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Abstract

In this paper, by considering the notions of dual right and dual left stabilizers in

bounded BCK-algebras, we obtain some related results. After that we investigate

the relationship between the dual left(right) stabilizers and dual ideals in bounded

BCK-algebras. Then we define a class of special bounded BCK-algebras called

dual normal BCK-algebras. Finally we prove that the dual semisimple bounded

BCK-algebras and dual J-semisimple bounded BCK-algebras are all dual nor-

mals.

Keywords BCK-algebra, Bounded BCK-algebra, Dual right and dual left sta-

bilizers, Dual normal BCK-algebra, Dual semisimple BCK-algebra.

c© 2009 Published by Islamic Azad University-Karaj Branch.

1 Introduction

The study of BCK-algebras was initiated by Y. Imai and K-Iseki [3] in 1966 as a

generalization of the concept of set-theoretic difference and propositional calculus. Since

then a great deal of literature has been produced on the theory of BCK-algebras, in

particular, emphasis seems to have been put on the ideal theory of BCK-algebras. Dual

ideals are important in bounded BCK-algebras. In 1986, the notion of dual ideals in

bounded BCK-algebras was introduced by J. Meng [8] and gave certain properties of

it. In 1997, Y. Huang and Z. Chen [2] introduced the notions of right and left stabilizers
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and normal BCK-algebras. Now, in this paper we define the dual left and dual right

stabilizers and dual normal BCK-algebras, as mentioned in the abstract.

2 Preliminaries

We give herein the basic notions on BCK-algebras. For further information, we refer to

the book [11]. By a BCK-algebra we mean an algebra (X, ∗, 0) of type (2,0) satisfying

the following axioms: for every x, y, z ∈ X,

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0, (ii) (x ∗ (x ∗ y)) ∗ y = 0,

(iii) x ∗ x = 0,

(iv) x ∗ y = y ∗ x = 0 ⇒ x = y,

(v) 0 ∗ x = 0.

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. In a BCK-

algebra X, the following hold: for all x, y, z ∈ X

(a) x ∗ 0 = x

(b) x ∗ y ≤ x,

(c) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(d) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x, (e) x ∗ (x ∗ (x ∗ y)) = x ∗ y.

A BCK-algebra X is said to be commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for all

x, y ∈ X. A subalgebra of X is a nonempty subset A of X such that x ∗ y ∈ A, for all

x, y ∈ A. A nonempty subset A of X is called an ideal of X if it satisfies (i) 0 ∈ A

(ii) (∀x ∈ X)(∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A).

If there is an element 1 of X satisfying x ≤ 1, for all x ∈ X, then the element 1 is called

unit of X. A BCK-algebra with unit is called bounded . In a bounded BCK-algebra

with unit 1, we denote 1 ∗ x by Nx and NA = {Nx ∈ X| x ∈ A}, for all ∅ 6= A ⊆ X.

A bounded BCK-algebra X is called involutory if NNx = x, for all x ∈ X.
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A nonempty subset D of a bounded BCK-algebra X is called a dual ideal if

(i) 1 ∈ D

(ii) N(Nx ∗Ny) ∈ D and y ∈ D imply that x ∈ D, for any x, y ∈ X.

For brevity, we need the following notation in a BCK-algebra X: for all x, y ∈ X

and n ∈ ℵ(natural numbers),

x ∗0 y = x, x ∗1 y = x ∗ y, ..., x ∗n+1 y = (x ∗n y) ∗ y

3 Dual stabilizers in bounded BCK-algebras

In the sequel let X be a bounded BCK-algebra with unit 1 , unless otherwise specified.

Definition 3.1 Let A be a nonempty subset of X. Then the sets

DAl = {x ∈ X| Na ∗Nx = Na,∀a ∈ A}

and

DAr = {x ∈ X| Nx ∗Na = Nx,∀a ∈ A}

are called the dual left and dual right stabilizers of A, respectively and the set DA =

DAl ∩DAr is called the dual stabilizer of A.

For convenience the dual stabilizer, dual left and dual right stabilizers of a single element

set A = {a} are denoted by DSa, DLa and DRa, respectively.

Theorem 3.2 Let X be an involutory BCK-algebra and A be a nonempty subset

of X. Then:

(i) N(DAl) = (NA)∗l , N(DAr) = (NA)∗r and N(DA) = (NA)∗,

(ii) N(A∗
l ) = D(NA)l, N(A∗

r) = D(NA)r and N(A∗) = D(NA).

Proof (i) By Definition 2.4, we have

(NA)∗l = {x ∈ X| h ∗ x = h,∀h ∈ NA}
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= {x ∈ X| Na ∗ x = Na,∀a ∈ A}

Now let z ∈ N(DAl). Then z = Nt, for some t ∈ DAl and so Na ∗ Nt = Na, for all

a ∈ A. Thus Na ∗ z = Na, for all a ∈ A, i.e. z ∈ (NA)∗l . Therefore N(DAl) ⊆ (NA)∗l .

