Int. J. Nano Dimens., 7(3): 201-207, Summer 2016

ORIGINAL RESEARCH PAPER

$[Co(NH₃)₅(NO₃)](NO₃)₂$ as an energetic coordination precursor for the preparation of Co₃O₄ nanoparticles at low temperature

Saeed Farhadi; Gholamali Nadri; Masoumeh Javanmard*

Department of Chemistry, Lorestan University, Khoramabad 68135-465, Iran

Received 28 January 2016; revised 27 April 2016; accepted 02 June 2016; available online 03 July 2016

Abstract

In this paper, an energetic coordination compound namely pentamminenitratocobalt(III) nitrate, [Co(N- H_3 ₅(NO₃)](NO₃)₂ was used as a new precursor for the preparation of Co₃O₄ nanoparticles. The results showed that the complex is easily decomposed into the Co_3O_4 nanoparticles at low temperature (200 °C) without employing a surfactant or solvent and any complicated equipment. The product was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Optical and magnetic properties of the product were studied by UV-visible (UV-vis) spectroscopy and a vibrating sample magnetometer (VSM), respectively. FT-IR, XRD and EDS analyses con rmed the for-
mation of highly pure spinel-type Co₂O₄ phase with cubic structure. TEM images showed that the Co₂O₄ nanoparticles are approximately in the range of 10 to 24 nm with a mean size of around 17 nm. The optical spectrum of the Co₃O₄ nanoparticles revealed the presence of two band gaps at 3.45 and 2.20 eV which are blue-shifted relative to reported values for the bulk sample. The magnetic measurement of the product showed a weak ferromagnetic order at room temperature. **Artact**
 Archive parameteric coordination compound namely pentamminentiratocobalt(III) nimtae,
 $I_s(NO_s)(NO_s)$, was used as a new precursor for the preparation of Co,O, nanoparticles. The

hout employing a surfactant or s

Keywords: *Co3O⁴ nanoparticles; Energetic complexes; Ferromagnetic order; Pentamminecobalt(III) complex; Thermolysis method; Transition metal oxides.*

How to cite this article

Farhadi S, Nadri Gh, Javanmard M. [Co(NH₃)_s(NO₃)](NO₃)_z as an energetic coordination precursor for the preparation of CoO nanoparticles at low temperature. Int. J. Nano Dimens., 2016.; 7(3): 201-207., DOI: 10.7508/ijnd.2016.03.03.

INTERODUCTION

* Corresponding Author Email:*sfarhadi1348@yahoo.com* Nanostructured metal oxides have at racted great interest in recent years not only for their unique physical and chemical propert es that significantly differ from those of corresponding bulk materials but also for wide range of their applicat ons [1]. Among these oxides, spinel-type cobalt oxide (Co_2O_1) , as a p-type semiconductor, has potent al applicat ons in gas sensors, heterogeneous catalysts, electrochemical devices, Li-ion bat eries, magnet c materials and photocatalysts [2-11]. In recent years, the increasing interest has been focused on the synthesis of $Co₃O₄$ nanostructures with unique sizes and specific shapes because of the influences of part cle size on their propert es and applicat ons. Various wet-chemical methods such as hydro-/solvothermal method, combust on method, microwave heat ng, sol-gel process, spray pyrolysis, sonochemical method, coprecipitat on, ionic liquid-assisted method, polyol

method and a non-aqueous route have been reported to synthesize $Co₃O₄$ nanostructures [12-37]. Nevertheless, most of these methods involve complex processes, high calcinat on temperatures, and expensive and toxic precursors. In addit on to these, they are either t me consuming or require expensive instruments.

