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Abstract

In this paper, the tenth-order linear special case boundary value problems are

solved using the variational iteration method. The algorithm approximates the

solutions, and their higher-order derivatives, of differential equations and it avoids

the complexity provided by other numerical approaches. Three examples compared

with those considered by Siddiqi, Twizell and Akram [S.S. Siddiqi, E.H. Twizell,

Spline solutions of linear tenth order boundary value problems, Int. J. Comput.

Math. 68 (1998) 345-362; S.S.Siddiqi, G.Akram, Solutions of tenth-order boundary

value problems using eleventh degree spline , Applied Mathematics and Computa-

tion 185 (1)(2007) 115-127] show that the method is simple and valid.
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1 Introduction

The variational iteration method (VIM), which was proposed originally by He [1-7],

has been proved by many authors to be a powerful mathematical tool for various kinds

of linear and nonlinear problems [8-11]. The reliability of the method and the reduction

in the size of computation gave this method a wider applications.
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In this paper, we tend to extend the use of VIM to the following class of tenth-order

linear special case boundary value problems and compare with other methods



u(10)(x) + h(x)u(x) = g(x), a ≤ x ≤ b,

u(a) = α0, y(b) = α1,

u′(a) = β0, u
′(b) = β1,

u(2)(a) = γ0, u
(2)(b) = γ1,

u(3)(a) = ξ0, u
(3)(b) = ξ1,

u(4)(a) = ς0, u
(4)(b) = ς1,

(1.1)

where αi, βi, γi, ξi, ςi, i = 0, 1 are finite real constants and h(x), g(x) are continuous on

[a,b]. The basic idea for high order boundary value problems was first proposed by He

and his student in [6] and the method is systematically illustrated in [7].

Higher order differential equations arise in many fields e.g. when an infinite hori-

zontal layer of fluid is heated from below and a uniform magnetic field is also applied

across the fluid in the same direction as gravity under the action of rotation, instability

sets in. When instability sets in as ordinary convection, it is modelled by a tenth-order

boundary value problem. However, there are few literature on the numerical solutions

of tenth-order boundary value problems and associated eigenvalue problems. Higher

order boundary value problems were researched in [12-19]. Wazwaz [13] presented a

modified Adomian Decomposition method for tenth-order and twelfth-order boundary

value problems. Twizell et al. [16,18] developed numerical methods for eighth, tenth

and twelfth-order eigenvalue problems arising in thermal instability and boundary value

problems with order 2m. Siddiqi and Twizell [12,19] gave the solution of sixth-order

boundary value problems and tenth-order linear special case boundary value problems

using spline technique. Siddiqi and Akram [14,15] gave the solutions of tenth-order

linear special case boundary value problems using non-polynomial spline technique and

eleventh degree spline.
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2 Analysis and application of the variational iteration

method

Consider the differential equation

Lu + Nu = g(x), (2.1)

where L and N are linear and nonlinear operators, respectively, and g(x) is the source

inhomogeneous term. In [1-7], the VIM was introduced by He where a correct functional

for Eq.(2.1) can be written as:

un+1(x) = un(x) +
∫ x

0
λ{Lun(t) + N

∼
un(t)− g(t)}dt, (2.2)

where λ is a general Lagrangian multiplier [2], which can be identified optimally via

variational theory, and
∼
un is a restricted variation which means δ

∼
un = 0. By this

method, it is required first to determine the Lagrangian multiplier λ that will be iden-

tified optimally. The successive approximates un+1, n ≥ 0, of the solution u will be

readily obtained upon using the determined Lagrangian multiplier and any selective

function u0. Consequently, the solution is given by

u = lim
n→∞

un.

The variational iteration method has been shown to solve easily and accurately a

large class of problems with approximations converging rapidly to accurate solutions.

Generally one iteration leads to high accurate solution by VIM if the initial solution

is carefully chosen with some unknown parameters. The convergence of the method is

systematically discussed by Tatari and Dehghan [20].

