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ABSTRACT: Thestatic pull-ininstability of beam-type micro-electromechanica systemsistheoretically investigated.
Two engineering casesincluding cantilever and double cantilever micro-beam are considered. Considering the mid-plane
stretching asthe source of the nonlinearity in the beam behavior, anonlinear size-dependent Euler-Bernoulli beam model
isused based on amodified couple stress theory, capable of capturing the size effect. By selectingarange of geometric
parameters such as beam lengths, width, thickness, gaps and size effect, weidentify the static pull-in instability voltage.
Back propagation artificial neural network with three functions have been used for modeling the static pull-in instability
voltageof the micro cantilever beam. The network hasfour inputs of length, width, gap and theratio of height to scale
parameter of the beam as the independent process variables, and the output is static pull-in voltage of microbeam.
Numerical data, employed for training the network and capabilities of the model in predicting the pull-in instability
behavior hasbeen verified. The output obtained from the neural network model iscompared with numerical results, and
the amount of relative error has been calculated. Based on this verification error, it is shown that the back propagation
neural network hasthe average error of 6.36% in predicting pull-in voltage of the cantilever micro-beam.
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INTRODUCTION

Micro-electromechanical systems (MEMS) are
widely being used in today’s technology. So
investigating the problemsreferringto MEMS, ownsa
great importance. One of the significant fields of study
is the stability analysis of the parametrically excited
systems. Parametrically excited micro-
electromechanical devicesare ever increasingly being
used in radio, computer and laser engineering [1].
Parametric excitation occurs in a wide range of
mechanics, due to time dependent excitations,
especially periodic ones, some examples are columns
made of nonlinear elastic material, beams with a
harmonically variable length, parametrically excited
pendulums and so forth. Investigating stability
analysis of parametrically excited MEM systemsis of
great importance. In 1995 Gasparini et al. [2] studied
on the transition between the stability and instability
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of a cantilevered beam exposed to a partially follower
load. Applying voltage difference between an electrode
and ground causes the electrode to deflect towards
the ground. At a critical voltage, which is known as a
pull-in voltage, the electrode becomes unstable and
pulls-in onto the substrate. The pull-in behavior of
M EM S actuators has been studied for over two decades
without considering the casimir force [3-5]. Osterberg
et al. [3, 4] investigated the pull-in parameters of the
beam-type and circular MEMS actuators using the
distributed parameter models. Sadeghian et al. [5]
applied the generalized differential quadrature method
toinvegtigate the pull-in phenomena of micro-switches.
A comprehensive literature review on investigating
MEMS actuators can be found in Ref. [6]. Further
information about modeling pull-ininstability of MEMS
has been presented in Ref. [7, 8]. The classical
continuum mechanics theories are not capable of
prediction and explanation of the size-dependent
behaviorswhich occur in micron- and sub-micron-scale
structures. However, some non-classical continuum
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theories such as higher-order gradient theories and
the couple stress theory have been developed such
that they are acceptably able to interpret the size-
dependencies. In the 1960s, some researchers such as
Koiter [9], Mindlin[10] and Toupin[11] introduced the
couple stress elagticity theory as a non-classic theory
capableto predict the size effects with the appearance
of two higher-order material constants in the
corresponding constitutive equations. In this theory,
beside the classical stress components acting on
elements of materials, the couple stress components,
as higher-order stresses, are also available which tend
to rotate the el ements. Utilizing the couple stresstheory,
some researchers investigated the size effectsin some
problems[12].Employing the equilibrium equation of
moments of couples beside the classical equilibrium
equations of forcesand moments of forces, amodified
couple stresstheory introduced by Yang, Chong, Lam,
and Tong [13], with one higher-order material constant
in the constitutive equations. Recently, size-dependent
nonlinear Euler—Bernoulli and Timoshenko beams
modeled on the basis of the modified couple stress
theory have been developed by Xiaet al. [14], and
Asghari et al. [15], respectively. Rong et al. [ 16] present
an analytical method for pull-in analysis of clamped—
clamped multilayer beam. Their method is Rayleigh-
Ritz method and assumes one deflection shape
function. They derive the two governing equations by
enforcing the pull-in conditions that ‘the first and
second order derivatives of the system energy
functional are zero. In their model, the pull-involtage
and displacement are coupled-in the two governing
equations.