Over the past several years, the use of transit on metal coordinat on compounds as precursors to prepare metal oxide nanostructures has received much at ent on. This simple method offers several unique advantages and significant merits over other methods, including easy workup, short react on t me, and the preparat on of various inorganic nanomaterials with unique sizes, specific shapes and with narrow size distribut on. Several coordinat on compounds have been used to synthesize Co₃O₄ nanostructures [38-43]. Recently, we have found that easily degradable and energet c coordinat on compounds composed of reducible

ligands and oxidizing anions such as $[Ni(NH_3)_6]$ [$\mathsf{(NO_3)}_2$, $\mathsf{[Co(NH_3)_5(CO_3)](NO_3)_2}$, $\mathsf{[Co(NH_3)_6] (NO_3)_3}$ can be appropriate precursors to synthesize the metal oxides nanostructures at low temperature [44-46].

In the present work, we wish to report on the direct thermolysis of a well-known energet c pentamminecobalt(III) complex, $[CO(NH_3)_5(NO_3)]$ a $(NO₃)₂$ whi (NO₃)₂ which has been resulted in Co₃O₄ nanopart cles at low temperature (200°C). The result ng product was characterized by different al scanning calorimetry (DSC), X-ray diffract on (XRD), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), UVvisible spectroscopy, and magnet c measurement. The method is a fast, energy-efficient and environmentally friendly route to produce Co_3O_4 nanopart cles in only one step.

EXPERIMENTAL

Materials and characteriza on techniques

All materials were purchased from Merck Company with high purity. The precursor complex, $[CO(NH_3)_5(NO_3)](NO_3)_2$ was synthesized betw according to the literature method [47]. The thermal behavior of the precursor complex was studied using a Netzsch STA 409 DSC analyser at a heat ng rate of 5°C min⁻¹ in air. The composit on and phase purity of the Co_3O_4 nanopart cles of were characterized by a Rigaku D/max C III X-ray diffractometer using Ni-filtered Cu Ka radiat on (λ $= 1.5406$ Å). XRD pat erns were recorded in the 2θ range of 10°–80° with a scanning step of 0.04°. To invest gate chemical bonding of the products, infrared spectra were recorded on the diluted samples in KBr pellets using a Schimadzu 160 FT– IR spectrophotometer in the region 4000–400 cm- ¹. The opt cal absorpt on spectrum was recorded on a Shimadzu 1650PC UV–vis spectrophotometer in the 200–700 nm wavelength range at room 3.0 temperature. The samples for UV-vis studies were well dispersed in distiled water by sonication for 30 min to form a homogeneous suspension. Part cle sizes were determined with a Zeiss EM900
transmission electron microscope operat ng at 50
kV and equipped with an energy dispersive X-ray
spectroscopy. The TEM sample was prepared by transmission electron microscope operat ng at 50 kV and equipped with an energy dispersive X-ray spectroscopy. The TEM sample was prepared by dispersing the powder in ethanol by ultrasonic vibrat on. The magnet c propert es of $Co₃O₄$ nanopart cles were measured using a vibrat ng sample magnetometer (VSM, Iran Meghnat s Daghigh Kavir Company). *Archive Stray specifies* Computer Co(NH₁), (htm and behavior and behavior professor, in the thermal behavior of SID
 Archive distanting terma are the control of the control of the control of the control of the control

Preparat on of Co₃O₄</sub> nanopart cles

In order to prepare $Co_{3}O_{4}$ nanopart cles, an appropriate amount of the energet c $[Co(NH₃)₅(NO₃)](NO₃)₂$ complex (2 g) was ^I

powdered in a mortar and it was loaded into a porcelain crucible. The sample was then transferred into an electric furnace, heated at the rate of 10°C min−1 from room temperature to 150°C in air atmosphere and was maintained at this temperature for 1 h. Similar experiments were performed for 2 g samples of the complex at the selected temperatures of 175, 200, 250°C. The obtained product at each temperature was cooled to room temperature and collected for the characterizat on.