For variational iteration method, the key is the identification of Lagrangian multi-

plier. For linear problems, their exact solutions can be obtained by only one iteration

step due to the fact that the Lagrangian multiplier can be identified exactly. For non-

linear problems, the lagrange multiplier is difficult to be identified exactly. To overcome
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the difficulty, we apply restricted variations to nonlinear term. Due to the approximate

identification of the Lagrangian multiplier, the approximate solutions converge to their

exact solutions relatively slowly. It should be specially pointed out that the more accu-

rate the identification of the multiplier, the faster the approximations converge to their

exact solutions.

For Eq.(1.1), according to the VIM, we derive a correct functional as follows:

un+1(x) = un(x) +
∫ x

a
λ(t){u(10)

n (t) + h(t)
∼
un(t)− g(t)}dt, (2.3)

where ũ is a restricted variation, i.e. δ
∼
un = 0.

Making the above correct functional stationary with respect to un, noticing that

δun = 0,

δun+1(x) = δun(x) + δ
∫ x
0 λ(t){u(10)

n (t) + h(t)
∼
un(t)− g(t)}dt

= δun(x) + δ
∫ x
0 λ(t){u(10)

n (t)}dt

= [1− λ(9)(x)]δun(x) +
8∑

i=0
λ(i)(x)δu(9−i)

n (x) +
∫ x
0 λ(10)(t)δun(x)dt

= 0.

We, therefore, have the following stationary conditions:
λ(10)(t) = 0,

1− λ(9)(x) = 0,

λ(i)(x) = 0, i = 0, 1, 2, · · ·, 8.

(2.4)

The Lagrangian multiplier can be easily identified as:

λ =
t9

362880
− t8 x

40320
+

t7 x2

10080
− t6 x3

4320
+

t5 x4

2880
− t4 x5

2880
+

t3 x6

4320
− t2 x7

10080
+

t x8

40320
− x9

362880
.

Therefore, we have the following iteration formula of Eq.(1.1):

un+1(x) = un(x) +
∫ x

a
λ{u(10)

n (t) + h(t)un(t)− g(t)}dt, (2.5)

where

λ =
t9

362880
− t8 x

40320
+

t7 x2

10080
− t6 x3

4320
+

t5 x4

2880
− t4 x5

2880
+

t3 x6

4320
− t2 x7

10080
+

t x8

40320
− x9

362880
.

Archive of SID

www.SID.irwww.SID.ir

www.SID.ir
www.SID.ir


Fazhan Geng and Xiuying Li 165

3 Numerical examples

Now we apply the variational iteration method to solve some tenth-order boundary

value problems. Results obtained by the method are compared with other methods

and demonstrate that the present method is more effective.

Example 3.1 Consider the following tenth-order boundary value problem[12,15]:

u(10)(x)− xu(x) = −(89 + 21x + x2 − x3)ex,−1 ≤ x ≤ 1,

u(−1) = 0, u(1) = 0,

u′(−1) = 2
e , u′(1) = −2e,

u(2)(−1) = 2
e , u(2)(1) = −6e,

u(3)(−1) = 0, u(3)(1) = −12e,

u(4)(−1) = −4
e , u(4)(1) = −20e,

whose exact solution is u(x) = (1− x2)ex.

From (2.4), we obtain the following iteration formulation:

un+1(x) = un(x) +
∫ x

−1
λ{u(10)

n (t)− tun(t) + ((89 + 21t + t2 − t3)et)}dt, (3.1)

where

λ =
t9

362880
− t8 x

40320
+

t7 x2

10080
− t6 x3

4320
+

t5 x4

2880
− t4 x5

2880
+

t3 x6

4320
− t2 x7

10080
+

t x8

40320
− x9

362880
.

Now, we assume that an initial approximation has the form

u0(x) =
9∑

i=0

cix
i,

where ci, i = 0, 1, · · ·, 9 are unknown constants to be further determined. In terms of

(3.1), one can obtain the first-order approximation u1(x).

