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Abstract

The purpose of this paper is to study the solvability for a class of general-

ized strong vector equilibrium-like problems in reflexive Banach spaces. Firstly,

utilizing Brouwer’s fixed point theorem, we prove the solvability for this class of

generalized strong vector equilibrium-like problems without monotonicity assump-

tion. Secondly, we introduce the new concept of pseudomonotonicity for vector

set-valued mapping and prove the solvability for this class of generalized strong

vector equilibrium-like problems for pseudomonotone vector set-valued mapping

by using Fan’s lemma and Nadler’s theorem. Our results extend and improve the

corresponding results in this direction.
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1 Introduction

In 1980, Giannessi [9] first introduced and studied the vector variational inequality

(VVI) in a finite-dimensional Euclidean space, which is a vector-valued version of the

variational inequality of Hartman and Stampacchia. Subsequently, many authors inves-

tigated vector variational inequalities in abstract spaces and extended vector variational
1This work is supported by the Doctoral Initiating Foundation of Liaoning Province (20071097)
2Corresponding Author. E-mail Address: yalizhao2000@yahoo.com.cn
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inequalities to vector equilibrium problems. As a natural generalization of the vector

equilibrium problem, the generalized vector equilibrium-like problem includes various

problems, for example, generalized vector variational inequality problem, generalized

vector variational-like inequality problem, generalized vector complementarity problem

and vector equilibrium problem as special cases, see references [14], [13], [10], [12], [3],

[15], [5], and the references therein. Furthermore, as Chen and Hou [2] pointed out

that most of the research results in this area touch upon a weak version of VVI and its

generalizations and the existence of solutions for strong vector variational inequalities

is still an open problem. Later on, Fang and Huang [7] obtained some existences for

a class of strong vector variational inequalities (SVVI) and partly answered the open

problem proposed by Chen and Hou [2]. Recently, Ceng et al. [4] introduced and stud-

ied the solvability for a class of generalized strong vector variational-like inequalities

(GSVVLI) in reflexive Banach spaces which include the class of strong vector variational

inequalities studied by Fang and Huang in [8] and proved the solvability for the class

of generalized strong vector variational-like inequalities by making use of Brouwer’s

fixed pointed theorem and Fan’s and Nadler’s Lemmas under without monotonicity

assumption and with the pseudomonotonicity of vector multifunctions introducecd by

them, respectively.

Motivated and inspired by the above research works, in this paper, we introduce

and study a class of generalized strong vector equilibrium-like problems ( short for

GSVELP). There is no doubt that the class of the GSVELP is more general and includes

the GSVVLI which is considered by Ceng et al. in [4] and the SVVI studied by Fang

and Huang in [8] as special cases. Firstly, the solvability of the GSVELP without

monotonicity is derived by using Brouwer’s fixed point theorem. Secondly, we introduce

the new concept of pseudomonotonicity and prove the solvability of the GSVELP with

the pseudomonotonicity by exploiting Fan’s and Nadler’s lemmas. The results presented

in this paper extend and unify the corresponding results of [4], [8].
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2 Preliminaries

Let X be a real reflexive Banach space and let Y be a real Banach space. Let D ⊂ X

be a nonempty, bounded, closed and convex set, let C ⊂ Y be a nonempty and convex

cone with apex at the origin with intC 6= ∅.

Given C in Y , we can define relations ” ≤C ” and ” 6≤C ” as follows:

u ≤C v ⇔ v − u ∈ C, u 6≤C v ⇔ v − u /∈ C.

If ” ≤C ” is a partial order, then (Y,≤C) is called a Banach space ordered by C.

Let L(X, Y ) denote the space of all continuous linear maps from X into Y . Given

the mappings T : D → 2L(X,Y ), A : L(X, Y ) → L(X, Y ), f : L(X, Y ) × D × D → Y

and h : D → Y , we consider the generalized strong vector equilibrium-like problem

(GSVELP) as follows:

find u0 ∈ D, s0 ∈ Tu0 such that

f(As0, u0, v) + h(v)− h(u0) /∈ −(C\{0}),∀ v ∈ D.