RESULTS AND DISCUSSION

Init ally, the thermal behavior of the $[Co(NH₃)₅(NO₃)](NO₃)₂$ complex was invest gated by DSC analysis. The DSC curve in Fig. 1 shows that the complex is decomposed in two main steps. The first step occurred at about 150°C, shows a small endothermic peak which can be explained by the loss of one or two molecules of $NH₃$ per molecule of complex. In second step, a sharp exothermic peak is observed in the range of 175-200°C which can be related to the explosive decomposition of the complex via a redox process taking place between the NH₃ ligands as reducing agents and the NO₃ ions as oxidizing agents. This react on resulted in the solid $Co₃O₄$ and gaseous products i.e. N_{2} , NO, N_{2} O and H₂O [48]. According to the above results and literature [48], the preparat on of Co₃O₄ from the energet c [Co(NH₃)₅(NO₃)](NO₃)₂ complex can be writ en as follows:

 $3[CO(NH_3)_5(NO_3)](NO_3)_2(s) \rightarrow Co_3O_4(s) + 2NH_3(g)$ + 19.5H, $O(g)$ + 9.25N, (g) + 1.5NO (g) + N, $O(g)$

The FT-IR spectra of the $[Co(NH_3)_5(NO_3)]$ $(NO₃)₂$ complex and its decomposit on products at different temperatures are shown in Fig. 2. For the start ng complex in Fig. 2a, we can see the characterist c bands of the $NH₃$ ligands at

Fig. 1: DSC curve of the $[Co(NH_3)_5(NO_3)](NO_3)_2$ complex

Int. J. Nano Dimens., 7 (3): 201-207, Summer 2016

approximately 3500-3000, 1600-1500, 1020 $\text{cm}^{\text{-1}}$ and the bands related to the NO₃ groups te at 1450-1250 and 750 cm-1 [49]. For the sample decomposed at 150°C (Fig. 2b), most of the bands associated with the complex disappeared and two weak bands of the spinel-type Co_3O_4 structure pure at about 662 and 565 cm−1 are observed [50]. The former band is characterist c of the $Co^{\prime\prime\prime}-O$ vibrat on in an octahedral site, and the later one is at ributable to the Co^{"-}O vibrat on in a tetrahedral site of spinel-type Co_3O_4 lat ce. As shown in pat Fig. 2c-e, the intensity of these two bands was

Fig. 2: FT-IR spectra of (a) the $[Co(NH_3)_5(NO_3)](NO_3)_2$ complex and its decomposition products at (b) $150 \degree \text{C}$, (c) 175°C, (d) 200 °C, and (e) 250 °C

increased with the increase of the decomposit on temperature from 150 to 175°C and, then to 200°C, but further increasing the temperature to 250°C did not change the intensity. This data confirms the complete decomposit on of the complex to pure Co₂O₄ phase at 200°C.

The crystal structure and phase composit ons of the decomposit on products of the [Co(NH $_{3})_{5}$ (NO $_{3})$] $(NO₃)₂$ complex at different temperatures were invest gated by XRD, as shown in Fig. 3. The XRD pat ern of sample decomposed at 150°C in Fig. 3a exhibits weak diffract on peaks with 2θ values at 19.50°, 31.37°, 37.02°, 39.10°, 44.97°, 55.84°, 59.58°, 65.44° and 77.65°. These diffract on peaks can be indexed to the crystalline cubic phase Co₃O₄ with lat ce constant of a = 8.076 Å and a space group of Fd3m, which are in agreement with the reported values (JCPDS Card No. 76-1802). This result confirms that the format on of the Co₂O₂ phase started at 150°C. As shown in Fig. 3b and 3c,

Fig. 3: The XRD patterns for the decomposition products of $[Co(NH₃)₅(NO₃)](NO₃)₂ complex at b) 150°C,$ (c) $175 \,^{\circ}$ C (d) $200 \,^{\circ}$ C and (e) $250 \,^{\circ}$ C.

Int. J. Nano Dimens., 7 (3): 201-207, Summer 2016 203

the intensity of the characterist c peaks of the Co_3O_4 phase markedly increases as the decomposit on temperature increases to 175°C and 200°C. XRD pat ern of the sample decomposed at 250°C (Fig. 3d), shows only the peaks related to the Co_3O_4 without obvious changes.