This paper investigates the pull-in instability of
micro-beamswith a curved ground electrode under the
action of electric field force within the framework of
von-Karman nonlinearity and the Euler—Bernoulli beam
theory. The static pull-in voltageinstability of clamped-
clamped and cantilever micro-beam are obtained by
using MAPLE commercial software. The effects of
geometric parameters such as beam lengths, width,
thickness, gaps and size effect are discussed in detail
through anumerical study. The objective of this paper
is to establish a neural network model for estimating
the pull-ininstability voltage of cantilever beams. More
specifically, back propagation neural network is used
to construct the pull-in instability voltage. Effective
parametersinfluencing pull-in voltage and their levels
of training were selected through preliminary
calculations carried out on instability pull-in voltage
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of micro-beam. The network trained by the same
numerical data are then verified by some numerical
calculations different from those used in the training
phase, and the best model was selected based on the
criterion of having the least average values of
verification errors. To the authors’ best knowledge, no
previous studies which cover all these issues are
available. Tothe authors’ best knowledge, no previous
studies which cover all these issues are available.

EXPERIMENTAL
Preliminaries
In the modified couple stress theory, the strain

energy density 7 of alinear elasticisotropic material
ininfinitesimal deformationiswritten as[17]:

1 .
U= E(Gijgij +myy;) (] =12,3) @
Where
O = A& 0 + 2uey 2
1
&jj ZE((VU)U + (VU)I) 3
m; = 2 ZHX,ij 4)
1
Xij :E((ve)ij + (VG)D (5)
In  whichoy, g; ,mM;and); denote  the

components of the symmetric part of stresstensor g,
the strain tensor g, the deviatoric part of the couple
stresstensor M and the symmetric part of the curvature
tensor %, respectively. Also, u and@are the
displacement vector and the rotation vector. The two
Lame constantsand the material length scale parameter
arerepresented by )., L and| , respectively. The Lame
constants are written in terms of the Young’s modulus
E and the Poisson’s ratio v as
A=VvE/Q1+Vv)1-2v)and p=E/2(1+V).
The components of the infinitesimal rotation vector
0, relateto the components of the displacement vector
field U, as[18]:

> (eurl (), ©

For an Euler—Bernoulli beam, the di splacement field
can be expressed as:

OW(X,t)
0

6,

u, =u(xt)—z , U, =0, u, =w(xt)

)
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Where uisthe axial displacement of the centroid of
sections, and w denotes the lateral deflection of the

beam. The parameter ow/ Ox stands in the angle of

rotation (about the y-axis) of the beam cross-sections.
Assuming the above displacement field, after
deformation, the cross sections remain plane and
always perpendicular to the center line, without any
change in their shapes. It is noted that parameter z
represents the distance of a point on the section with
respect the axisparallel to y-direction passing through
the centroid.

Governing Equation of Motion

In this section, the governing equation and
corresponding classical and non-classical boundary
conditions of a nonlinear microbeam modeled on the
basis of the couple stress theory are derived. The
coordinate system and loading of an Euler—Bernoulli
beam has been depicted in Fig. 1. In thisfigure, F(x,t)
and G(x,t) refer to the intensity of the transverse
distributed force and the axial body force, respectively,
both as force per unit length.

WaZ

x U

Fig'. 1: An Euler—Bernoulli, Idadi ng and coordinate system.

By assuming small slopes in the beam after
deformation, the axial strain, i.e. the ratio of the
elongation of amaterial lineelement initially inthe axia
direction of its initial length, can be approximately
expressed by the von-Karman strain as:

10w, ou _o*w 1,0w,,
+2(6x) ox Zax2+2(6x) ®)

ou,
E =
OX
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Itisnoted that finite deflection w is permissible and
only itisneeded that the dopesbevery small. Heresfter,
we use Eq. (8) for the axial strain, instead of the
infinitesimal definition presentedin Eq. (3). Substitution
of Egs. (7) and (8) into (3)—(5) yields the non-zero
components.