In particular, if we put f(u, v, w) =< u, η(w, v) > for all (u, v, w) ∈ L(X, Y )×D×D,

where η : D × D → X, then the above problem reduces to the following generalized

strong vector variational-like inequality problem (GSVVLIP) :

find u0 ∈ D, s0 ∈ Tu0 such that

< As0, η(v, u0) > +h(v)− h(u0) /∈ −(C\{0}),∀ v ∈ D,

which was studied by Ceng et al. [9].

If h(u) = 0, η(v, u) = v − u for all u, v ∈ D,A = I the identity mapping of L(X, Y )

and T is a single-valued mapping, then the GSVELP reduces to the following strong

vector variational inequality problem (SVVIP):

find u0 ∈ D such that

< Tu0, v − u0 >/∈ −(C\{0}),∀v ∈ D,

which was considered by Fang and Huang [14].
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Remark 2.1 The GSVELP is more general which is a motivation of our writing

the paper.

Now, we recall some definitions and lemmas.

Definition 2.2 A map h : D → Y is said to be convex if

h(λu + (1− λ)v) ≤C λh(u) + (1− λ)h(v),∀u, v ∈ D,λ ∈ [0, 1].

Definition 2.3 f(u, v, w) is affine with respect to w if, for any given u, v ∈ D,

f(u, v, tw1 + (1− t)w2) = tf(u, v, w1) + (1− t)f(u, v, w2),∀w1, w2 ∈ D, t ∈ R,

with w = tw1 + (1− t)w2 ∈ D.

Definition 2.4 Let A : L(X, Y ) → L(X, Y ), h : D → Y and f : L(X, Y )×D×D →

Y be three mappings. A nonempty compact-valued mapping T : D → 2L(X,Y ) is said

to be f-pseudomonotone with respect to A and h if for each u, v ∈ D, the existence of

t ∈ Tu such that

f(At, u, v) + h(v)− h(u) /∈ −(C\{0}),

implies that

f(As, u, v) + h(v)− h(u) ∈ C,∀ s ∈ Tv.

Lemma 2.5 [11] Let (X, ‖ · ‖) be a normed vector space and H be the Hausdorff

metric on the collection CB(X) of all nonempty, closed and bounded subsets of X,

induced by a metric d in terms of d(u, v) = ‖u− v‖, which is defined by

H(U, V ) = max(sup
u∈U

inf
v∈V

‖u− v‖, sup
v∈V

inf
u∈U

‖u− v‖),

for U and V in CB(X). If U and V are compact sets in X, then for each u ∈ U, there

exists v ∈ V such that

‖u− v‖ ≤ H(U, V ).
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Definition 2.6 A nonempty compact-valued mapping T : D → 2L(X,Y ) is called H

-uniformly continuous if for any given ε > 0, there exists δ > 0 such that for any

u, v ∈ D with ‖u− v‖ < δ, there holds

H(Tu, Tv) < ε,

where H is the Hausdorff metric defined on CB(L(X, Y )).

3 Solvability of the GSVELP without monotonicity

In this section, we will derive the solvability of the GSVELP without monotonicity

assumption by using Brouwer’s fixed point theorem. First, recall the following result.

Lemma 3.1 (Brouwer’s fixed point theorem [1]) Let B be a nonempty, compact and

convex subset of a finite-dimensional space and let g : B → B be a continuous mapping.

Then there exists u ∈ B such that g(u) = u.

Now, we state and prove two theorems for the existence results to the GSVELP. It

is worth pointing that there are no assumptions of pseudomonotonicity in our existence

results.

Theorem 3.2 Let D be a nonempty, bounded, closed and convex subset of a real

reflexive Banach space X and let Y be a real Banach space ordered by a nonempty and

convex cone C with apex at the origin and intC 6= ∅. Let h : D → Y and A : L(X, Y ) →

L(X, Y ) be two mappings such that h is convex, and let f : L(X, Y ) × D × D → Y

be such that (a)f(·, u, v) = f(·, u, w) + f(·, w, v), for all u, v, w ∈ D, and (b)f(·, ·, ·) is

affine in the third variable. Suppose that for given set-valued mapping T : D → 2L(X,Y ),

the set {u ∈ D : f(At, u, v) + h(v) − h(u) ∈ −(C\{0}), for all t ∈ Tu} is weakly open

in D for every v ∈ D. Then the GSVELP has a solution.