Thus, 200°C is considered as an appropriate temperature for the complete decomposit on of nanopart cles is shown in Fig. 4b. From Fig. 4b, the precursor, as indicated by the FT-IR results. At this temperature, no peaks of other impurity phases have been detected, confirming that the final product is highly pure. The considerable broadening of the diffract on peaks demonstrates the nanometer character of the $Co₃O₄$ part cles. The average size of the $Co₃O₄$ part cles prepared peak at 200°C was est mated by the Debye-Scherrer equat on [51]: D_{ypp} = 0.9λ/(βcosθ) where D_{ypp} is the average crystalline size, λ is the wavelength of CuK_α, β is the full width at half maximum (FWHM) \qquad of the diffract on peak and $θ$ is the Bragg's angle. The average size of the $Co_{3}O_{4}$ nanopartricles er calculated using the most intense peak (311) at 2θ = 36.26° is approximately 18 nm. This value is in accordance with TEM observat ons (discussed below).

The morphology and particle size of product obtained from the thermolysis of the $[CO(NH₃)₅(NO₃)](NO₃)₂$ complex at 200°C were the invest gated by TEM. The TEM image of Co₃O₄ syntl
nanopart cles are shown in Fig. 4a. It can be seen co₃C

that nanopart cles have spherical morphology with a uniform size. Because of the small dimensions and high surface energy of the part cles, it is easy for them to aggregate as seen in Fig. 4a. We also can find from this Fig that the morphology of the part cles is almost homogeneous. Histogram revealing the size distribution of the Co₃O₄ we obtained that the diameter sizes of the Co_3O_4 nanopart cles are approximately in the range of 10 to 24 nm with a narrow size distribut on. The average part cle size is 17 nm calculated from Fig. 4b, which is in agreement with the result calculated for the half-width of diffract on peaks using the Scherrer's formula, allowing for experimental error.

The elemental analysis of the Co_3O_4 nanopart cles was performed using the EDX on the SEM, as shown in Fig. 5. The peaks around 1.05, 6.95 and 7.95 keV are related to to the binding energies of CoL, Co K_{α1} and Co K_{α2}, respect vely. Also, a peak near 0.50 keV corresponding oxygen is observed. The peak of C at 0.27 keV and peaks of Au at 2.20 and 9.75 keV are related to the SEM holding grid. The atomic percentages of Co and O were found to be 43.22% and 56.78%, respect vely, which are near to the theoret cal rat o $(3:4)$ of the Co_3O_4 phase. The result indicates that the assynthesized product is composed of high purity $Co_{3}O_{4}$ nanopart cles.

Fig. 4: (a) TEM image of the Co_3O_4 nanoparticles, and (b) Histogram showing the diameter distribution of the $Co₃O₄$ nanoparticles

Int. J. Nano Dimens., 7 (3): 201-207, Summer 2016

The opt cal absorpt on propert es of the asprepared Co₃O₄ nanopart cles were invest gated at room temperature by UV–vis spectroscopy. As can be seen in Fig. 6, two absorpt on bands appear in the wavelength ranges of 200–375 and 385–625 nm. These bands can be assigned to the O^{2−}→Co²⁺ and the O^{2−}→Co³⁺ charge transfer processes, respect vely $[52]$. According to the following equat on for a semiconductor [24]: (αhν)²=K(hν− ferrα E_a), where α is the absorpt on coefficient, K is a constant, hv is the discrete photo energy (in eV), and E_{g} is the band gap energy, and the energy to to intercept of a plot of (αh*v*)² vs h*v* yields E_g for a direct 5 transit on (see the inset of Fig 6). The band gaps of the obtained $Co_{3}O_{4}$ nanopart cles are calculated to be 3.45 and 2.20 eV which are blue-shif ed relat ve to reported values for the bulk sample (2.19 and

1.48 eV, respect vely) [33,53]. The increase in the

band gaps of the Co₃O₄ nanopart cles may ascribe

to the small size effects of nanopart cles.