Now let z ∈ (NA)∗l . Then Na∗z = Na, for all a ∈ A and so by hypothesis Na∗NNz =

Na, for all a ∈ A. Hence Nz ∈ DAl. Since X is involutory, then z ∈ N(DAl),

i.e. (NA)∗l ⊆ N(DAl). Therefore N(DAl) = (NA)∗l . By similar above argument,

we obtain N(DAr) = (NA)∗r . By hypothesis we have N(DA) = N(DAl ∩ DAr) =

N(DAl) ∩N(DAr) = (NA)∗l ∩ (NA)∗r = (NA)∗.

(ii) The proof is similar to (i).

The following example shows that the condition ” X is an involutory BCK-algebra”

in the above theorem is necessary.

Example 3.3 Let X = {0, a, b, c, d, e, f, 1} and let ∗ operation be given by the fol-

lowing table

∗ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0

a a 0 0 0 a 0 0 0

b b a 0 0 b a 0 0

c c a a 0 c a a 0

d d d d d 0 0 0 0

e e d d d a 0 0 0

f f e d d b a 0 0

1 1 e e d c a a 0

Then (X, ∗, 0) is a bounded BCK-algebra with unit 1 and it is not involutory, because

1 ∗ (1 ∗ b) = 1 ∗ e = a 6= b.

Consider A = {c}. Then NA = {d}. Since b ∗ d = b and d ∗ b = d, so b ∈ (NA)∗r ∩

(NA)∗l = (NA)∗. Also we have b 6∈ NX = {1, e, d, c, a}, thus b 6∈ N(DAr) and

b 6∈ N(DAl). Therefore N(DAl) 6= (NA)∗l , N(DAr) 6= (NA)∗r and N(DA) 6= (NA)∗.
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If consider B = {d}. Then NB = {c}. Since (1 ∗ f) ∗ (1 ∗ c) = a ∗ d = a = 1 ∗ f

and (1 ∗ c) ∗ (1 ∗ f) = d ∗ a = d = 1 ∗ c, then f ∈ D(NB)r ∩ D(NB)l = D(NB).

So f 6∈ NX implies that f 6∈ N(B∗
r ) and f 6∈ N(B∗

l ). Therefore N(B∗
l ) 6= D(NB)l,

N(B∗
r ) 6= D(NB)r and N(B∗) 6= D(NB).

Theorem 3.4 Let A be a nonempty subset of X. Then DAl is a dual ideal of X.

Proof Let N(Nx ∗Ny) ∈ DAl and y ∈ DAl. Then for all a ∈ A

Na = Na ∗NN(Nx ∗Ny) = (Na ∗Ny) ∗NN(Nx ∗Ny)

= (Na ∗NN(Nx ∗Ny)) ∗Ny

= (NNN(Nx ∗Ny) ∗ a) ∗Ny

= (N(Nx ∗Ny) ∗ a) ∗Ny

= (Na ∗ (Nx ∗Ny)) ∗Ny

= (Na ∗Ny) ∗ (Nx ∗Ny)

≤ Na ∗Nx

Thus Na ≤ Na ∗Nx, for all a ∈ A. Also we have Na ∗Nx ≤ Na, so Na ∗Nx = Na,

for all a ∈ A, i.e. x ∈ DAl. Therefore DAl is a dual ideal of X.

The following example shows that DAr is not a dual ideal in general.

Example 3.5 Let X = {0, 1, 2, 3, 4} and let ∗ operation be given by the following
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table
∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0

Then (X, ∗, 0) is a bounded BCK-algebra with unit 4. Consider A = {3}, it is easy to

check that DAr = {1, 4}. Now we see that 4 ∗ ((4 ∗ 3) ∗ (4 ∗ 1)) = 4 ∈ DAr and 1 ∈ DAr

but 3 6∈ DAr. Hence DAr is not a dual ideal of X.

The following example shows that DAr and DAl are not subalgebras of a bounded

BCK-algebra X in general.

Example 3.6 Let X = {0, 1, 2, 3} and ∗ operation be given by the

∗ 0 1 2 3

0 0 0 0 0

1 1 0 1 0

2 2 2 0 0

3 3 2 1 0

Then (X, ∗, 0) is a bounded BCK-algebra with unit 3. Put A = {1, 2}, then DAr =

{3} = DAl, it is clear that DAr and DAl are not subalgebras of X.

Theorem 3.7 Let X be a commutative bounded BCK-algebra and A be a nonempty

subset of X. Then

(i) DAr = DAl = DA,

(ii) DAr and DAl are dual ideals of X.

Proof The proof of (i) follows from the definition of commutative and the proof of

(ii) follows from Theorem 3.4 and (i).
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Lemma 3.8 Let x ∈ X. Then NNx = 1 if and only if x = 1.

Proof Let NNx = 1. Put 1 ∗ x = a, so by hypothesis we get that 1 ∗ a = 1. Hence

0 = a ∗ a = (1 ∗ x) ∗ a = (1 ∗ a) ∗ x = 1 ∗ x = a. Then 1 ∗ x = 0 and so x = 1. The proof

of the converse is easy.

Theorem 3.9 If 0 ∈ A ⊆ X, then DAl = DAr = DA = {1}.