Also, combination of Egs. (6) and (7) gives[19]:

g —_w
OX

,0,=0,=0 9)
Substitution of Eq. (9) into (5) yields the following
expression for the only non-zero components of the
symmetric curvature tensor:

10%°w

Xxy:%yx:_z ox2 (10)

It is assumed that the components of strains,
rotations and their gradients are sufficiently small. By
negl ecting the Poisson’s effect, the substitution of Eq.
(8) into Eq. (2) givesthefollowing expressionsfor the
main.components of the symmetric part of the stress
tensor in terms of the kinematic parameters:

2,
o, =Ee, = E(@ - za—\gv+1(a\—N)2), al other 5; =0
OX oX° 2 0OX
(11)

Where E denotes the elastic modulus. In order to
write the non-zero components of the deviatoric part
of the couple stress tensor in terms of the kinematic
parameters, one can substitute Eq. (10) into Eq. (4) to
get:

m,, = —ul? 0w
Xy u axZ
Wherel and | are shear modulus and the material

length scale parameter, respectively. To obtain the
governing equations, the kinetic energy of thebeam T,
the beam strain energy due to bending and the change
of the stretch with respect to the initial
configurationU , and theincrease in the stored energy
with respect to the initial configuration due to the
existence of initially axial load U, and finally the total
potential energy U = U, +U, ae considered as
follows:

(12)

1% ou oW, oW,
T== = 72— 4 ()2 dAd
2-£-/[p{(8t Zatax) +(8t)} X
(139)
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(
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Where N, , | and p aretheaxial load, areamoment
of inertia of the section about y— axis and the mass
density, respectively. The work done by the external
loads acting on the beam is also expressed as:

L L
W = IF(x,z)awdeG(x,t)&udx
0 0

+(N du)|*=k +(V 5w) (13c)

x=L
x=0

ot 52
ox

1w
2 Ox

A ou o A W,
+(P"S(—+ )i +(Q" ()%
Ox Ox

Where N and \/ represent the resultant axial and
transverse forces in a section caused by the classical
stress components acting on the section. The resultant
axial and transverse forcesarework conjugate to u and
w, respectively. Also, phand Qharethe higher-order
resultantsin a section, caused by higher-order stresses
acting on the section. These two higher-order
resultants are work conjugate to
£, =0ulox+1/2(6w/ox)* and §?w/ax2 s
respectively. The parameter |\ istheresultant moment
in a section caused by the classical and higher-order
stress components. Now, the Hamilton ‘principle can
be applied to determine the governing equation:

t
j(ST ~8U +8W)dt =0

ty

(14)

Where § denotesthe variation symbol. By applying
Egs. (13) and (14), the governing equilibrium micro
beam isderived as:

o*w o*w 0w
S -N +pA =F(x,t 15
ot Noe TPAGE “Fxb a9
Where
EA [ ow.,
N = NO + I.([(a—x) dX (16)
S=El +pAl? (17)

If in EQ. (15), N=0, then the model the of beam is
called the linear equation (linear model) without the
effect of geometric nonlinearity. The cross sectional
areaand length of beam are A and L respectively. F(x,t)
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is the electrostatic force per unit length of the beam.

The electrostatic force enhanced with first order
fringing correction can be presented in the following
equation [20]:

2
Fdec (th) = 2808V

2BV 111 0.65(9= W)
(9-w)° B

(18)

Where ¢, =8.854x10"C?N™'m? is the
permittivity 0? vacuum, V is the applied voltage, g is
the initial gap between the movable and the ground
electrode and B isthe width of the beam. For clamped-
clamped beam, the boundary conditions at the ends
are;

o dwO) _oawL) _
W) =0, = ==0 W(L)=0, — ==0 (19)

For cantilever beam, the boundary conditionsat the
ends are:

dPw(L)
dx?

diw(l)
dx®

0 (20

_o 9O _
w(0).= 0, 2

0; 0,

Table 1 shows the geometrical parameters and
meaterial properties of micro-beam.

