotube bending rigidity, the critical buckling loads
of simply supported and clamped-free SWCNTs with
bending rigidity of and against the ratio aretabulated
in Table 4. It is observed that applying the bending
rigidity of to the local continuum shell model, yields
the dight increase of the critical buckling loads. For
the nonlocal shell model with bendingrigidity of to be
in agreement with the MD simulations results, the
values of the nonlocal parameter are and ,
corresponding to the ssimply supported and clamped-
free SWCNTSs, respectively, which are a little higher
than those corresponding to. SWCNTSs with bending
rigidity of .

The three dimensional buckling mode shapes of a
simply supported SWCNT are plotted in Fig. 7(a-d),
for which the circumferential mode number is
considered to be 5 and axial mode number variesfrom
1to 4. These figures are also accompanied by a cross-
sectional view inthe middle of the SWCNT.

(b)

200
—e— Eh=300J m™
150 ——Eh =340 T m™
100 > Eh=420Tm"
] = MD
50
0

(d)

0 10 20 30 40
L/d

Fig. 6: Influence of the in-plane stiffness on the critical buckling load of a (8,8) armchair SWCNT (e,a=0)
with: (a) simply supported-simply supported, (b) clamped-clamped, (c) clamped-simply supported, (d)
clamped-free boundary conditions.
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Table 3: Critical buckling loads [nN] of (8,8) armchair simply-supported SWCNTSs for different values of in-plane stiffness.

L/d MD Nonlocal shell model Nonlocal shell model
simulations (Eh =300 m™2,eya = 0.451 nm) (Eh =420 ] m™2,e,a = 0.633 nm)
6.5 31.4797 31.1260 30.8971
83 20.1078 20.0376 19.9643
10.1 13.9871 13.9217 13.8974
13.7 7.6032 7.7340 7.7349
17.3 4.3763 4.9001 4.9047
20.9 29126 3.3815 3.3861
24.5 2.0916 2.4675 24715
28.1 1.7015 1.8842 1.8876
31.6 1.3669 1.4853 1.4882
353 1.1504 1.1920 1.1944
39.1 0.9873 0.9771 0.9791

Fig. 7: Buckling mode shapes of asimply-supported SWCNT in the fifth circumferential mode number (R=8.5 nm, L/R=5): (a)
first axial mode, (b) second axial mode, (c) third axial mode, (d) fourth axial mode.

Table 4: Critical buckling loads [nN] of a (8,8) armchair SWCNT with simply supported-simply supported and clamped-free
boundary conditions for different values of bending rigidity.

58 CF
Local shell Local shell Nonlocal shell model MD Local shell Local shell Nonlocal shell MD
L/d model model (ega = 0.5?4) model model model
(eqa=10) (eqa = 0) D Eh? (epa=10) (eqa= 0} (eqn = 0.6?2)
D =085eV i T12-v) D =085V - B p=_ "
D “a—v9 12(1—v?) 12(1—-v?)
6.5 61.0513 61.1756 30.7521 31.4757 192250 15.2588 7.3966 7.3406
83 38.9430 39.0154 19.8525 20,1078 11.9552 11.9755 46167 49448
10.1 26.9300 26.9810 13.8038 13.9871 8.1588 8.1724 3.1566 3.4483
13.7 148932 14.9203 7.6743 7.6032 4.4545 44618 1.7265 18522
173 94172 94341 48639 43763 2.8006 2.8051 1.0863 1.035%
209 6.4918 6.5034 33571 29126 15248 1.5279 0.7469 0.6760
245 4.7341 4.7425 2.4500 20916 1.4011 1.4034 0.5438 0.4990
281 3.6135 36199 1.8709 1.7015 1.0682 1.0699 0.4147 0.3807
316 2.8479 2.8529 1.4750 13669 0.8412 0.8426 0.3266 03236
353 2.2850 22890 1.1837 1.1504 0.6746 0.6756 0.2619 0.2814
39.1 1.8728 1.8761 0.9703 0.9873 0.5526 0.5535 0.2146 0.2416
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CONCLUSON

Based upon the Eringen theory of nonlocd elasticity,
the stability characteristics of SWCNTSs subjected to
the axial load were analyzed. The variational form of
the Fliigge type buckling equations was constructed
to whichthe Rayleigh-Ritz method was applied. Among
the more significant conclusions to be obtained, the
following findings may be summarized from the present
study:

The present theoretical formulation based on the
Fliigge shell theory is simpler and more accurate than
those based on the Donnell shell theory. The classical
continuum model tends to overestimate the critical
buckling loads of small size nanotubes and one must
recourse to the nonlocal version to reduce the relative
error. Asthe small-scale parameter increases, thecritical
buckling loads obtained from the nonlocal shell model
become smaller than those from its local counterpart.
Theeffects of small length scale onthe critical buckling
load are more pronounced for SWCNTSs of relatively
short Iength for which the shell-like buckling is
dominant. However, the critical buckling loads of long
CNTs for which the column-like buckling becomes
dominant areinsensitiveto the effect of the small length
scale. The significance of the small size effects onthe
critical buckling loads of SWCNTs was shown to be
dependent on geometric parameters, boundary
conditionsand material properties of SWCNT. In spite
of the uncertainty that exists in defining nanotube in-
plane stiffness and bending rigidity, by adjusting the
nonlocal parameter, the present nonlocal shell model
was shown to be capable of predicting the MD
simulations results.
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