Proof It is clear that 1 ∈ DAl ∩DAr. Now let x ∈ DAr, then Nx ∗Na = Nx, for all

a ∈ A, and so 0 = Nx ∗ 1 = Nx ∗N0 = Nx. Thus x = 1. Therefore DAr = {1}. Let

x ∈ DAl. Then Na ∗ Nx = Na, for all a ∈ A. Hence N0 ∗ Nx = N0, i.e. NNx = 1

and so by Lemma 3.8, x = 1. Thus DAl = {1}. Therefore DA = {1}.

Theorem 3.10 If A = {1}, then DAl = DAr = DA = X.

Proof Let z ∈ X. Then Nz = Nz ∗ 0 = Nz ∗N1 and N1 = 0 = 0 ∗Nz = N1 ∗Nz.

So z ∈ DAl ∩DAr = DA. Therefore DAl = DAr = DA = X.

Theorem 3.11 Let A be a nonempty subset of X. If DAl = X or DAr = X or

DA = X , then A = {1}.

Proof Let DAr = X and a ∈ A ⊆ X. Then a ∈ DAr implies that 0 = Na ∗Na = Na

and so a = 1. Therefore A = {1}. Similarly, DAl = X or DA = X implies that

A = {1}.

Theorem 3.12 Let A be a nonempty subset of X. Then 0 ∈ DAl ∪ DAr ∪ DA if

and only if A = {1}.

Proof Let 0 ∈ DAl ∪DAr ∪DA. Then NNa = 1, for all a ∈ A, and so by Lemma

3.8 A = {1}. Conversely, let A = {1}. Then by Theorem 3.10, it is clear that 0 ∈

DAl ∪DAr ∪DA.
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Theorem 3.13 Let A be a nonempty subset of X. Then DAl(DAr, DA) is a sub-

algebra of X if and only if A = {1}.

Proof The proof follows from Theorems 3.10 and 3.12.

Theorem 3.14 If Nx = 1, for all x ∈ X −{1}, then DAr = DAl = DA = {1}, for

any nonempty subset A 6= {1} of X.

Proof Straightforward.

Theorem 3.15 Let ∅ 6= A ⊆ X. If there exists a ∈ A such that Na = 1, then

DAr = DAl = DA = {1}.

Proof Let x ∈ DAr. Then Nx∗Nt = Nx, for all t ∈ A. Put t = a, then Nx = Nx∗1 =

0, and so x = 1. Thus DAr = {1}. Similarly we can get that DAl = DA = {1}.

Theorem 3.16 Let a ∈ X − {0, 1} and Nx = 1, for all x ∈ X − {a, 1}. Then

DAr = DAl = DA = {1}, for any nonempty subset A 6= {1} of X.

Proof First we show that 1 ∗ a = a. Let 1 ∗ a = c and c 6= a. Since 1 ∗ a 6= 1, then

c 6= 1 and also a 6= 1 implies that c 6= 0. Then 0 = c ∗ c = (1 ∗ a) ∗ c = (1 ∗ c) ∗ a = 1 ∗ a,

so a = 1, which is not true. Thus 1 ∗ a = a. Now we consider two cases:

Case i: a 6∈ A. If x ∈ DAr, then (1 ∗ x) ∗ (1 ∗ b) = 1 ∗ x, for all b ∈ A. Thus we

get that 1 ∗ x = 0, hence x = 1. Therefore DAr = {1}. Also x ∈ DAl implies that

(1∗ b)∗ (1∗x) = 1∗ b, for all b ∈ A, thus we get that NNx = 1. Then x = 1, by Lemma

3.8, and so DAl = {1}.

Case ii: a ∈ A. If A 6⊆ {a, 1}, then similar to above argument we get that DAr = DAl =

DA = {1}. If A = {a} or A = {a, 1}. Then x ∈ DAr implies that (1∗x)∗(1∗a) = 1∗x.

Since a 6= 0, so x 6= a. If x 6= 1, then we get that 1 ∗ a = 1, hence a = 1, which is not

true. Then x = 1 and so DAr = {1}. Similarly we can get that DAl = DA = {1}.
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Theorem 3.17 For all x, y, y1, y2, ..., yn ∈ X,

NN((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) = (...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn

also NN(Nx ∗n y) = Nx ∗n y.

Proof It is clear that NN((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) ≤ (...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn.

Now

((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) ∗NN((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn)

= (...(((Nx ∗NN((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn)) ∗ y1) ∗ y2) ∗ ...) ∗ yn

= (...(((NNN((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) ∗ x) ∗ y1) ∗ y2) ∗ ...) ∗ yn

= (...(((N((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn)) ∗ x) ∗ y1) ∗ y2) ∗ ...) ∗ yn

= ((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) ∗ ((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) = 0

Therefore NN((...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn) = (...((Nx ∗ y1) ∗ y2) ∗ ...) ∗ yn.

Put y1 = y2 = ... = yn = y, we get that NN(Nx ∗n y) = Nx ∗n y.

Theorem 3.18 Let D be a dual ideal of X. Then NNx ∈ D if and only if x ∈ D.

Proof Let x ∈ D. Since N(NNNx ∗Nx) = N(Nx ∗Nx) = 1 ∈ D and x ∈ D, then

NNx ∈ D. Conversely, let NNx ∈ D, since NNx ≤ x and so x ∈ D.

