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Abstract

One of the topics of interests in data envelopment analysis (DEA) is sensitiv-

ity analysis of specific decision making unit (DMU), which is under evaluation.

Changes in inputs or outputs of any DMU can alter its classification, i.e. an ef-

ficient DMU become inefficient and vise versa. In this paper, we develop a new

sensitivity analysis approach for obtaining the region of efficiency of an efficient

DMU. In this region changes in inputs and outputs (inputs expansion and outputs

contraction) of a DMU will not alter its efficiency status.

Keywords: Data Envelopment Analysis; Sensitivity analysis; Parametric pro-

gramming.

c© 2009 Published by Islamic Azad University-Karaj Branch.

1 Introduction

Data envelopment analysis(DEA), originally proposed by Charnes et al.(1978), has

became one of the most widely used methods in management sciences. DEA is a non

parametric technique for measuring and evaluating the relative efficiency of DMUs

which stand of decision making units with several inputs and outputs. One of the

topics of interests in this field is sensitivity analysis.
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The first DEA sensitivity analysis paper by Charnes et al.(1985) examined change

in single output. This was followed by Charnes and Nerallic (1990) in which sufficient

condition preserving efficiency was determined. Another type of DEA sensitivity anal-

ysis is based on supper-efficiency DEA approach in which an under evaluation DMU is

not included in the reference set. Charnes et al.(1992,1996) developed a super-efficiency

DEA sensitivity analysis technique for the situation where simultaneous proportional

changes is assumed in all inputs and outputs for a specific DMU under consideration.

This data variation condition was relaxed in Zhu (1996) and Seiford and Zhu (1998) to

situation where inputs or outputs can be changed individually and the largest stability

region which encompasses that of Charnes et al.(1992) is obtained.

The DEA sensitivity analysis methods we have just reviewed are all developed for

the situation where data variation are only applied to the under evaluation efficient

DMU and the data for the remaining DMUs are assumed fixed. Obviously, this as-

sumption may not be realistic, since possible data errors may occur in each DMU.

Seiford and Zhu (1998) generalize the technique in Zhu (1998) and Seiford and Zhu

(1998) to the case where the efficiency of the under evaluation efficient DMU is deteri-

orating while the efficiencies of the other DMUs are improving.

In this paper, based on Boljunčić’s approach (2006), we propose a procedure to

obtain the complete region of efficiency (REo), assuming simultaneous inputs expan-

sion and outputs contraction of an efficient DMUo. We start with the extended DEA

model which results a point DMU∗
o on the boundary of REo, by maximal input/output

changes. Next, by using the optimal simplex tableau, and applying parametric program-

ming with input/output changes as parameters, we obtain all possible input/output

changes. This results with the complete REo, represented with hyperplanes which

serve as boundary to input/output changes. Also, we can use coefficients of this hy-

perplanes as dual multipliers, thus making connection to the sensitivity approach as in

Thompson et al.(1994).

The plan for the rest of this paper is as follows. Section 2 formalized the formal
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expression of the concepts with which we deal. In section 3, we present a sensitivity

analysis approach with a new point of view. In section 4 we describe the proposed

approach by a simple example. Finally, section 5 draws our conclusive remarks.

2 Region of efficiency

We assume that there are n DMUs to be evaluated indexed by j = 1, 2, ..., n and

each DMU is assumed to produce s different outputs from m different inputs. Let

the observed input and output vectors of DMUj be Xj = (x1j , ..., xmj) and Yj =

(y1j , ..., ysj) respectively. The production possibility set of obviously most widely used

DEA model, BCC, is defined as semi-positive vectors (X, Y ) as follows:

PPS = {(X, Y )T |Y ≤
n∑

j=1

λjYj , X ≥
n∑

j=1

λjXj ,
n∑

j=1

λj = 1, λj ≥ 0, j = 1, ..., n} (1)

Then DMUo = (Xo, Yo)T is efficient if and only if there is no other point (X, Y )T

from PPS where xio ≥ xi, i = 1, ...,m and yro ≤ yr, r = 1, ..., s with at least one strict

inequality. As stated before, we are interested in sensitivity analysis of an efficient

DMUo and obtaining the region of efficiency for it. Since input contraction and output

expansion of DMUo will not decrease its efficiency, we consider only input/output

changes of the form

x∗io = xioβi, βi ≥ 1 i = 1, ...,m

y∗ro = yroαr, 0 < αr ≤ 1 r = 1, ..., s (2)