Proof First, notation that condition (a) implies that for each u, v ∈ D,

f(·, u, u) = 0.
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If the GSVELP does not have a solution, then for every u0 ∈ D, there exists some

v ∈ D such that

f(At, u0, v) + h(v)− h(u0) ∈ −(C\{0}),∀ t ∈ Tu0. (1)

For every v ∈ D, define the set Nv as follows:

Nv = {u ∈ D : f(At, u, v) + h(v)− h(u) ∈ −(C\{0}),∀ t ∈ Tu}.

By the assumption, the set Nv is weakly open in D for every v ∈ D. It is easy to see

that the family {Nv : v ∈ D} is an open cover of D in the weak topology of X.

The weak compactness of D implies that there exists a finite set {v1, v2, · · ·, vn} ⊆ D

such that

D =
n⋃

i=1

Nvi .

Hence there exists a continuous ( in the weak topology of X ) partition of unity {β1, β2, ··

·, βn} subordinated to {Nv1 , Nv2 , · · ·, Nvn} such that βj(u) ≥ 0, for all u ∈ D, j =

1, 2, · · ·, n,
∑n

j=1 βj(u) = 1,∀u ∈ D and

βj(u)

 = 0 where u /∈ Nvj ,

> 0 where u ∈ Nvj .

Let p : D → X be defined as follows:

p(u) =
n∑

j=1

βj(u)vj ,∀u ∈ D.

Since βj is continuous in the weak topology of X for each j, p is continuous in the weak

topology of X. Let S = co{v1, v2, · · ·, vn} be the convex hull of {v1, v2, · · ·, vn} in D.

Then S is a simplex of a finite-dimensional space and p maps S into S. By Lemma

3.1, there exists some u0 ∈ S such that p(u0) = u0. Now for any given u ∈ D, let

d(u) = {j : u ∈ Nvj} = {j : βj(u) > 0}.

Obviously, d(u) 6= ∅.
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Since u0 ∈ S ⊆ D is a fixed point of p, we have p(u0) =
∑n

j=1 βj(u0)vj and hence

from the definition of Nv and the convexity of h we derive for each t ∈ Tu0,

0 = f(At, u0, u0) + h(u0)− h(u0)

= f(At, u0, p(u0)) + h(p(u0))− h(u0)

= f(At, u0,
∑n

j=1 βj(u0)vj) + h(
∑n

j=1 βj(u0)vj)− h(u0)

≤C
∑n

j=1 βj(u0)f(At, u0, vj) +
∑n

j=1 βj(u0)h(vj)− h(u0)

=
∑n

j=1 βj(u0)[f(At, u0, vj) + h(vj)− h(u0)] ≤C\{0} 0,

which leads to a contradiction. Therefore, there exist u∗ ∈ D and s0 ∈ Tu∗ such that

f(As0, u
∗, v) + h(v)− h(u∗) /∈ −(C\{0}),∀ v ∈ D.

This completes the proof.

Theorem 3.3 Let D be a nonempty, closed and convex subset of a real reflexive

Banach space X with 0 ∈ D and let Y be a real Banach space. Let C ⊂ Y be a point

and convex cone with intC 6= ∅. Let h : D → Y and A : L(X, Y ) → L(X, Y ) be

two mappings such that h is convex, and let f : L(X, Y ) × D × D → Y be such that

(a)f(·, u, v) = f(·, u, w) + f(·, w, v), for all u, v, w ∈ D, and (b)f(·, ·, ·) is affine in the

third variable. Suppose that for given set-valued mapping T : D → 2L(X,Y ), there exists

some r > 0 such that the following conditions:

(i) for every v ∈ D∩Br, the set {u ∈ D∩Br : f(At, u, v)+h(v)−h(u) ∈ −(C\{0}),

for all t ∈ Tu} is weakly open in D, where Br = {u ∈ X : ‖u‖ ≤ r};

(ii) f(As, 0, v) + h(v)− h(0) ∈ C\{0}, for all s ∈ Tv, v ∈ D with ‖v‖ = r.