Theorem 3.19 Let A be a nonempty subset of X. Then

(i) [A] ∩DAr = {1},

(ii) DAr = D[A]r,

(iii) if DAr is a dual ideal of X, then DA = DAr.

Proof (i) Let x ∈ [A] ∩ DAr. Then by x ∈ [A], there exists a1, a2, ..., an ∈ A such

that (...((Nx ∗Na1) ∗Na2) ∗ ...) ∗Nan = 0, moreover by x ∈ DAr, Nx = Nx ∗Nan =

(Nx ∗ Nan−1) ∗ Nan = ... = (...((Nx ∗ Na1) ∗ Na2) ∗ ...) ∗ Nan = 0, so Nx = 0, i.e.

x = 1. Therefore [A] ∩DAr = {1}.

(ii) Let x ∈ D[A]r. Since A ⊆ [A], then Nx ∗Na = Nx, for all a ∈ A. Hence x ∈ DAr.
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On the other hand, suppose that x ∈ DAr. So Nx ∗Na = Nx, for all a ∈ A. For any

a ∈ [A], there exists a1, a2, ..., an ∈ A, such that (...((Na ∗Na1) ∗Na2) ∗ ...) ∗Nan = 0.

By hypothesis we have (...((Nx ∗Na1) ∗Na2) ∗ ...) ∗Nan = Nx. So

Nx ∗ (Nx ∗Na) = ((...((Nx ∗Na1) ∗Na2) ∗ ...) ∗Nan) ∗ (Nx ∗Na)

= (...(((Nx ∗ (Nx ∗Na)) ∗Na1) ∗Na2) ∗ ...) ∗Nan

≤ (...((Na ∗Na1) ∗Na2) ∗ ...) ∗Nan = 0

Namely, Nx ≤ Nx ∗Na, and so Nx ∗Na = Nx, for all a ∈ [A]. Hence x ∈ D[A]r.

(iii) It is clear that DA ⊆ DAr. Now let x ∈ DAr. So by Lemma 3.18 NNx ∈ DAr

and NNa ∈ [A], for all a ∈ A. Since Na ∗ (Na ∗Nx) ≤ Nx and Na ∗ (Na ∗Nx) ≤ Na,

for all a ∈ A, then NNx ≤ N(Na ∗ (Na ∗ Nx)) and NNa ≤ N(Na ∗ (Na ∗ Nx)).

Thus by hypothesis we get that N(Na ∗ (Na ∗Nx)) ∈ [A] ∩DAr = {1}, by (i). Then

N(Na ∗ (Na ∗Nx)) = 1 and so by Theorem 3.17, Na ∗ (Na ∗Nx) = NN(Na ∗ (Na ∗

Nx)) = N1 = 0, for all a ∈ A. Hence Na ∗Nx = Na, for all a ∈ A . Thus x ∈ DAl,

i.e. x ∈ DAr ∩DAl = DA. Therefore DA = DAr.

Theorem 3.20 Let A and B be nonempty subsets of X. Then

(i) A ∩DAl = ∅ or {1}, A ∩DAr = ∅ or {1} and A ∩DA = ∅ or {1},

(ii) if A ⊆ B, then DBl ⊆ DAl, DBr ⊆ DAr and DB ⊆ DA,

(iii) A ⊆ D(DAr)l ∩D(DAl)r and A ⊆ D(DA),

(iv) DAl = D(D(DAl)r)l, DAr = D(D(DAr)l)r and DA = D(D(DA)),

(v) D(A ∪B)l = DAl ∩DAl, D(A ∪B)r = DAr ∩DAr and D(A ∪B) = DA ∩DB,

(vi) DAl =
⋂
a∈A

DLa, DAr =
⋂
a∈A

DRa and DA =
⋂
a∈A

DSa.

Proof (i) Let A
⋂

DAl 6= ∅. Then there exists x ∈ A ∩DAl and so Nx ∗Nx = Nx,

i.e. Nx = 0. Therefore x = 1. The proof of the other parts is similar.
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(ii) Let x ∈ DBl. Then Nb ∗Nx = Nb, ∀b ∈ B. Since A ⊆ B, Nb ∗Nx = Nb, ∀b ∈ A.

So x ∈ DAl. Similarly DBr ⊆ DAr and DB ⊆ DA.

(iii) Let a ∈ A. Then Nx ∗ Na = Nx, ∀x ∈ DAr and Na ∗ Ny = Na, ∀y ∈ DAl.

So a ∈ D(DAr)l ∩ D(DAl)r. Therefore A ⊆ D(DAr)l ∩ D(DAl)r. Since DA ⊆ DAr

and DA ⊆ DAl, then by (ii) D(DAr)l ⊆ D(DA)l and D(DAl)r ⊆ D(DA)r. Hence

A ⊆ D(DAr)l ∩D(DAl)r ⊆ D(DA)l ∩D(DA)r = D(DA).