DMU∗
o = (X∗

o , Y ∗
o )T

Region of efficiency for the efficient DMUo, REo, is defined as the set of all possible

values that DMU∗
o can obtain and still be efficient. As it seems from (2), we consider

a new point of view for REo based on inputs expansion and outputs contraction of

DMUo. We have:
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REo = {(X∗
o , Y ∗

o )T | X∗
o ≥ Xo, Y ∗

o ≤ Yo, (X∗
o , Y ∗

o )T is efficient compared to remaining

n-1 DMUs}

For dealing with REo we introduce reduced production possibility set, RPPSo,

defined as PPS in (1), with the only difference that DMUo is removed from reference

set. In other words, RPPSo is a subset of PPS, and defined as follows (figures 1 and 2

represent RPPS2, obtained from PPS by removing DMU2):

RPPSo = {(X, Y )T |Y ≤
n∑

j=1,j 6=o

λjYj , X ≥
n∑

j=1,j 6=o

λjXj ,
n∑

j=1,j 6=o

λj = 1, λ ≥ 0}

3 The procedure of sensitivity analysis.

We use an iterative procedure for sensitivity analysis of an extreme efficient DMUo.

We start with one of the facets of RPPSo, which is also a boundary one for REo. We

then proceed moving from one facet of RPPSo to the adjacent one, lead by possible

input/output changes, until we obtained all the facets which serve as a boundary of

REo. As a starting facet when applying this procedure, we can select any of the facets

of RPPSo which contain any DMU∗
o as in (2). Good selection to start is to choose a

facet of RPPSo which contains one of the projection points of DMUo such as DMU22

which is a projection point along output, or DMU21 which is a projection point along

input (see Figure 2). We can assume that this chosen input/output is the first input,

x1.

Min β1

s.t. −
n∑

j=1,j 6=o

λjx1j ≥ −β1x1o

−
n∑

j=1,j 6=o

λjxij ≥ −xio i = 2, ...,m

n∑
j=1,j 6=o

λjyrj ≥ yro r = 1, ..., s

n∑
j=1,j 6=o

λj = 1

β1 ≥ 1 λj ≥ 0 j = 1, ..., n

(3)
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Let β̂1 = β1 − 1 ≥ 0 then β1 = β̂1 + 1, and we have

Min β̂1 + 1

s.t. −
n∑

j=1,j 6=o

λjx1j + β̂1x1o ≥ −x1o

−
n∑

j=1,j 6=o

λjxij ≥ −xio i = 2, ...,m

n∑
j=1,j 6=o

λjyrj ≥ yro r = 1, ..., s

n∑
j=1,j 6=o

λj = 1

λj , β̂1 ≥ 0 j = 1, ..., n

(4)

suppose that (λ∗, β̂∗1) is optimal solution of LP model (4). Let β∗1 = β̂∗1 + 1. Then

DMU∗
0 = (x1β

∗
1 , x2, ..., xm, y1, ..., ys) ∈ REo (5)

The dual model of model (4) introduce the equation of an efficient facet contain

DMU∗
o . In other words, for identifying the equation of an efficient facet containing

DMU∗
o , we can use following model.

Max −
m∑

i=1

vixi0 +
s∑

r=1

µryro + w + 1

s.t. −
m∑

i=1

vixij +
s∑

r=1

µryrj + w ≤ 0 j = 1, ..., n j 6= o

v1x1o ≤ 1

vi ≥ 0 i = 1, ..., s

µr ≥ 0 r = 1, ..., s

(6)

Where in optimality we have

−
m∑

i=1

v∗i xio +
s∑

r=1

µ∗ryro + w∗ = β∗1 (7)