Table 1: Geometrical parameters and material properties
of micro-beam

p'\:lo?)t:rﬁtiis Geometri cal dimensions
E(GPa) v L(um B(um  h(um) g (um)
77 0.33  100-500  05-50  0.5-4 0-30
. 0 0 d
In the static case, wehave — =0 and— = —.
ot ox  dx
Hence, Eq. (15) isreduced to:
d*w EA § dw d2w
El + uAl? — [N, + — | (=) %dx =
(Bl + pAl *) = [N, 2L-£(dx) 1
2
= L\/z[l+ 0.65 M]
2(g —w) B

)

A uniform micro-beam has a rectangular cross
section with height h and width B, subjected to agiven
electrostatic force per unit length. Let us consider the
following dimensionless parameters:

2
o = AL B sOBV3 *0.65g—, s =
21 29 E B
2 2
1Al ’Wzﬂ,;(-:i,r—NoL
El g L El
(22
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In the above equations, the non-dimensional
parameter, 8 isdefined the size effect parameter. Also,
B isnon-dimensional voltage parameter. The normalized
nonlinear governing equation of motion of the beam
can bewritten as[21]:

4 ~ 2~
g WMyzqryd W__F 1
dx dx dx 1-w) 1-w)

23

1+95)

7{F+a.1[(

Artificial neural networks

Artificial NNsare non-linear mapping systemswith
a structure loosely based on principles observed in
biological nervous systems. Ingreatly simplified terms
as can be seen from Fig. 2, atypical real neuron hasa
branching dendritic treethat collects signalsfrom many
other neurons in a limited area; a cell body that
integrates collected signals and generates a response
signal (aswell as manages metabolic functions); and a
long branching axon that distributes the response
through contacts with dendritic trees of many other
neurons. The response of each neuron is arelatively
simple non-linear function of itsinputs and is largely
determined by the strengths of the connections from
its inputs. In spite of the relative simplicity of the
individual units, systemscontaining many neurons can
generate complex and interesting behaviours[22].

Fig. 2: A biological nervous systems.

An ANN shown in Fig. 3is very loosely based on
these ideas. In the most general terms, a NN consists
of large number of simple processors linked by
weighted connections. By analogy, the processing
nodes may be called neurons. Each node output
depends only on information that is locally available
at the node, either stored internally or arriving viathe
weighted connections. Each unit receives inputs from
many other nodes and transmitsits output to yet other
nodes. By itself, a single processing element is not
very powerful; it generatesascalar output withasingle
numerical value, which isasimple non-linear function
of its inputs. The power of the system emerges from
the combination of many unitsin an appropriate way.
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O : Non-linear neuron

> : Feedforward connection

Fig. 3: A layered feed-forward artificial NN.

: Linear neuron

A network is-specialized to implement different
functions by varying the connection topology and the
values of the connecting weights. Complex functions
can be implemented by connecting units together with
appropriate weights. In fact, it has been shown that a
sufficiently large network with an appropriate structure
and property chosen weights can approximate with
arbitrary accuracy any function satisfying certain broad
constraints. Usually, the processing units have
responseslike (see Fig. 4).

Uy lf’—. Wi /
< N
oy

summaticn
wo= 30wy
In

Fig. 4: an artificial neuron model.

y= f(zui) (24)

Where, U, are the output signals of hidden layer to
the output layer, f (U;) isasimplenon-linear function
such as the sigmoid, or logistic function. This unit
computes a weighted linear combination of its inputs
and passes this through the non-linearity to produce a
scalar output.

Ingeneral, itisabounded non-decreasing non-linear
function; the logistic function is a common choice.
This model is, of course, a drastically simplified
approximation of real nervous systems. The intent is
to capture the mgjor characteristics important in the
information processing functions of real networks
without varying too much about physical constraints
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imposed by biology. Theimpressive advantagesof NNs
are the capability of solving highly non-linear and
complex problems and the efficiency of processing
imprecise and noisy data. Mainly, there are three types
of training condition for NNs; namely supervised
training, graded training and self-organization training.
Supervised training, which is adopted in this study, can
be applied as:

(1) First, the dataset of the system, including input and
output values, is established;

(2) The dataset is normalized according to the algorithm;
(3) Then, the algorithm is run;

(4) Findly, the desired output values corresponding to
the input used in test phase [23].

Back propagation neural network

Back propagation neural network (BPN), devel oped
by Rumelhart [24], isthe most prevalent of the supervised
learning modelsof ANN. BPN used the gradient steepest
descent method to correct the weight of the
interconnectivity neuron. BPN easily solved the
interaction of processing elements by adding hidden
layers. Inthelearning process BPN, theinterconnective
the weights are adjusted using an error convergence
technique to obtain a desired output for a given input.
Ingeneral, theerror at theoutput layer inthe BPN model
propagates backward to the input layer through the
hidden layer in the network to obtain the final desired
output. The gradient descent method is utilized to
calculate the weight of the network and adjusts the
weight of interconnectivesto minimize the output error.
The formulas used in this algorithmare as follows:
1) Hidden layer calculation results:

net, = 2 xw, (25)

Yi = f(neti) (26)
Where X; and W are input data and weights of the

input data, respectively. f is activation function,

and Y, is the result obtained from hidden layer.