Then the GSVELP has a solution.

Proof First, observe that condition (a) implies that for each u, v ∈ D,

f(·, u, u) = 0, f(·, u, v) + f(·, v, u) = 0.

Moreover, according to Theorem 3.1 there exist ur ∈ D ∩Br and tr ∈ Tur such that

f(Atr, ur, v) + h(v)− h(ur) /∈ −(C\{0}),∀ v ∈ D ∩Br. (2)
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Putting v = 0 in the above inequality, one has

f(Atr, ur, 0) + h(0)− h(ur) /∈ −(C\{0}),

which implies that

f(Atr, 0, ur) + h(ur)− h(0) /∈ C\{0}. (3)

Combining condition (ii) with (3.3), we know that ‖ur‖ < r. For any w ∈ D, choose

λ ∈ (0, 1) enough small such that (1−λ)ur +λw ∈ D∩Br. Putting v = (1−λ)ur +λw

in (3.2), one has

f(Atr, ur, (1− λ)ur + λw) + h((1− λ)ur + λw)− h(ur) /∈ −(C\{0}). (4)

Since h is convex and f(·, ·, ·) is affine in the third variable, we have

f(Atr, ur, (1− λ)ur + λw) + h((1− λ)ur + λw)− h(ur)

≤C (1− λ)f(Atr, ur, ur) + λf(Atr, ur, w) + (1− λ)h(ur) + λh(w)− h(ur)

= λ[f(Atr, ur, w) + h(w)− h(ur)].

Now we claim that

f(Atr, ur, w) + h(w)− h(ur) /∈ −(C\{0}),∀w ∈ D. (5)

Indeed, suppose to the contrary that

f(Atr, ur, w0) + h(w0)− h(ur) ∈ −(C\{0}),

for some w0 ∈ D. Since −(C\{0}) is a convex cone, we have

λ[f(Atr, ur, w0) + h(w0)− h(ur)] ∈ −(C\{0}).

Observe that

f(Atr, ur, (1− λ)ur + λw0) + h((1− λ)ur + λw0)− h(ur)

= f(Atr, ur, (1− λ)ur + λw0) + h((1− λ)ur + λw0)− h(ur)

− λ[f(Atr, ur, w0) + h(w0)− h(ur)] + λ[f(Atr, ur, w0) + h(w0)− h(ur)]

∈ −C − (C\{0}) = −(C\{0}),
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which implies that

f(Atr, ur, (1− λ)ur + λw0) + h((1− λ)ur + λw0)− h(ur) ∈ −(C\{0}).

This contradicts (3.4). Therefore, (3.5) holds, that is, ur is a solution of the GSVELP.

This completes the proof.

Remark 3.4 Theorems 2.2 and 2.3 in [4] and Theorem [8] are special cases of

Theorems 3.1 and 3.2.

4 Solvability of the GSVELP with pseudomonotonicity

In this section, we will prove the solvability of the GSVELP with pseudomonotonicity

assumption by using Fan’s and Nadler’s lemmas. First we give some definitions and

lemmas.

Definition 4.1 Let D be a nonempty subset of a topological vector space E. A

multivalued map G : D → 2E is called a KKM-map if for each finite subset {u1, u2, · ·

·, un} ⊆ D,

co{u1, u2, · · ·, un} ⊆
n⋃

i=1

G(ui),

where co{u1, u2, · · ·, un} denotes the convex hull of {u1, u2, · · ·, un}.

Lemma 4.2 (Fan’s lemma [6]) Let D be an arbitrary nonempty subset of a Haus-

dorff topological vector space E. Let the multivalued mapping G : D → 2E be a KKM-

map such that G(u) is closed for all u ∈ D and G(v) is compact for at least one v ∈ D.

Then ⋂
u∈D

G(u) 6= ∅.