Co_(Lα)

C_o(L_α 1.48 eV, respect vely) [33,53]. The increase in the band gaps of the Co_3O_4 nanopart cles may ascribe to the small size effects of nanopart cles.

The magnet cproperty of the Co₃O₄ nanopart cles was measured at room temperature. As shown in Fig. 7a, the magnet zat on is approximately linear with the field and it does not at ain the saturat on even at the applied field of 8 kOe. Fig. 7b indicates the expansion of magnet zat on near the lower applied field. We can see a fine hysteresis loop which is characterist c of weak ferromagnet c behaviour, although bulk $Co₂O₄$ has ant ferromagnet c nature. This behavior may arise due to uncompensated surface spins and/or due to finite size effects of the Co₂O₄ nanopart cles [11, 54-56].

Fig. 7: (a) Magnetization curve as a function of applied magnetic field for $Co₃O₄$ nanoparticles at room temperature, and (b) the expansion of magnetization vs. field near the lower applied field

CONCLUSIONS

In conclusion, Co_3O_4 nanoparticles with an average part cle size of 17 nm have been successfully prepared via thermal decomposit on
of the $[CO(NH_*)]NO_*(NO_*)$, at $200^{\circ}C$. Co_3O_4 of the $[CO(NH_3)_5NO_3](NO_3)_2$ at nanopart cles are formed from this complex via a redox reaction between $NH₃$ ligands and the NO_3^- ions. This method yields spherelike Co_3O_4 nanoparticles with a narrow size distribut \overline{on} and weak ferromagnet c behavior. The est mated opt cal absorpt on band gaps of the $Co₃O₄$ nanopart cles are relat vely blue-shif ed,

compared with the values for the bulk sample. This approach provides a one-step simple and inexpensive route for the preparat on of $Co₃O₄$ nanopart cles with high purity in order to hightechnology applicat ons.

ACKNOWLEDGEMENTS

The authors are grateful to the Lorestan University Research Council and Iran Nanotechnology Init at ve Council (INIC) for financial support of this work.