(iv) By (iii) we get that DAl ⊆ D(D(DAl)r)l and DAr ⊆ D(D(DAr)l)r. Also by

(ii) and (iii) we have D(D(DAr)l)r ⊆ DAr and D(D(DAl)r)l ⊆ DAl. Therefore

DAl = D(D(DAl)r)l and DAr = D(D(DAr)l)r, similar to argument in (iii) we can get

that DA = D(D(DA)).

(v) Since A,B ⊆ (A ∪ B), then D(A ∪ B)l ⊆ DAl ∩ DBl. Now let x ∈ DAl ∩ DBl,

then Na ∗ Nx = Na, ∀a ∈ A and Nb ∗ Nx = Nb, ∀b ∈ B. Thus Na ∗ Nx = Na,

∀a ∈ (A ∪ B) i.e. x ∈ D(A ∪ B)l. Therefore D(A ∪ B)l = DAl ∩ DAl. Similarly

D(A∪B)r = DAr ∩DAr, also D(A∪B) = D(A∪B)r ∩D(A∪B)l = (DAr ∩DBr)∩

(DAl ∩DBl) = DA ∩DB.

(vi) The proof is similar to the proof of part (v).

The following example shows that A is a dual ideal, but DAr is not a dual ideal.

Example 3.21 Let X = {0, 1, 2, 3, 4} in which ∗ is defined by the table

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 1 0 0 0

3 3 3 3 0 0

4 4 3 3 1 0

Then (X, ∗, 0) is a bounded BCK-algebra with unit 4. Also A = {3, 4} is a dual ideal,
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but DAr = {1, 2, 4} is not a dual ideal, because 4 ∗ ((4 ∗ 3) ∗ (4 ∗ 2)) = 4 ∈ DAr and

2 ∈ DAr but 3 6∈ DAr.

Theorem 3.22 If A is a dual ideal of X, then DA is a dual ideal of X.

Proof Let N(Nx ∗ Ny) ∈ DA and y ∈ DA. Then by Theorem 3.4 we get that

x ∈ DAl. Since A is a dual ideal, then NNa ∈ A, for all a ∈ A. Also x ∈ DAl implies

that NNx ∈ DAl. We have NNx ≤ N(Nx∗(Nx∗Na)) and NNa ≤ N(Nx∗(Nx∗Na)).

Then by hypothesis we get that N(Nx ∗ (Nx ∗ Na)) ∈ A ∩ DAl = {1}, by Theorem

3.20(i) and so N(Nx ∗ (Nx ∗ Na)) = 1, for all a ∈ A. Hence, by Theorem 3.17 ,

Nx = Nx ∗Na, i.e. x ∈ DAr. Therefore x ∈ DA.

Theorem 3.23 Let A and B be two dual ideals of X. Then A ∩ B = {1} if and

only if A ⊆ DB.

Proof Let A ∩ B = {1} and a ∈ A. Since NNa ≤ N(Na ∗ (Na ∗ Nb)) and NNb ≤

N(Na ∗ (Na ∗ Nb)), for all b ∈ B, also NNa ∈ A and NNb ∈ B, thus by hypothesis

we get that N(Na ∗ (Na ∗ Nb)) ∈ A ∩ B = {1}. Then N(Na ∗ (Na ∗ Nb)) = 1 and

so Na ∗ (Na ∗ Nb) = 0, by Theorem 3.17. Therefore Na = Na ∗ Nb, for all b ∈ B.

Similarly, we can get that Nb ∗Na = Nb, for all b ∈ B, then a ∈ DB.

Conversely, let A ⊆ DB. Consider x ∈ A ∩B. Then Nx ∗Nb = Nx, for all b ∈ B and

so 0 = Nx ∗Nx = Nx. Thus x = 1. Therefore A ∩B = {1}.

Theorem 3.24 A be a dual ideal of X. Then DAl = DA ⊆ DAr. In particular, if

DAr is a dual ideal of X, DA = DAl = DAr.

Proof We have DA ⊆ DAl. Since DAl and A are dual ideals and DAl ∩ A = {1} by

Theorem 3.20(i), then DAl ⊆ DA, by Theorem 3.23. Therefore DAl = DA ⊆ DAr.

In particular, if DAr is a dual ideal of X, then by Theorem 3.19(iii) we get that

DA = DAr. Therefore DA = DAl = DAr.
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4 Dual normal BCK-algebras

Definition 4.1 A bounded BCK-algebra X is called dual normal, if the dual right

stabilizer DRa of any element a ∈ X is a dual ideal of X.

The following theorem follows from Theorems 3.10, 3.14 and 3.16.

Theorem 4.2 Under each of the following conditions, X is dual normal.

(i) Nx = 1, for all x ∈ X − {1},

(ii) a ∈ X − {0, 1} and Nx = 1, for all x ∈ X − {a, 1}.

According to Theorem 3.7 any commutative bounded BCK-algebra is a dual normal

BCK-algebra, but the converse may not be true.

Example 4.3 Let X = {0, 1, 2, 3, 4} in which ∗ is defined by the table

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 1 0 0 0

3 3 3 3 0 0

4 4 4 4 4 0

Then (X, ∗, 0) is a bounded BCK-algebra with unit 4 and it is dual normal, by Theorem

4.2(i). But X is not commutative, because 4 ∗ (4 ∗ 2) = 0 6= 2 = 2 ∗ (2 ∗ 4).