Lemma 4.3 Let D be a nonempty and convex subset of a real Banach space X and

let Y be a real Banach space. Let C ⊂ Y be a closed, pointed and convex cone with

intC 6= ∅. Let h : D → Y be convex, and let A : L(X, Y ) → L(X, Y ) be continuous.
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Suppose that f : L(X, Y ) ×D ×D → Y satisfied that (a)f(·, u, u) = 0, for all u ∈ D,

and (b)f(·, ·, ·) is continuous in the first variable and is affine in the third variable.

Let T : D → 2L(X,Y ) be a set-valued mapping which is H-uniformly continuous and

f-pseudomonotone with respect to A and h. Then the following are equivalent:

(i) there exist u∗ ∈ D and s∗ ∈ Tu∗ such that

f(As∗, u∗, v) + h(v)− h(u∗) /∈ −(C\{0}),∀ v ∈ D;

(ii) there exists u∗ ∈ D such that

f(At, u∗, v) + h(v)− h(u∗) ∈ C,∀ v ∈ D, t ∈ Tv.

Proof Suppose that there exist u∗ ∈ D and s∗ ∈ Tu∗ such that

f(As∗, u∗, v) + h(v)− h(u∗) /∈ −(C\{0}),∀ v ∈ D.

Since T is f-pseudomonotone with respect to A and h,

f(At, u∗, v) + h(v)− h(u∗) ∈ C,∀ v ∈ D, t ∈ Tv.

Conversely, suppose that there exists u∗ ∈ D such that

f(At, u∗, v) + h(v)− h(u∗) ∈ C,∀ v ∈ D, t ∈ Tv.

For any given v ∈ D, we know that vλ = λv + (1− λ)u∗ ∈ D, for all λ ∈ (0, 1) since D

is convex. Replacing v by vλ in the above inequality, in views of the affinity of f with

respect to the third variable and the convexity of h, one derives for each tλ ∈ Tvλ,

0 ≤C f(Atλ, u∗, vλ) + h(vλ)− h(u∗)

= f(Atλ, u∗, λv + (1− λ)u∗) + h(λv + (1− λ)u∗)− h(u∗)

≤C λf(Atλ, u∗, v) + (1− λ)f(Atλ, u∗, u∗) + λh(v) + (1− λ)h(u∗)− h(u∗)

= λ[f(Atλ, u∗, v) + h(v)− h(u∗)].

Hence, we have

f(Atλ, u∗, v) + h(v)− h(u∗) ∈ C,∀ tλ ∈ Tvλ, λ ∈ (0, 1). (6)
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Since Tvλ and Tu∗ are compact, it follows from Lemma 2.4 that for each fixed tλ ∈ Tvλ

there exists an sλ ∈ Tu∗ such that

‖tλ − sλ‖ ≤ H(Tvλ, Tu∗).

Since Tu∗ is compact, without loss of generality, we may assume that sλ → s∗ ∈ Tu∗

as λ → 0+. Since T is H -uniformly continuous and ‖vλ − u∗‖ = λ‖v − u∗‖ → 0 as

λ → 0+, so H(Tvλ, Tu∗) → 0 as λ → 0+. Thus one has

‖tλ − s∗‖ ≤ ‖tλ − sλ‖+ ‖sλ − s∗‖ ≤ H(Tvλ, Tu∗) + ‖sλ − s∗‖ → 0 as λ → 0+.

Hence, we have tλ → s∗ as λ → 0+. It follows from the continuity of f in the first

variable that

‖f(Atλ, u∗, v)− f(As∗, u∗, v)‖ → 0 as λ → 0+.

Since C is closed, pointed and convex cone, according to (4.1), we have

f(As∗, u∗, v) + h(v)− h(u∗) ∈ C.

Therefore,

f(As∗, u∗, v) + h(v)− h(u∗) /∈ −(C\{0}).

This completes the proof.

Now we will apply Lemma 4.2 to prove the existence of solution for the GSVELP

with pseudomonotonicity assumption.