REFERENCES

- [1] Klabunde K. J., Richards R. M., (2012), Nanoscale Materials in Chemistry. 2nd edn. *Wiley*, New York.
- [2] Mate V. R., Shirai M., Rode, C. V., (2013), Heterogeneous $Co₃O₄$ catalyst for select ve oxidat on of aqueous veratryl alcohol using molecular oxygen. *Catal. Commun.* 33: 66-69.
- [3] Warang T., Patel N., Sant ni A., Bazzanella N., Kale A., Miotello, A, (2012), Pulsed laser deposit on of Co₃O₄ nanopart cles assembled coat ng: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalyt c act vity in degradat on of methylene blue. Appl. Catal. A: *Gen.* 423-424: 21-27. EX., Nichara's K. Michara's K. Michara's Co_. Table is the space of the star and the star a
- [4] Casas-Cabanas M., Binot o G., Larcher D., Lecup A., Giordani V., Tarascon, J. M., (2009), Defect chemistry and catalyt c act vity of nanosized. Co₃O₄. *Chem. Mater.* 21: 1939-1947.
- [5] Askarinejad A., Bagherzadeh M., Morsali A, (2010), Catalytic performance of Mn_3O_4 and Co_3O_4 nanocrystals prepared by sonochemical method in epoxidat on of styrene and cyclooctene. *Appl. Surf. Sci.* 256: 6678-6682.
- [6] Lou X. W., Deng D., Lee J. Y., Feng J., Archer L. A., (2008), Self-supported format on of needlelike $Co₃O₄$ nanotubes and their applicat on as lithium-ion bat ery electrodes. Adv. *Mater.* 20: 258-262.
- [7] Chou S. L., Wang J. Z., Liu H. K., Dou, S. X., (2008), Electrochemical deposit on of porous $Co_{3}O_{4}$ nanostructured thin film for lithium-ion bat ery. *J. Power. Sourc.* 182: 359-364.
- [8] Li Y. G., Tan B., Wu Y. Y., (2008), Mesoporous Co₃O₄ nanowire arrays for lithium ion bat eries with high capacity and rate capacity. *Nano Let* . 8: 265-270.
- [9] Li W. Y., Xu L. N., Chen J., (2005), $Co_{3}O_{4}$ nanomaterials in lithium-ion bat eries and gas sensors. Adv. Funct. Mater. 15: 851-857.
- [10] Sugimoto T., Mat jevic E., (1979), Colloidal cobalt hydrous oxides, preparation and properties of monodispersed. Co3O⁴ . *J. Inorg. Nucl. Chem.* 41: 165-172.
- [11] Makhlouf S. A., (2002), Magne c proper es of Co3O⁴ nanopar cles. *J. Magn. Magn. Mater.* 246: 184-190.
- [12] Sun L., Li H., Ren L., Hu C., (2009), Synthesis of Co₃O₄ nanostructures using a solvothermal approach. *Solid State Sci.* 11: 108-112.
- [13] Chen Y., Zhang Y., Fu S., (2007), Synthesis and characterizat on of Co₃O₄ hollow spheres. *Mater. Let* . 61: 701-705.
- [14] Lai T., Lai Y., Lee C., Shu Y., Wang C., (2008), Microwave-assisted rapid fabricat on of $Co₃O₄$ nanorods and applicat on to the degradat on of phenol. Catal. Today. 131: 105-110.
- [15] Wang W. W., Zhu, Y. J., (2005), Microwave-assisted syntheto Co3O⁴ rods. *Mater. Res. Bull.* 40: 1929-1935.
- [16] Li L., Chu Y., Liu Y., Song J. L., Wang D., Du X. W., (2008), A facile hydrothermal route to synthesize novel Co₃O₄ nano-
plates. *Mater. Let* . 62: 1507-1510.
- [17] Du J., Chai L., Wang G., Li K., Qian Y., (2008), Controlled synthesis of one-dimensional single-crystal $Co₃O₄$ nanowires*. Aust. J. Chem.* 61: 153-158.
- [18] Wang R. M., Liu C. M., Zhang H. Z., Chen C. P., Guo L., Xu H. B., Yang S. H., (2004), Porous nanotubes of Co₃O₄: synthesis, characterizat on and magnet c propert es. Appl. Phys. Let.

85: 2080-2082.