Theorem 4.4 The following statements are equivalent:

(i) X is dual normal,

(ii) DRa ⊆ DLa, ∀a ∈ X,

(iii) DRa = DLa, ∀a ∈ X,

(v) Nx ∗Ny = Nx implies Ny ∗Nx = Ny, ∀x, y ∈ X.
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Proof (i) → (ii) Since X is dual normal, then for all a ∈ X , DRa is a dual ideal of

X. So

DRa = D[a]r, by Theorem 3.19(ii)

= D[a]l, by Theorem 3.24

⊆ DLa, by Theorem 3.20(ii)

(ii) → (iii) For any x ∈ DLa, we have Na ∗ Nx = Na, thus a ∈ DRx. By (ii)

we have DRx ⊆ DLx, hence a ∈ DLx. So Nx ∗ Na = Nx, i.e. x ∈ DRa. Hence

DLa ⊆ DRa. Therefore DRa = DLa.

(iii) → (v) Assume that x, y ∈ X and Nx ∗Ny = Nx. Then x ∈ DRy = DLy and so

Ny ∗Nx = Ny.

(v) → (i) By hypothesis we have

DRa = {x ∈ X | Nx ∗Na = Nx} = {x ∈ X | Na ∗Nx = Na} = DLa

Since DLa is a dual ideal, then DRa is too. Therefore X is dual normal.

Definition 4.5 A bounded BCK -algebra X is called dual semisimple if every dual

ideal A of X is a sub-summand of X, i.e. there exists a dual ideal B of X such that

A
⋂

B = {1} and X = [A
⋃

B].

Consider Example 3.6. It is easy to check that A1 = {1, 3} , A2 = {3, 2}, A3 = {3} and

A4 = {0, 1, 2, 3} are the only dual ideals of X. Also A1 ∩ A2 = {3} and [A1
⋃

A2] =

[{1, 2, 3}] = X. Thus X is dual semisimple.

Theorem 4.6 Every dual semisimple bounded BCK-algebra is dual normal.

Proof Let a ∈ X. Then there exists a dual ideal B of X such that [a] ∩B = {1} and

X = [[a]
⋃

B]. By [a] ∩ B = {1} and Theorem 3.23 we get that B ⊆ D[a] ⊆ D[a]r.
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Since by Theorem 3.19(ii) D[a]r = DRa, then B ⊆ DRa. Let x ∈ DRa. Then by

x ∈ X = [[a]
⋃

B] there exists n ∈ ℵ such that N(Nx ∗n Na) ∈ B. Since x ∈ DRa ,

then Nx∗nNa = Nx. Hence NNx ∈ B and so x ∈ B by Lemma 3.18. Thus B = DRa.

Therefore X is dual normal.

Theorem 4.7 Let [a] be a sub-summand of X, for any a ∈ X. Then DRa is a

sub-summand of X, for any a ∈ X.

Proof Let a ∈ X. Then there exists dual ideal B of X such that X = [[a]
⋃

B] and

[a] ∩B = {1}. By the proof of Theorem 4.6, we get that B = DRa. Therefore DRa is

a sub-summand of X.

Theorem 4.8 et X be a finite bounded BCK-algebra. Then the following are equiv-

alent:

(i) X is dual normal,

(ii) [a] is a sub-summand of X, for any a ∈ X

(iii) DRa is a sub-summand of X, for any a ∈ X

(iv) There exists a fixed natural number n such that Nx ∗ (Ny ∗n Nx) = Nx, for all

x, y ∈ X,

(v) There exists a fixed natural number n such that Nx∗ (Nx∗Ny) ≤ Ny ∗ (Ny ∗n Nx),

for all x, y ∈ X,

(vi) X is dual semisimpel.

Proof (i)→ (ii) Let a ∈ X. Since for all x ∈ X, ... ≤ Nx ∗n Na ≤ ... ≤ Nx ∗2 Na ≤

Nx ∗Na and X is finite, then there exists n ∈ ℵ such that Nx ∗n Na = Nx ∗n+1 Na.

This show that by Theorem 3.17, NN(Nx ∗n Na) ∗ Na = NN(Nx ∗n Na) and so

N(Nx ∗n Na) ∈ DRa, Since DRa is a dual ideal, then by Theorem 2.3, we get that

x ∈ [[a] ∪ DRa] i.e. X = [[a] ∪ DRa]. Also by Theorem 3.19(i), [a] ∩ DRa = {1}.

Therefore [a] is a sub-summand of X.