However, instead of solving model (6) we can obtain the negative values of optimal

dual variables are in the reduced cost row under the slack variables in the optimal
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simplex tableau of LP model (4). On the other hand from (7) we have −β̂∗1−
m∑

i=1

v∗i xio+

s∑
r=1

µ∗ryro + w∗ = 0 and since v∗1x1o = 1 (due to SCSC). Then −v∗1x1oβ̂
∗
1 −

m∑
i=1

v∗i xio +

s∑
r=1

µ∗ryro + w∗ = 0, and −v∗1x1o(β̂∗1 + 1)−
m∑

i=2

v∗i xio +
s∑

r=1

µ∗ryro + w∗ = 0. Therefore, we

have −v∗1x1oβ
∗
1 −

m∑
i=2

v∗i xio +
s∑

r=1

µ∗ryro + w∗ = 0

Hence, this is an equation of a supporting hyperplane at DMU∗
0 = (x1β

∗
1 , x2, ..., xm,

y1, ..., ys) which identify a facet of PPS. After a facet is obtained either as a starting

one, or during the iterative process, we assess the subset of input/output changes of

type (2) defined with that facet. To obtain other changes, if any exist, we have to

pivot from the obtained facet to the adjacent one and then repeat the procedure to

assess input/output changes defined with the new facet. Pivoting from this facet to the

adjacent one is done by applying parametric programming with input/output changes

as parameters applied to the right hand side (RHS) of LP model (4).

We assess this changes such that the obtained optimal basis of LP model (4) re-

mains optimal, i.e., nonnegativity and optimality is preserved because the introduced

changes do not affect the optimal basis and the obtained optimal simplex tableau (ex-

cept for the RHS, i.e., vector Γo). Since only the RHS has changed so the reduced

cost row is not affected. Following this, nonnegativity should be investigated. Using

notation Po = (−x1o, ...,−xmo, y1o, ..., yso, 1)T where Po corresponds to DMUo, except

for the negative sign in input and value 1 in the last entry of the vector. The in-

put/output changes can be represented as ∆ that is a diagonally matrix with diagonal

D = (β1, β2, ..., βm, α1, ..., αs, 1). It also means the following changes of the right hand

side vector in LP model (4): p∗o = ∆po = (−β1x1o, ...,−βmxmo, α1y1o, ..., αsyso, 1)T ,

where p∗o correspond to DMU∗
o . To preserve nonnegativity of the obtained optimal

basis of LP model (4), the following condition has to be satisfied: B−1p∗o ≥ 0, i.e.

−
m∑

i=1

b−1
ki βixio +

s∑
r=1

b−1
km+rαryro + b−1

kn ≥ 0, k = 1, ...,m + s + 1 (8)
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The input/ouput changes that satisfy (8) also define a subset of REo associated with

the obtained facet (i.e., with the optimal basis corresponding to that facet). Coefficients

of the first inequality in (8), the one corresponding to the basic variable β1, are in fact

optimal dual variables,

i.e. b−1
1i = v∗i , i = 1, ...,m, b−1

1m+r = µ∗r , r = 1, ..., s, and b−1
1n = w∗, and thus

coefficient of the obtained facet. Let us assume that DMU∗
o satisfies following inequality

for input/output changes.

−
m∑

i=1

v∗i βixio +
s∑

r=1

µ∗rαryro + w∗ ≥ 0 (9)

βi ≥ 1 i = 1, ...,m

0 < α ≤ 1 r = 1, ..., s

Then by inputs expansion and outputs contraction by multipliers β and α, respectively,

DMU∗
o is still efficient. To move to adjacent facet we have to perform a dual pivot step

in optimal simplex of LP model (4), i.e. one variable leaves and new one enters the

basis. In selecting variable which will leave the basis two conditions must be satisfied.

1: There must be negative coefficients in the corresponding row in the optimal

simplex tableau.

2: There must exist such input/output changes that the corresponding inequality

in (8) can be transformed into an equation.

By performing a dual pivot step, a new optimal basis (thus a new facet) is obtained

and we repeat the procedure with a new facet to assess further input/output changes.

We can use the following LP model to determine if a certain variable satisfies the second

condition. Without loss of generality, we can consider the l-th variable (one of the λs
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or slack variables, not the β1)

Min −
m∑

i=1

b−1
li βixio +

s∑
r=1

b−1
lm+rαryro + b−1

ln

s.t. −
m∑

i=1

b−1
ki βixio +

s∑
r=1

b−1
km+rαryro + b−1

kn ≥ 0 k = 1, ...,m + s + 1

0 < αi ≤ 1 i = 1, ...,m

βr ≥ 1 r = 1, ..., s

(10)

If the optimal value of the objective function of LP model (10) equals 0, the same

as RHS of that inequality in (8), then we can transform this inequality into an equality

for certain input/output changes. Thus, we can perform the pivot step.