2) Output layer calculation results:

net, =2 YiWii (27)
o, = f(net,) (28)

Where W;, aretheweights of output layers, and O,
is result obtained from output layer.

3) Activationfunctions used inlayersarelogsig, tansig
and linear:

f (net,) =

17e=  (ogsig) (29)
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f(net,) = i‘% (tansig) (30)
f (net,) = net, (linear) (31)
(4) Errors made at the end of one cycle:

g =(t -9)o(1-q) (32)
e =Yy, d-Yy )zekvvij (33)

Where t, isresult expected fromoutput layer, €, is
an error occurred at output layer, and € isthe error
occurred at hidden layer.

5 Weights can be changed using these calculated
error values according to Egs. (34) and (35).

W, =W, +o&Y, + BAW]-k (34)

(35

WhereW; are the weights of the output layer.
AW, and AW are correction made in weights at
the previous calculation. ¢, islearning ratio, and 3
is momentum term, that is used to adjust the weights.
In thispaper, ¢ = 0.9 and f =0.9, are used.

2) Square error, occurred in one cycle, can be found
by Eq. (36).

e=Y05L -o/ (36)

The completion of training the BPN, relative error
(RE) for each dataand meanrelative error (MRE) for
all datais calculated according to Egs. (37) and (38),
respectively.

RE - (100 (ttk - ok)J

W =W, + 06X +PAW,

(37)

MRE — 12[100(tk —ok)j -

n i=1 tk
Where nisthe number of data[25].

RESULTSAND DISCUSSION
Static pull-in instability analysis

When the applied voltage between the two
electrodes increases beyond a critical value, the
electric field force cannot be balanced by the elastic
restoring force of the movable electrode and the
system collapses onto the ground electrode. The
voltage and deflection at this state are known as the
pull-in voltage and pull-in deflection, which are of
utmost importance in the design of MEMS devices.
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The pull-involtage of cantilever and fixed-fixed beams
isanimportant variablefor analysisand design of micro-
switches and other micro-devices. Typically, the pull-
in voltage is a function of geometry variable such as
length, width, and thickness of the beam and the gap
between the beam and the ground plane. To study the
instability of the nano-actuator, Eq. (23) is solved
numerically and simulated. To highlight the differences
between linear and nonlinear geometry model results
of Euler-Bernoulli micro beam, wefirst comparethe pull-
involtagefor afixed-fixed and cantilever beamswith a
length of 100 uM , awidth of 50, a thickness of 1 and
two gap lengths. For asmall gap length of 0.5 (shown
inFig. 5), we observethat linear and nonlinear geometry
model givesidentical results.

However, for alarge gap length of 2 um (shownin
Fig. 6), we observethat pull-in voltage for fixed-fixed
beamissignificantly different.

As shown in Fig. 7, the difference in the pull-in
voltage is even larger when a gap length of 4.5umis
congdered. InFigs. 8, 9 and 10, pull-involtage of fixed-
free beams are shown. It is evident that pull-in voltage

0.5

of fixed-fixed beamislarger than fixed-free beam. More
extensive studies for the cantilever beam with lengths
varying from 100 to 500 and thicknesses varying from
1 to 4are shown in Figs. 11 and 12. The gap lengths
used vary from 5 to 30. For gaps smaller than 15 and
lengths larger than 350, we observe that the pull-in
voltage obtained with linear and nonlinear geometry
model arevery close. However, for large gaps (such as
the 15 case) and for short beams (such asthe 100 case),
we observe that the difference in the pull-in voltage
obtained with linear and nonlinear geometry model is
not negligible. In Figs. 13-14, we investigate the fixed-
fixed beam example with lengths varying from 100 to
500 and thickness varying from 0.5 to 2. We observe
that, for al cases, the pull-involtage obtained with linear
model arein sgnificant error (larger than 5.5%) compared
to the pull-in voltages obtained with nonlinear geometry
model. When the gap increase, the error in the pull-in
voltage with linear model increase significantly.
Furthermore, contrary to the case of cantilever beams,
the thickness has a significant effect on the error in the
pull-involtages.