(ii)→ (iii) It is proved in Theorem 4.7.
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(iii) → (iv) Let x, y ∈ X. Since DRx is a sub-summand of X, then there exists a dual

ideal A of X such that A∩DRx = {1} and X = [DRx∪A]. By argument in the last part

we get that there exists m = m(x, y) ∈ ℵ such that N(Ny ∗m Nx) ∈ DRx. Consider

T = {n = n(u, v) ∈ ℵ| N(Nu ∗n Nv) ∈ DRv, u, v ∈ X}. Since X is finite, then T is a

finite set and so it has the greatest element, say n. Clearly N(Ny ∗n Nx) ∈ DRx. Now

x ∈ X = [A ∪ DRx] implies that by Theorem 2.2 there exists x1, x2, ..., xn ∈ DRx

such that N((...((Nx ∗ Nx1) ∗ Nx2) ∗ ...) ∗ Nxn) ∈ A. On the other hand since

[x] ∩DRx = {1}, by Theorem 3.23 [x] ⊆ D(DRx), and thus by x ∈ [x] ⊆ D(DRx) we

get that Nx ∗ Nxi = Nx, for all 1 ≤ i ≤ n. Hence NNx ∈ A, so by Lemma 3.18,

x ∈ A. Since A ∩ DRx = {1}, then by Theorem 3.23 A ⊆ D(DRx), so x ∈ A and

N(Ny ∗n Nx) ∈ DRx implies that Nx ∗NN(Ny ∗n Nx) = Nx. Therefore by Theorem

3.17, Nx ∗ (Ny ∗n Nx) = Nx.

(iv)→ (v) Nx ∗ (Nx ∗Ny) = (Nx ∗ (Ny ∗n Nx)) ∗ (Nx ∗Ny) ≤ Ny ∗ (Ny ∗n ∗Nx), for

all x, y ∈ X.

(v)→ (vi) Let A be a dual ideal of X and x ∈ DAr. Then Nx∗Na = Nx, for all a ∈ A

and so Nx∗n Na = Nx. Hence by (v) we get that Na∗(Na∗Nx) ≤ Nx∗(Nx∗n Na) =

Nx ∗Nx = 0, that is, Na = Na ∗Nx and so x ∈ DAl. Therefore DAr ⊆ DAl. Since A

is a dual ideal, then by Theorem 3.24, DAl ⊆ DAr and so DAr = DAl. Hence by Theo-

rem 3.4 DAr is a dual ideal of X. Since X is finite , we suppose that A = {a1, a2, ..., ak}

and Nx ∗ni Nai = Nx ∗ni+1 Nai, where x ∈ X, ai ∈ A and ni = ni(x, ai) ∈ ℵ, for all

1 ≤ i ≤ k. Put y = N((...((Nx ∗n1 Na1) ∗n2 Na2) ∗n3 ...) ∗nk Nak by hypothesis and

Theorem 3.17 Ny = (...((Nx ∗n1 Na1) ∗n2 Na2) ∗n3 ...) ∗nk Nak) and so Ny = Ny ∗Na,

for all a ∈ A, that is y ∈ DAr also ((...((Nx∗n1 Na1)∗n2 Na2)∗n3 ...)∗nk Nak)∗Ny = 0,

hence x ∈ [A ∪ DAr] i.e X = [A ∪ DAr]. Also A ∩ DAr = {1}, by Theorem 3.20(i).

Therefore X is dual semisimple.

(vi)→ (i) It is proved in Theorem 4.6.
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Open problem. Is any infinite dual normal BCK-algebra a dual semisimple?

Definition 4.9 The dual J-radical , denoted by DJ(X), of a bounded BCK-algebra

X means the intersection of all maximal dual ideals of X. By Zorn,s Lemma the

collection of maximal dual ideals of X is nonempty. If DJ(X) = {1}, then X is called

dual J-semisimple.

Consider bounded BCK-algebra X = {0, 1, 2, 3, 4} in Example 3.5. We can see that

the only dual ideals of X are {3, 4}, {4} and X, so DJ(X) = {3, 4}.

Bounded BCK-algebra X = {0, 1, 2, 3} in Example 3.6 is a dual J-semisimple, because

the only dual ideals on X are {2, 3}, {1, 3}, {3} and X, so DJ(X) = {3}.

Theorem 4.10 Every dual J-semisimple bounded BCK-algebra is dual normal.

Proof On the contrary, let X do not be dual normal. Then ∃ a ∈ X such that

DRa is not a dual ideal. Thus DRa ⊂ [DRa](proper containing). We show that

[DRa] ∩ [a] 6= {1}.

If [DRa] ∩ [a] = {1}, then by Theorem 3.23 [DRa] ⊆ D[a] ⊆ D[a]r. Since by Theo-

rem 3.19 DRa = D[a]r, then we get that [DRa] ⊆ DRa, which is impossible. Thus

[DRa] ∩ [a] 6= {1}. We choose 1 6= b ∈ [a] ∩ [DRa]. Let M be a maximal dual ideal of

X. We consider the following cases:

Case (i): a ∈ M , since b ∈ [a] ⊆ M , then b ∈ M .

Case (ii): a 6∈ M , then by maximality of M , X = [M ∪ {a}]. We show that DRa ⊆ M .

Let x ∈ DRa ⊆ X. Then there exists n ∈ ℵ such that N(Nx ∗n Na) ∈ M and so by

x ∈ DRa, we get that NNx ∈ M . Thus by Lemma 3.18, x ∈ M and so DRa ⊆ M .

Hence b ∈ M , since b ∈ [DRa] ⊆ M . This show that 1 6= b ∈ DJ(X), a contradiction

with DJ(X) = {1}.