Incorporating the boundary condition of Example 3.1 into u1(x), the unknown con-

stants in u1(x) can be obtained c0 = −1.27224×10−6, c1 = −1.00001, c2 = 0.99994, c3 =

0.166504, c4 = −0.166961, c5 = −0.00870105, c6 = 0.00801073, c7 + 8.935 × 10−7, c8 =
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Table 1: Comparison of maximum absolute errors of the present method with other methods

for Example 3.1

u
(µ)
n [9]x ∈ [x5, xk−5] x 6∈ [x5, xk−5] [15] Present method(u1)

µ = 0 2.65×10−4 4.16×10+13 3.28×10−6 9.08×10−12

µ = 2 6.55×10−4 2.41×10+16 1.40×10−3 9.02×10−11

µ = 4 1.02×10−3 7.30×10+17 7.76×10+2 2.57×10−9

µ = 6 4.04×10−3 3.83×10+14 1.97×10−1 1.71×10−6

µ = 8 1.10×10−2 3.17×10+17 2.73×10+4 1.83×10−4

−0.000280092, c9 = −0.0000238477. And therefore, the first-order approximation u1(x)

is obtained.

The maximum error in absolute value | u(µ)(x)−u
(µ)
1 (x) |, µ = 0, 2, 4, 6, 8 compared

with | u(µ)(x)− u
(µ)
n (x) |, µ = 0, 2, 4, 6, 8 considered by Siddiqi and Twizell [12], Siddiqi

and Akram [15] are shown in Table 1. It is evident from Table 1 that the maximum

absolute errors are less than those presented by Siddiqi and Twizell [12], Siddiqi and

Akram [15].

Example 3.2 Consider the following tenth-order boundary value problem [12,15]:

u(10)(x) + u(x) = −10(2x sin(x)− 9 cos(x)),−1 ≤ x ≤ 1,

u(−1) = 2 sin(1), u(1) = 0,

u′(−1) = −2 cos(1), u′(1) = 2 cos(1),

u(2)(−1) = 2 cos(1)− 4 sin(1), u(2)(1) = 2 cos(1)− 4 cos(1),

u(3)(−1) = 6 cos(1) + 6 sin(1), u(3)(1) = −6 cos(1)− 6 sin(1),

u(4)(−1) = −12 cos(1) + 8 sin(1), u(4)(1) = −12 cos(1) + 8 sin(1),

whose exact solution is u(x) = (x2 − 1) cos(x).

From (2.4), we obtain the following iteration formulation:

un+1(x) = un(x) +
∫ x

−1
λ{u(10)

n (t) + un(t) + (10(2t sin(t)− 9 cos(t)))}dt, (3.2)

where

λ =
t9

362880
− t8 x

40320
+

t7 x2

10080
− t6 x3

4320
+

t5 x4

2880
− t4 x5

2880
+

t3 x6

4320
− t2 x7

10080
+

t x8

40320
− x9

362880
.
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Table 2: Comparison of maximum absolute errors of the present method with other methods

for Example 3.2

u
(µ)
n [9]x ∈ [x5, xk−5] x 6∈ [x5, xk−5] [15] Present method(u1)

µ = 0 2.65×10−4 4.16×10+13 8.85×10−8 2.89×10−11

µ = 2 6.55×10−4 2.48×10+16 3.65×10−6 2.85×10−10

µ = 4 1.62×10−3 5.75×10+17 5.92×10−0 7.97×10−9

µ = 6 4.04×10−3 1.65×10+16 1.78×10−2 4.40×10−6

µ = 8 1.10×10−2 3.20×10+19 2.08×10+3 3.74×10−4

Now, we assume that an initial approximation has the form

u0(x) =
9∑

i=0

cix
i,

where ci, i = 0, 1, · · ·, 9 are unknown constants to be further determined. In terms of

(3.2), one can obtain the first-order approximation u1(x).

Incorporating the boundary condition of Example 3.2 into u1(x), the unknown

constants in u1(x) can be obtained c0 = 1.00001, c1 = 1.00008, c2 = −0.49963, c3 =

−0.832327, c4 = −0.456528, c5 = −0.156093, c6 = −0.0383208, c7 = −0.00693432, c8 =

−0.000857655, c9 = −0.000054744. And therefore, the first-order approximation u1(x)

is obtained.