0.45

0.4

~ 035
0.3
0.25
0.2
0.15
0.1
0.05
0

gap (microm

linear
—a&— nonlinear

0 0.2 0.4 0.6

pull-in voltage (V)

0.8 A 1.2

Fig. 5: Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a gap 0.5 (M,

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

gap (micro m)

—e—linear

—&— nonlinear

0 2 4 6

8 10 12

pull-in voltage (V)
Fig. 6: Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a gap 2 (M.
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4.5 =

e —a— linear

9 —a&— NONlinear

gap (rricro m)

0 5 10 15 20 25 30 35 40 45
pull-in voltage (V)
Fig. 7: Comparison of linear and nonlinear geometry model results for a fixed-fixed beam with a'gap 4.5 M.
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_ 035 —~=
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* .

1 —a— nonlinear
|

T

I

0 0.02 0.04 0.08 0.08 0.1 0.12 0.14 0.16 0.18

pulk-in voltage (V)
Fig. 8: Comparison of linear .and nonlinear geometry model results for a fixed-free beam with a gap 0.5 LM .
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Fig. 9: Comparison of linear and nonlinear geometry model results for a fixed-free beam with a gap 2 11,

—e— linear

gap (micro m)
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4.5 =

4 4 S,

3.5 A

.

_‘r_
N . —»—linear
h —&— nonlinear

gap (micro mj

pulk-in voltage (V)
Fig. 10: Comparison of linear and nonlinear geometry model results for a fixed-free beam with a gap 4.5 4M.

s

—— 1 =100 micro m(noniinear)
—&— =300 micro m (noniinear)

L=500 micro m(noniinear)

pull-in voltage (V)

gap (micro m
Fig. 11: Gap vs. pull-in voltage for cantilever beams with a thickness of 1 4T . For length=100 (M, the difference in pull-in

voltage between linear and nonlinear geometry model is significant when the gap is larger than 15 (M. For a length larger
than 350 MM, the pull-in voltages obtained with linear and nonlinear geometry model are identical.

60 - ol s

50 4

Fey
o

—+— L=100 micro m (nonlinear)

—&— L=300 micro m (nonfinear)

L=500 micro m (nonlinear)

20 4

pull-in voltage (V)
L]
o

gap (micro m)
Fig. 12: Gap vs. pull-in voltage for cantilever beams with a thickness of 4 AT . For length=100 £M, the difference in pull-in
voltage between linear and nonlinear geometry model is significant when the gap is larger than 15 4N . For a length larger
than 350 (M, the pull-in voltages obtained with linear and nonlinear geometry model are identical.
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pull-in voltage (V)

—— L=100 micro m (nonlinear)
—&—L=100 micro m (linear)
L=300 micro m {noniinear)

L=500 mic ro m (noninear)

(

(
- —#— L=300 mic ro m (linear)
—&— 1 =500 mic ro m (linear)

gap (micro m)

Fig. 13: Gap vs. pull-in voltage for fixed-fixed beams with a thickness of 0.5 £, Observe the large difference in pull-in
voltage obtained from linear and nonlinear geometry model of beam.

pull-in veltage (V)

——L=100 micro m (noninear)
QR — & L=100 micro m (lnear)
L=300 micro m (nonlinear)
L=300 micro m (linear)
—#— L=500 micro m (noninear)
—e— L=500 micro m (linear)

hv]
w
&
T
(=]
-

gap (miero m)

Fig. 14: Gap vs. pull-in voltage for fixed-fixed beams with a thickness of 2 £,

The thinner the beam; the larger the error. Another
observationisthat the length of the beamhaslittle effect
on the error in the pull-in' voltage. This observation is
also different from the case of cantilever beams. From
the results, it is clear the linear model is generally not
valid for the fixed-fixed beams case, except when the
gap isvery small, such asthe 0.5 case as shown in Fig.
5. These figures represent that the size effect increases
the pull-in voltage of the nano-actuators. Fig. 15 shows
thepull-in voltagevs. size effect for thefixed-fixed beam
with gap 2.5.