Open problem. Is any dual normal BCK-algebra a dual J-semisimple?
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Theorem 4.11 Let Y be a bounded BCK-algebra with unit 1. Then Y is a dual

normal BCK-algebra if and only if every subalgebra X of Y containing 1, is dual

normal BCK-algebra .

Proof (⇐) It is clear.

(⇒) Let a ∈ X and let DRa and DR
′
a be the dual right stabilizers of element a with

respect to X and Y , respectively . i.e.

DRa = {x ∈ X| Nx∗Na = Nx}

and

DR
′
a = {x ∈ Y | Nx∗Na = Nx}.

Then DRa = DR
′
a

⋂
X. Now we show that DRa is a dual ideal of X. Let

x, y ∈ X, N(Nx∗Ny) ∈ DRa and y ∈ DRa. Since DRa ⊆ DR
′
a and DR

′
a is a dual

ideal of Y , so x ∈ DR
′
a. Also x ∈ DR

′
a

⋂
X = DRa implies DRa is a dual ideal of X.

Therefore X is dual normal.

Let (Xi, ∗i, 0i)(i ∈ I) be an indexed family of BCK-algebras and
∏
i∈I

Xi be the set

of all mapping f : I −→
⋃
i∈I

Xi and f(i) ∈ Xi for all i ∈ I.

For f, g ∈
∏

i∈I Xi , we define f∗g by

(f∗g)(i) = f(i)∗ig(i), for all i ∈ I and 0 by 0(i) = 0i.

Then (
∏
i∈I

Xi, ∗, 0) is a BCK-algebra. Also
∏
i∈I

Xi is bounded if and only if every Xi is

bounded.

Theorem 4.12 Let {Ii}i∈I be an indexed family of subsets of bounded BCK-algebras

Xi(i ∈ I). Then
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(i) if every Ii is a dual ideal of Xi(i ∈ I), then
∏
i∈I

Ii is a dual ideal of
∏
i∈I

Xi,

(ii) if
∏
i∈I

Ii is a dual ideal of
∏
i∈I

Xi, then every Ii is a dual ideal of Xi.

Proof (i) Let Ii be a dual ideal of Xi ,∀i ∈ I and let N(Nx∗Ny) ∈
∏
i∈I

Ii and y ∈
∏
i∈I

Ii.

Then 1i∗i((1i∗ix(i)))∗i(1i∗iy(i))) = 1(i)∗i((1(i)∗ix(i))∗i(1(i)∗iy(i)) = 1∗((1∗x)∗(1∗y))(i) ∈

Ii and y(i) ∈ Ii, for all i ∈ I. So x(i) ∈ Ii. This shows x ∈
∏
i∈I

Ii.

(ii) Suppose that
∏
i∈I

Ii is a dual ideal of
∏
i∈I

Xi. Without loss of generality we show that

Ij is a dual ideal of Xj . If 1j∗j((1j∗jx1)∗j(1j∗jy1)) ∈ Ij and y1 ∈ Ij , we define x and

y as follows

x(i) =

 x1 if i = j

1i if i 6= j

y(i) =

 y1 if i = j

1i if i 6= j

and so

N(Nx∗Ny)(i) =

 1j∗j((1j∗jx1)∗j(1j∗jy1)) if i = j

1i if i 6= j

Then N(Nx∗Ny) ∈
∏
i∈I

Ii and y ∈
∏
i∈I

Ii. Thus x ∈
∏
i∈I

Ii, i.e. x1 ∈ Ij .

Theorem 4.13 Let (Xi, ∗i, 0i, 1i)(i ∈ I) be an indexed family of bounded BCK-

algebras. Then every Xi is dual normal BCK-algebra if and only if
∏
i∈I

Xi is dual

normal BCK-algebra.

Proof (⇒) Let f ∈
∏
i∈I

Xi. Then
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DRf = {g ∈
∏
i∈I

Xi | 1∗g = (1∗g)∗(1∗f)}

= {g ∈
∏
i∈I

Xi | 1(i)∗ig(i) = (1(i)∗ig(i))∗i(1(i)∗if(i)),∀i ∈ I}

= {g ∈
∏
i∈I

Xi | 1i∗ig(i) = (1i∗ig(i))∗i(1i∗if(i)),∀i ∈ I}

= {g ∈
∏
i∈I

Xi | g(i) ∈ DRf(i)
} =

∏
i∈I

DRf(i)

Since DRf(i)
is a dual ideal of Xi,∀i ∈ I then by Theorem 4.12 we get that DRf =∏

i∈I

DRf(i)
is a dual ideal of

∏
i∈I

Xi.

(⇐) Let aj ∈ Xj . Then we define f : I −→
⋃
i∈I

Xi such that

f(i) =

 aj if i = j

1j if i 6= j

So f ∈
∏
i∈I

Xi. Similar to above we have DRf =
∏
i∈I

DRf(i)
where,

DRf(i) =

 DRaj if i = j

Xi if i 6= j

Since
∏

i∈I Xi is dual normal , then DRf is a dual ideal of
∏
i∈I

Xi . So by Theorem 4.12

DRaj is a dual ideal of Xj . Therefore Xj is dual normal.
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