- [19] Li Y., Zhao J., Dan Y., Ma D., Zhao Y., Hou S., Lin H., Wang Z., (2011), Low temperature aqueous synthesis of highly dispersed $Co₃O₄$ nanocubes and their electrocatalyt c act vity studies. *Chem. Eng. J.* 166: 428-434.
- [20] Sun H., Ahmad M., Zhu J., (2013), Morphology-controlled synthesis of $Co₃O₄$ porous nanostructures for the applica on as lithium-ion ba ery electrode. *Electrochim. Acta.* 89: 199-205.
- [21] Ren M., Yuan S., Su L., Zhou Z., (2012), Chrysanthemum-like $Co_{3}O_{4}$ architectures: Hydrothermal synthesis and lithium storage performances. *Solid State Sci.* 14: 451-455.
- [22] Yang L. X., Zhu Y. J., Li L., Zhang L., Tong H., Wang W. W., (2006), A facile hydrothermal route to flower-like cobalt hydroxide and oxide. *Eur. J. Inorg. Chem.* 23: 4787-4792.
- nanopart cles by a polymer combust on route. Mater. Let . 54: 260-263.
- [24] Gu F., Li C., Hu Y., Zhang L., (2007), Synthesis and opt cal characterizat on of Co₃O₄ nanocrystals via a facile combus-
t on method. *J. Cryst. Growth.* 304: 369-373.
- [25] Gardey-Merino M. C., Palermo M., Belda R., Fernández de Rapp M. E., Lascalea G. E., Vázquez P. G., (2012), Combus on synthesis of $Co_{3}O_{4}$ nanopart cles: fuel rat o effect on the physical propert es of the result ng powders. Proced. *Mater. Sci.* 1: 588-593.
- [26] Ai L. H., Jiang J., (2009), Rapid synthesis of nanocrystalline Co_3O_4 by a microwave-assisted combust on method. *Powder Tech.* 195: 11-14.
- [27] Li L., Ren J., (2006), Rapid prepara on of spinel Co3O⁴ nanocrystals in aqueous phase by microwave irradia on*. Mater. Res. Bull.* 41: 2286-2290.
- [28] Bhat A. S., Bhat D. K., Tai C. W., Santosh M. S., (2011), Microwave-assisted synthesis and magnet c studies of cobalt oxide nanopart cles. *Mater. Chem. Phys.* 125: 347-350.
- [29] Ma J., Zhang S., Liu W., Zhao Y., (2010), Facile preparat on of Co₃O₄ nanocrystals via a solvothermal process directly from common Co₂O₃ powder. *J. Alloys Compd.* 490: 647-651.
- [30] Lester E., Aksomaityte G., Li J., Gomez S., Gonzalez-Gonzalez J., Poliakoff, M., (2012), Controlled cont nuous hydrothermal synthesis of cobalt oxide (Co_2O_4) nanopart cles. *Prog. Cryst. Growth Charact. Mater.* 58: 3-13.
- [31] Baydi M. E., Poillerat G., Rehspringer J. L., Gaut er J. L., Koenig J. F., Chart er P., (1994), A sol-gel route for the preparaon of Co₃O₄ catalyst for oxygen electrocatalysis in alkaline medium. *J. Solid State Chem.* 109: 281-288.
- [32] Kim D. Y., Ju S. H., Koo H. Y., Hong S. K., Kangf Y. C., (2006), Synthesis of nanosized Co₃O₄ part cles by spray pyrolysis. *J. Alloys Compd.* 417: 254-258.
- [33] Kumar R. V., Diamant Y., Gedanken A., (2000), Sonochemical synthesis and characterizat on of nanometer-size transit on metal oxides from metal acetates. *Chem. Mater.* 12: 2301-2305.
- [34] Wang X., Chen X. Y., Gao L. S., Zheng H. G., Zhang Z., Qian Y. T., (2004), One-dimensional arrays of $Co_{3}O_{4}$ nanopart cles: Synthesis, characterizat on, and opt cal and electrochemical propert es. *J. Phys. Chem. B.* 108: 16401-16404.
- [35] Fan S., Liu X., Li Y., Yan E., Wang C., Liu J., Zhang Y., (2013), Non-aqueous synthesis of crystalline $Co₃O₄$ nanopart cles for lithium-ion bat eries. Mater. Let . 91: 291-293.
- sis of cobalt oxalate nanorods and their thermal conversion crystals via a simple polyol route. Mater. Let . 61: 4894-[36] Jiang J., Li L., (2007), Synthesis of sphere-like Co₂O₂ nano-4896.
	- [37] Zou D., Xu C, Luo H., Wang L., Ying T., (2008), Synthesis of $Co₃O₄$ nanopart cles via an ionic liquid-assisted methodology at room temperature. Mater. Let . 62: 1976-1978.
	- [38] Traversa E., Sakamoto M., Sadaoka Y., (1998), A chemical route for the preparat on of nanosized rare earth Perovskite-type oxides for electroceramic applicat ons. Part. *Sci. Technol.* 16: 185-214.
	- [39] M. Y. Masoomi, A. Morsali, (2012), Applicat ons of metal-organic coordinat on polymers as precursors for prepara-

Int. J. Nano Dimens., 7 (3): 201-207, Summer 2016

S. Farhadi et al.

on of nano-materials. *Coord. Chem. Rev.* 256: 2921-2943.