Modeling of Static Pull-in I nstability Voltage of Cantilever
Beam Using Back Propagation Neural Network
Modeling of pull-ininstability of micro-beam with
BP neural network iscomposed of two stages: training
and testing of the networks with numerical data. The
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training data consisted of values for beam length (L),
gap (g), width of beam (b) and (h/l), and the
corresponding static pull-in instability voltage (Vp, ).
total 120 such data sets were used, of which 110 were
selected randomly and used for training purposeswhilst
theremaining 10 data setswere presented to the trained
networks as new application data for verification
(testing) purposes. Thus, the networkswere evaluated
using datathat had not been used for training. Training/
Testing pattern vectors are formed, each formed with
an input condition vector, and the corresponding target
vector. Mapping eachtermto avalue between -1 and 1
using thefollowing linear mapping formula:

N = (R_ Rmin)*(Nmax — Nmin) + Nmin
(Rmax - Rmin)

(39)
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where, N : normalized value of the rea variable;
Npin =-1 and N, =1: minimum and maximum
values of normalization, respectively; R: real value of
thevariable; R ;, and R, : minimumand maximum
values of the real variable, respectively. These
normalized data were used as the inputs and output to
train the ANN. In other words, the network has four
inputs of beam length (L), gap (g), width of beam (b)
and (h/1) ratio and one output of static pull-in voltage
(Vg ). Fig. 16 showsthe general network topology for
modeling the process. Table 2 shows 10 numerical data
sets, have been used for verifying or testing network
capabilitiesin modeling the process.

Therefore, the general network structureis supposed
tobe4-n-1, whichimplies 4 neuronsintheinput layer,
n neurons in the hidden layer, and 1 neuron in the
output layer. Then, by varying the number of hidden
neurons, different network configurations are trained,
and their performances are checked. For training
problem, equal learning rate and momentum constant
of 7=a =0.9 were used [25]. Also, error stopping
criterion was set at E=0.01, which means training
epochs continued until the mean square error fell
beneath this value.

BP Neural Network Model

The size of hidden layer(s) is one of the most
important considerationswhen solving actua problems
using multi-layer feed-forward network. However, it has
been shown that BP neural network with one hidden

non-dimensional voltage

layer can uniformly approximate any continuous
function to any desired degree of accuracy given an
adequate number of neurons in the hidden layer and
the correct interconnection weights[26]. Therefore, one
hidden |ayer wasadopted for the BPmodel. To determin
the number of neuronsin the hidden layer, aprocedure
of trail and error approach needs to be done. As such,
attempts have been made to study the network
performance with adifferent number of hidden neurons.
Hence, anumber of candidate networksare constructed,
each of trained separately, and the “best” network were
selected based on the accuracy of the predictions in
the testing phase. It should be noted that if the number
of hidden neuronsistoo large, the ANN might be over-
trained giving spurious values in the testing phase. If
too few neurons.are selected, the function mapping
might not be accomplished dueto under-training. Three
functions, namely newelm, newff and newcf [27] have
been used for creating of BP networks. Then, by
varying the number of hidden neurons, different
network configurations are trained, and their
performances are checked. The results are shown in
Table 3. Both the required iteration numbers and
mapping performances were examined for these
networks. As the error criterion for all networks was
the same, their performances are comparable. As a
result, from Table 3, the best network structure of BP
model is picked to have 8 neuronsin the hidden layer
with the average verification errors of 6.36% in
predictingVp, by newelm function.

—a— linear

4— Nonlnear

0 : T . . :
0 0.05 0.1 0.15 0.2 0.25

size effect

T T T 1

0.3 0.35 04 0.45 0.5

Fig. 15: Pull-in voltage vs. size effect for fixed-fixed beam with gap 2.5 4T, a thickness of 1 (M, length 300 4M and
width 0.5 4M, for nonlinear geometry model.
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Hidden laver

Input layer

Fig. 16: General ANN topology.

Table 2: Beam geometry and pull-in voltage for
verification analysis.

Test L b hil [s} Vp
No.  (um) (um) (um) (volt)
1 75 0.5 4 0.5 0.179
2 100 5 6 1 2.44
3 125 10 8 1.5 7.31
4 150 20 10 2 16.82
5 175 25 12 2.5 26.78
6 200 30 14 3 40.27
7 225 35 16 3.5 53.84
8 250 40 18 4 68.01
9 275 45 20 4.5 84.53
10 300 50 22 5 103.62

Table 3: The effects of different number of hidden neurons on the BP network performance.