After pivoting we repeat the process with the new simplex tableau associated with

the new facet that are boundary of REo. The iteration part of the procedure is contin-

ued until the new produced basis is same as previous basis or in the next tableau we

obtain β̂∗ < 0, which result contraction of input (β∗ = β̂∗ + 1 < 1) and as mentioned

before, in this case, projected point is indeed efficient. Hence, we obtain the complete

REo.

4 Numerical example

Let us assume that we have 5 DMUs, each using one input to produce one output with

data given in table 1. See Figure 1, where PPS defined with these DMUs is represented.

Table 1. The Raw Data set.
DMU1 DMU2 DMU3 DMU4 DMU5

X-input 1.5 3 9 3.5 5

Y-output 2 8 9 5.5 7

DMU2 is extreme efficient and we can apply the above sensitivity analysis procedure.

We start the procedure by changing the (first) input using LP model (4). Hence:
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Min β̂

s.t. 3β̂ − 1.5λ1 − 9λ3 − 3.5λ4 − 5λ5 ≥ −3

2λ1 + 9λ3 + 5.5λ4 + 7λ5 ≥ 8

λ1 + λ3 + λ4 + λ5 = 1

β̂, λj ≥ 0 j = 1, ..., 5

(11)

The optimal value of LP model (11) is β̂∗ = 4/3 with variables β̂, λ3 and λ5 in the

optimal basis, λ∗3 = 0.5 and λ∗5 = 0.5. The projection point along the input using

β∗ = (4/3) + 1 = 7/3 is DMU∗
2 = (7, 8) and the optimal simplex tableau is as follows:

β̂ β̂ λ1 λ3 λ4 λ5 s− s+ sa1 sa2 sa3 Γo

cj − zj 0 2.167 0 0.5 0 0.333 0.667 M-0.333 M- 0.667 M+3 -1.333

β̂ 1 -2.167 0 -0.5 0 -0.333 -0.667 0.333 0.667 -3 1.333

λ5 0 3.5 0 1.75 1 0 0.5 0 -0.5 4.5 0.5

λ3 0 -2.5 1 -0.75 0 0 -0.5 0 0.5 -3.5 0.5
Tableau 1 Optimal simplex tableau of Step 1

The optimal dual variables, i.e., v∗ = 0.333, µ∗ = 0.667, w∗ = −3, are coefficients of

the facet which contain the projection point (DMU∗
2 ). The equation of that facet is

−0.333x + 0.667y − 3 = 0 (12)

Based on this equation we have a subset of RE2 defined as

−0.333x + 0.667y − 3 ≥ 0 (13)

Equivalently, the input/output changes defined with this hyperplane must satisfy

−β + 5.336α ≥ 3

0 < α ≤ 1

β ≥ 1
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In the next step we should assess input/output changes which preserve nonnegativ-

ity of the obtained basis, thus the optimal basis will remain optimal (−B−1p∗o ≥ 0).

−β + 5.336α ≥ 3

−4α ≥ −4.5

4α ≥ 3.5

We should pivot to the adjacent facet for selecting variable that leave the basis.

We have negative coefficients only in the third row of the optimal simplex tableau. We

solve LP model (14) as follows:

Min 4α

s.t. −β + 5.336α = 3

−4α ≥ −4.5

4α ≥ 3.5

0 < α ≤ 1

β ≥ 1

(14)

We obtain α∗ = 0.875 and 3.5 as the optimal value of the objective function. Since

this value equals RHS we can perform the dual pivot step. This result with λ3 (thus

DMU3) leaving the basis, and λ4 (thus DMU4) entering the basis, and the new basis

as well as new facet are obtained. We repeat the process, using the new simplex tableau.