- [40] Mohandes F., Davar F., Salavat -Niasari M., (2010), Preparat on of Co₂O₄ nanopart cles by nonhydrolyt c thermolysis of [Co(Pht)(H₂O)]_, polymers. *J. Magn. Magn. Mater.* 322: 872-877.
- [41] Ren L., Wang P., Han Y., Hu C., Wei B., (2009), Synthesis of CoC_2O_4 2H₂O nanorods and their thermal decomposit on to Co₃O₄ nanopart cles. *Mater. Phys. Let .* 476: 78-83.
- [42] Thangavelu K., Parameswari K., Kuppusamy K., Haldorai nanopart cles from metal benzoate dihydrazinate complex as a precursor. *Mater. Le .* 65: 1482-1484.
- [43] Salavat -Niasari M., Khansari A., Davar F., (2009), Synthesis and characterizat on of cobalt oxide nanopart cles by thermal treatment process. *Inorg. Chim. Acta.* 362: 4937-4942.
- [44] Farhadi S., Pourzare K., (2012), Simple and low-temperature preparat on of Co₃O₄ sphere-like nanopart cles via solid-state thermolysis of the $[Co(NH_3)_6](NO_3)_3$ complex. *Mater. Res. Bull*. 47: 1550-1556.
- [45] Farhadi S., K. Pourzare, (2014), Synthesis and characterizat on of $Co₃O₄$ nanoplates by simple thermolysis of the
- [Co(NH3) ⁶] ²(C2O4) 3 ·4H2O complex. *Polyhedron.* 67: 104-110. [46] Farhadi S., Roostaei-Zaniyani Z., (2011), Simple and low-temperature synthesis of NiO nanopart cles through solid-state thermal decomposit on of the hexa(ammine) Ni(II) nitrate, [Ni(NH₃)₆](NO₃)₂, complex. *Polyhedron*. 30: 1244-1249.
- [47] Bailar J. C., (1953), Acidopentamminecobalt (III) salts. *Inorg. Synth.* 4: 171-174.

2149. *Archive of SID*

- [48] Kristóf J., Horváth A., Szabó P., (1990), Simultaneous thermoanalyt cal invest gat ons on the rapid decomposit on of pentamminecobalt (III) complexes. *J. therm. Analys.* 36: 1191-1204.
- [49] Nakamoto K., (2009), Infrared and Raman spectra of inorganic and coordinat on compounds, Part B: Applicat ons in coordinat on, organometallic, and bioinorganic chemistry, *6th edn.* Wiley, New York.
- [50] Pejova B., Isahi A., Najdoski M., (2001), Fabricat on and $\frac{1}{2}$ characterizat on of nanocrystalline cobalt oxide thin films. *Mater. Res. Bull.* 36: 161-170.
- [51] Klug H. P., Alexander L. E., (1964), X-ray Diffract on Procedures. *2nd edn*. Wiley, New York.
- [52] He T., Chen D. R., Jiao X. L., Wang Y. L., Duan Y. Z., (2005), Solubility-controlled synthesis of high-quality $Co₃O₄$ nanocrystals. *Chem. Mater.* 17: 4023-4030.
- [53] Gulino A., Dapporto P., Rossi P., Fragala I., (2003), A novel self-liquid MOCVD precursor for Co₃O₄ thin films. *Chem. Mater.* 15: 3748-3752.
- [54] Ichiyanagi Y., Kimishima Y., Yamada S., (2004), Magnet c study on Co₃O₄ nanopart cles. *J. Magn. Magn. Mater.* 272-276: e1245-e1246.
- [55] Kodama R. H., Makhlouf S. A., Berkowitz, A. E., (1997), Growth mechanism and magnon excitat on in NiO nanowalls. *Phys. Rev. Le .* 79: 1393-1396.
- [56] Ozkaya T., Baykal A., Toprak M. S., Koseoglu Y, Durmus Z., (2009), Reflux synthesis of Co₃O₄ nanopart cles and its mag-(2009), Refl ux synthesis of Co3O4nanopar cles and its mag- ne c characteriza on. *J. Magn. Magn. Mater.* 321: 2145-