Eigagg Epoch Average error in Vp; (%) Averageerror in Vp; (%) Averageerror in Vp; (%)
neurons with newel m function with newcf function with newfffunction

4 18914 12.31 10.27 12.30

5 4970 14.38 18.38 20.19

6 1783 8.19 11.65 12.75

7 3984 9.72 9.39 1117

8 1884 6.36 8.28 10.14

9 2770 13.39 11.86 19.98

10 2683 11.67 16.40 1548

Table 4 shows the comparison of calculated and
predicted valuesfor static pull-involtagein verification
cases. After 1884 epochs, the M SE between the desired
and actual outputs becomes less than 0.01. At the
beginning of the training, the output from the network
isfar fromthetarget value. However, the output slowly
and gradually convergesto the target value with more

epochs and the network learnsthe input/output relation
of thetraining samples. Fig. 17 showsthepull-in voltage
evaluated by the modified couple stress theory respect
to length of the beam and with h/l = 4, g=1.05 M,
b=50 M and h=2.94 . The pull-in voltage of the
micro-cantilever versus parameter h/l for b/g=50 is
depicted in Fig. 18, with three BP functions.

Table 4: Comparison of VP| calculated and predicted by the BP neural network model with three functions.

Test Vp, (volt) Vp (olt) Vp (volt)
No. BP modd Error BP modd Error BPmodd Error
Calculaed (newelm) (%) Caloul aed (newf) ) Cd aulated (newd) %)

1 0.179 0.190 6.56 0.179 0.191 7.12 0179 0.193 8.29
2 2.44 2.61 7.28 2.44 252 3.39 2.44 2.59 6.28
3 7.31 7.32 0.16 7.31 754 3.16 7.31 7.70 5.39
4 16.82 19.21 14.24 16.82 18.29 8.75 16.82 19.21 14.24
5 26.78 28.22 5.39 26.78 28.16 5.19 26.78 28.76 7.41
6 40.27 42.17 4,74 40.27 46.03 14.31 40.27 43.99 9.25
7 53.84 57.13 6.12 53.84 57.49 6.79 53.84 57.96 7.67
8 68.01 71.60 5.29 68.01 78.39 15.27 68.01 82.14 20.78
9 84.53 89.39 5.76 84.53 86.71 2.59 84.53 92.51 9.45
10 103.62 112.03 8.12 103.62 120.53 16.32 103.62 116.74 12.67
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Fig. 18: Comparing of pull-in voltage of the micro-cantilever versus parameter h/l and b/g=50 with BP models.

CONCLUSION

The primary contributions of the paper are
summarized as follows.. The BP neura network is
capable of constructing model using only numerical
data, describing the static pull-in instability behavior.
The resultsshow that newel mfunctionismore accurate
than newff and newcf functions. Also the Levenberg-
Marquardt training is faster than other training
methods. For cantilever beams, length has a significant
effect on the error in pull-in voltages, while for fixed-
fixed beams, the length haslittle effect onthe error. On
the other hand, for fixed-fixed beams, thickness has
significant effect on the error in pull-in voltage, while
for cantilever beamsit haslittle effect. The static pull-
in instability voltage of clamped-clamped and
cantilever beam are compared. For both clamped-
clamped and cantilever beams, the pull-in voltage in
nonlinear geometry beam model is bigger than linear
model. For both fixed-fixed and cantilever beams by
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increasing of gap length, the pull-in voltage is
significantly increased. For both fixed-fixed and
cantilever beams by increasing of thickness of beams,
the pull-in voltage is significantly increased. For both
fixed-fixed and cantilever beams by increasing of
length of beams, the pull-in voltage is significantly
decreased. By using modified couple stress theory, it
is found that the dimensionless pull-in voltage of
MEMS increases linearly due to the size effect. This
emphasi zesthe importance of size effect consideration
in design and analysis of MEMS. When the ratio of
h/l increases, the pull-in voltage predicted by modified
couple stress theory and ANN is constant
approximately. The conclusion above indicates that
the geometry of the beam has significant influences
on the electro-static characteristics of micro-beams
that can be designed to tailor for the desired
performancein different MEM S applications.
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