Theorem 4.4 Let D be a nonempty, compact and convex subset of a real Banach

space X and let Y be a real Banach space. Let C ⊂ Y be a closed, pointed and convex

cone with intC 6= ∅. Let h : D → Y be convex and continuous, and let A : L(X, Y ) →

L(X, Y ) be continuous. Let f : L(X, Y ) × D × D → Y be such that (a)f(·, u, v) =

f(·, u, w) + f(·, w, v), for all u, v, w ∈ D, and (b)f(·, ·, ·) is affine and continuous in

the third variable and is continuous in the first variable. Let T : D → 2L(X,Y ) be a
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compact-valued mapping which is H-uniformly continuous and f-pseudomonotone with

respect A and h. Then the GSVELP has a solution.

Proof It follows that condition (a) we have for each u, v ∈ D,

f(·, u, u) = 0, f(·, u, v) + f(·, v, u) = 0.

We define two multivalued maps F,G : D → 2D as follows:

F (v) = {u ∈ D : f(At, u, v) + h(v)− h(u) /∈ −(C\{0}) for some t ∈ Tu},∀ v ∈ D,

G(v) = {u ∈ D : f(As, u, v) + h(v)− h(u) ∈ C,∀ s ∈ Tv},∀ v ∈ D.

(7)

Obviously, both F (v) and G(v) are nonempty since v ∈ F (v) ∩ G(v) for all v ∈ D.

We claim that F is a KKM mapping. If this is false, then there exists a finite set

{v1, v2, · · ·, vn} ⊆ D and αi ≥ 0, i = 1, 2, · · ·, n with
∑n

i=1 αi = 1 such that

v =
n∑

i=1

αivi /∈
n⋃

i=1

F (vi).

Hence for any t ∈ Tv one has

f(At, v, vi) + h(vi)− h(v) ∈ −(C\{0}), i = 1, 2, · · ·, n.

Since f(·, ·, ·) is affine in the third variable and h is convex, it follows that

0 = f(At, v, v) + h(v)− h(v)

= f(At, v,
∑n

i=1 αivi) + h(
∑n

i=1 αivi)− h(v)

≤C
∑n

i=1 αif(At, v, vi) +
∑n

i=1 αih(vi)− h(v)

=
∑n

i=1 αi[f(At, v, vi) + h(vi)− h(v)] ≤C\{0} 0,

which leads to a contradiction. So F is a KKM mapping. Furthermore, it is clear that

F (v) ⊆ G(v) for every v ∈ D since T is f-pseudomonotone with respect to A and h.

Thus, G is also a KKM mapping. Now we claim that G(v) ⊆ D is closed. Indeed,

suppose {un} ⊆ G(v) is a sequence such that un converges to u ∈ D. Then we derive

for each t ∈ Tv,

−[f(At, v, un) + h(un)− h(v)] = f(At, un, v) + h(v)− h(un) ∈ C,∀n.
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Since h : D → Y be convex and continuous and f(·, ·, ·) is continuous in the third

variable, hence we have

−[f(At, v, un) + h(un)− h(v)] → −[f(At, v, u) + h(u)− h(v)] as n →∞.

Also, since C is closed,

−[f(At, v, u) + h(u)− h(v)] ∈ C.

Thus we get

f(At, u, v) + h(v)− h(u) ∈ C,∀ t ∈ Tv,

and so u ∈ G(v). This shows that G(v) is closed for each v ∈ D. Since D ⊆ X is

compact and so is G(v). According to Lemma 4.1,

⋂
v∈D

G(v) 6= ∅.

This implies that there exists u∗ ∈ D such that

f(At, u∗, v) + h(v)− h(u∗) ∈ C,∀ v ∈ D, t ∈ Tv.

Therefore, by Lemma 4.2 we know that the GSVELP has a solution.

Theorem 4.5 Let D be a nonempty, unbounded, closed and convex subset of a real

Banach space X with 0 ∈ D and let Y be a real Banach space. Let C ⊂ Y be a closed,

pointed and convex cone with intC 6= ∅. Let h : D → Y be convex and continuous

and let A : L(X, Y ) → L(X, Y ) be continuous. Let f : L(X, Y ) × D × D → Y be

such that (a)f(·, u, v) = f(·, u, w) + f(·, w, v), for all u, v, w ∈ D, and (b)f(·, ·, ·) is

affine and continuous in the third variable and is continuous in the first variable. Let

T : D → 2L(X,Y ) be a compact-valued mapping which is H-uniformly continuous and

f-pseudomonotone with respect to A and h. If there exists some r > 0 such that

f(At, 0, v) + h(v)− h(0) ∈ C\{0},∀ t ∈ Tv, v ∈ D with ‖v‖ = r,

Archive of SID

www.SID.ir

www.SID.ir


14 Mathematical Sciences Vol. 3, No. 1 (2009)

then the GSVELP is solvable.