The maximum error in absolute value | u(µ)(x)−u
(µ)
1 (x) |, µ = 0, 2, 4, 6, 8 compared

with | u(µ)(x)− u
(µ)
n (x) |, µ = 0, 2, 4, 6, 8 considered by Siddiqi and Twizell [12], Siddiqi

and Akram [15] are shown in Table 2. It is evident from Table 2 that the maximum

absolute errors are less than those presented by Siddiqi and Twizell [12], Siddiqi and

Akram [15].
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Example 3.3 Consider the following tenth-order boundary value problem [15]:

u(10)(x) + (x2 − 2x)u(x) = 10 cos(x)− (x− 1)3 sin(x),−1 ≤ x ≤ 1,

u(−1) = 2 sin(1), u(1) = 0,

u′(−1) = 2 cos(1)− sin(1), u′(1) = sin(1),

u(2)(−1) = 2 cos(1)− 2 sin(1), u(2)(1) = 2 cos(1),

u(3)(−1) = 2 cos(1) + 3 sin(1), u(3)(1) = −3 sin(1),

u(4)(−1) = −4 cos(1) + 2 sin(1), u(4)(1) = −4 cos(1),

whose exact solution is u(x) = (x− 1) sin(x).

From (2.4), we obtain the following iteration formulation

un+1(x) = un(x) +
∫ x

−1
λ{u(10)

n (t) + (t2 − 2t)un(t)− (10 cos(t)− (t− 1)3 sin(t))}dt,(3.3)

where

λ =
t9

362880
− t8 x

40320
+

t7 x2

10080
− t6 x3

4320
+

t5 x4

2880
− t4 x5

2880
+

t3 x6

4320
− t2 x7

10080
+

t x8

40320
− x9

362880
.

Now, we assume that an initial approximation has the form

u0(x) =
9∑

i=0

cix
i,

where ci, i = 0, 1, · · ·, 9 are unknown constants to be further determined. In terms of

(3.3), one can obtain the first-order approximation u1(x).

Incorporating the boundary condition of Example 3.3 into u1(x), the unknown con-

stants in u1(x) can be obtained c0 = −1.00001, c1 = −0.000114839, c2 = 1.49947, c3 =

−0.00145348, c4 = −0.544302, c5 = −0.00330464, c6 = 0.0401419, c7 = −0.00179426, c8 =

−0.00216034, c9 = −0.000193759. And therefore, the first-order approximation u1(x)

is obtained.

The numerical results are summarized in Table 3, Figures 1,2. Table 3 is the results

obtained using the method in [15] and Figure 1,2 are the results obtained using the

present method. Comparing them, we can find that the method in this paper is more
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Table 3: Maximum absolute errors for Example 3.3 using method in [15]

u
(µ)
n n=14 n=28 n=42 n=56

µ = 0 5.96×10−6 7.99×10−7 1.72×10−7 3.73×10−8

µ = 2 1.79×10−6 7.10×10−6 1.45×10−6 4.83×10−7

µ = 4 4.31×10+1 2.35×10−0 4.28×10−1 1.93×10−1

µ = 6 4.42×10−1 2.84×10−2 6.70×10−3 7.30×10−3

µ = 8 5.55×10+2 3.52×10+2 4.46×10+2 6.36×10+2

Figure 1: The figure of absolute error |u− u1|, |u′′ − u′′1|, |u(4) − u
(4)
1 | for Example 3.3

efficient.

Remark: This paper is not a repetition of the paper [13]. The method used in [13]

is modified Adomian method. The comparison of the VIM with Adomian method

was conduced by many authors via illustrative examples, especially Wazwaz gave a

completely comparison between the two method [21], revealing the VIM has many

merits over the Adomian method; it can completely overcome the difficulty arising in

the calculation of the Adomian polynomial.

4 Conclusion

In this paper, the extended variational iteration method is used to solve a class of

linear tenth-order boundary value problems. Comparing with other methods, the re-

sults of three numerical examples demonstrate that this method are more accurate

than the stated existing methods, and one iteration is enough to obtain accurate solu-
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Figure 2: The figure of absolute error |u(6) − u
(6)
1 |, |u(8) − u

(8)
1 | for Example 3.3

tions. And this method avoids the complexity provided by other numerical approaches.

Moreover, the higher-order derivatives of approximate solutions can also approximate

the higher-order derivatives of exact solutions well. Therefore, our conclusion is that

the variational iteration method is a satisfactory method for solving linear tenth-order

boundary value problems.
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