β̂ β̂ λ1 λ3 λ4 λ5 s− s+ sa1 sa2 sa3 Γo

cj − zj 0 0.5 0.667 0 0 0.333 0.333 M-0.333 M-0.333 M+0.667 -1

β̂ 1 -0.5 -0.667 0 0 -0.333 -0.333 0.333 0.333 -0.667 1

λ5 0 -2.333 2.333 0 1 0 -0.667 0 0.667 -3.667 1.667

λ4 0 3.333 -1.333 1 0 0 0.667 0 -0.667 4.667 -0.667
Tableau 2 Simplex tableau after pivoting in the first Step

From tableau 2 we obtain the inverse of a new basis matrix and new dual variables

v = 0.333, µ = 0.333, w = −0.667. then, the equation of the new facet is
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−0.333x + 0.333y − 0.667 = 0 (15)

Based on this equation we have a subset of RE2 defined as

−0.333x + 0.333y − 0.667 ≥ 0 (16)

Equivalently, input/output changes must satisfy

−β + 2.664α ≥ 0.667

0 < α ≤ 1

β ≥ 1

Nonnegativity of the obtained basis is preserved for input/outpot changes satisfying

−β + 2.664α ≥ 0.667

5.333α ≥ 3.667

−5.333α ≥ −4.667

To move to the adjacent facet we should consider the second row in tableau 2. The

corresponding LP model is

Max 5.333α

s.t. −β + 2.664α = 0.667

5.333α ≥ 3.667

−5.333α ≥ −4.667

0 < α ≤ 1

β ≥ 1

(17)

By solving (17) we obtain 3.667 as the optimal value of the objective function,

which is equal to the RHS of the second inequality. Thus, we can pivot to the adjacent

facet. This result with λ5 leaving the basis, and λ1 entering the basis, and the new basis

as well as new facet are obtained. We repeat the process, using the new simplex tableau.
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β̂ β̂ λ1 λ3 λ4 λ5 s− s+ sa1 sa2 sa3 Γo

cj − zj 0 0 1.167 0 0.214 0.333 0.190 M-0.333 M-0.190 M-0.119 -0.643

β̂ 1 0 -1.167 0 -0.214 -0.333 -0.190 0.333 0.190 0.119 0.643

λ1 0 1 -1 0 -0.429 0 0.286 0 -0.286 1.571 -0.714

λ4 0 0 2 1 1.429 0 -0.286 0 0.286 -0.571 1.714
Tableau 3 Optimal simplex tableau of Step 2

Dual variables are v = 0.333, µ = 190, w = 0.119 and the equation of the new

facet is

−0.333x + 0.190y + 0.119 = 0 (18)

Based on this equation we have a subset of RE2 defined as

−0.333x + 0.190y + 0.119 ≥ 0 (19)

Equivalently, input/output changes must satisfy

−β + 1.52α ≥ 0.119

0 < α ≤ 1

β ≥ 1

Here, by entering λ5 and leaving λ1, possible dual pivoting will only reverse the

previous pivoting. Moreover, by entering s+ and leaving λ4, we obtain β̂∗ = −0.5 < 0.

This implies that we can not pivot to some new facet. Hence, we obtained all facets of

RPPS2 which serve as boundary for RE2.

Input/output changes can be assessed such that at least one of the inequalities

from the system of inequalities defined with these hyperplanes holds, i.e., DMU∗
o must

satisfy at least one of the given inequalities. In our example these inequalities are as

follows:

−0.333x + 0.667y − 3 ≥ 0
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−0.333x + 0.333y − 0.667 ≥ 0

−0.333x + 0.190y + 0.119 ≥ 0

Equivalently, when using input/output changes as follows:

−β + 5.336α ≥ 3

−β + 2.664α ≥ 0.667

−β + 1.52α ≥ 0.119

0 < α ≤ 1

β ≥ 1

The areas associated to the above inequalities are depicted in figures 3, 4, and 5.

5 Conclusion

In this paper we have proposed an approach to sensitivity analysis where input/output

change of type (2) are considered. We are interested in efficiency preservation of an

extreme efficient DMUo. The characterization of the complete region of efficiency for

DMUo, REo, is obtained. i.e. we give sufficient and necessary condition on input

expansion or output contraction of DMUo so that it remains efficient.

In our approach we have used one LP model (LP model (4)) and obtained projection

of DMUo on the RPPSo, but sometimes LP model (4) can be infeasible this implies that

we can not obtain the projection point on RPPSo along a chosen input or output. We

can possibly bypass the infeasibility of LP model (4) by choosing another input/output

which will not result with its infeasibility. But, when considering infeasibility we should

focus on two aspects. First, we have to bypass the infeasibility in order to continue

with the sensitivity analysis procedure. Second, we have to obtained the infeasibility

region for a chosen input or output. Further research will concentrate on this problem

and the situations where LP model (4) is infeasible along all chosen inputs or outputs.
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