Proof According to Theorem 4.1 there exist ur ∈ D ∩Br and sr ∈ Tur such that

f(Asr, ur, v) + h(v)− h(ur) /∈ −(C\{0}),∀ v ∈ D ∩Br.

Since the remainder of the proof is similar to that of Theorem 3.2, we omit it. This

completes the proof.

Remark 4.6 Theorems 4.1 and 4.2 extend Theorems 3.3 and 3.4 in [4].

References

[1] Brouwer L.E.J. (1911) ”Beweis der invarianz des n-dimensionalen gebiets,” Math-

ematische Annalen, 71(3), 305-313.

[2] Chen G.Y., Hou S.H. ”Existence of solutions for vector variational inequalities,”

in Vector Variational Inequalities and Vector Equilibria, F. Giannessi, Ed., vol.

38 of Nonconvex Optimization and its Applications, pp. 73-86, Kluwer Academic

Publishers, Dordrecht, The Netherlands, 2000 .

[3] Ceng L.C., Guu S.M., Yao J.C. ”Generalized vector equilibrium-like problems

without pseudomonotonicity in Banach spaces,” Journal of Inequalities and Ap-

plications, doi: 10.1155/2007/61794.

[4] Ceng L.C., Lin Y.C., Yao J.C. ”On generalized strong vector variational-

like inequalities in Banach spaces,” Journal of Inequalities and Applications,

doi:10.1155/2007/94092.

[5] Ceng L.C., Yao J.C. (2006) ”An existence result for generalized vector equilibrium

problems without pseudomonotonicity,” Applied Mathematics Letters, 19(12),

1320-1326.

Archive of SID

www.SID.ir

www.SID.ir


Yali Zhao and Xiaoqing Du 15

[6] Fan K. (1961) ”A generalization of Tychonoff’s fixed point theorem,” Mathema-

tische Annalen, 142(3), 305-310.

[7] Fang Y.P., Huang N.J. (2002) ”On the strong vector variational inequalities,” Re-

search Report, Department of Mathematics, Sichuan University, Sichuan, China.

[8] Fang Y.P., Huang N.J. (2006) ”Strong vector variational inequalities in Banach

spaces,” Applied Mathematics Letters, 19, 362-368.

[9] Gianessi F. ”Theorems of alternative, quadratic programs and complementarity

problems,” in Variational Inequalities and Complementarity Problems (Proc. In-

ternat. School, Erice, 1978), R.W.Cottle, F.Giannessi, and J.-L. Lions, Eds, pp.

151-186, John Wiley and Sons, Chichester, UK, 1980.

[10] Konnov I.V., Yao J.C. (1997) ”On the generalized vector variational inequality

problem,” Journal of Mathematical Analysis and Applications, 206(1), 42-58.

[11] Nadler Jr. S.B. (1969) ”Multi-valued contraction mappings,” Pacific Journal of

Mathematics, 30, 475-488.

[12] Yang X.Q. (1993) ”Vector complementarity and minimal element problems,” Jour-

nal of Optimization Theory and Applications, 77(3), 483-495.

[13] Yang X.Q. (1997) ”Vector variational inequality and vector pseudolinear optimiza-

tion,” Journal of Optimization Theory and Applications, 95(3), 729-734.

[14] Yang X.Q., Goh C.J. (1997) ”On vector variational inequalities: application to

vector equilibria,” Journal of Optimization Theory and Applications, 95(2), 431-

443.

[15] Zhao Y.L., Quan X.Z. (2006) ”On the existence of solutions to generalized vector

variational-like inequalities,” Nonlinear Analysis: Theory, Methods and Applica-

tions, 64, 2075-2083.

Archive of SID

www.SID.ir

www.SID.ir

