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Abstract

In this paper, we present a new iterative method for solving non-linear equations
f(z) = 0, by using Potra and Ptdk’s method [1]. It is shown that the order of
convergence of this method is five or higher. Several numerical examples are given
to illustrate the performance of the presented method.
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1 Introduction

In this paper, we consider an iterative method to find a simple root «, i.e., f(a) =0
and f'(a) # 0, of a non-linear equation f(z) = 0. In recent years, some fifth-order
iteration methods have been proposed and analyzed for solving non-linear equations
that these methods improve some classical methods such as the Newton’s method,
Chebyshev-Halley’s methods, Ostrowski’s method. Probably the most well-known and
widely used algorithm to find a root of single non-linear equation is Newton’s method.

This method is written as

— f(zn)
xn+1 — 4n f,(xn)v (1)
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and converges quadratically in some neighborhood of «.
There exists a modification of Newton’s method with third-order convergence due

to Potra and Pték [1], defined by

Flan) + fla, — Lnd)
Tn+l = Tn — f/(xn) GG . (2)

In this paper, we introduce a new iterative method by using Potra and Ptak’s method,
then compare this method with previous methods with fifth-order convergence.

The rest of this paper is organized as follows. In Section 2, we give the suggested
method based on Potra and Ptak’s method. In Section 3, we illustrate the result with

some numerical examples and in the last Section, the conclusion is presented.

2 The suggested method

In this section, we consider a simple new iterative method for solving non-linear equa-

tions, based on Potra and Ptak’s method, as follows:

Flzn) + flon — 220
Ip+l = 2n — ° fl(zn) G ’ (3)

F(@n) + flan — F25)

It is clear that per iteration of this method requires four evaluations of the function

Zn — Tp —

and one evaluation of its first derivative.

Theorem 2.1 Assume that the function f: I C R — R for an open interval I, has
a simple root o € I. Let f(x) be sufficiently smooth in the neighborhood of the root «,
then the order of convergence of the method defined by (3)-(4) is five or higher and it

satisfies the following error equation:
ent1 = 8czep, + O(e}), (5)

where
)
2f'(a)

C2
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Proof Let « be a simple zero of f, e, = z, — a and h, = z, — a. Using Taylor

expansion around x = « and taking into account f(«) =0, we get

f(zn) = f'(a)len + coel + c3ed + caer + csel + -], (6)
f(xn) = (@)1 + 2c2e, + 3636% + 46462 + 5C5€i + 66662 + -, (7)
f(zn) = (@) [hn + c2hd + cshd + cahy + cshi, + -], (8)
f'(zn) = f/(a)[1 + 2c2hy, 4 3esh2 + deahd + 5eshi + 6c6h2 + - - ], 9)
where ¢, = % We know

(1+a) =) <k1> a*, (10)

k>0
then
f/(xn) - f/(Oé)[ + 2c0ep + 03€n+ C4en+ C5en+ Cﬁen+
= Z ! (2coe +3C€2+4C€3+5C€4+6065—|—...)k (11)
_f’(a)k k 2En 3Cn 4€n 5€, 6 .
>0

For simplicity we compute

(2c2en + 3cze? + deged + besed + 6eged + - - )k, for k=2,3,4.5.

(2c2e, + 3c3e? + 4eqed + Sesel 4 6eged 4 - -)2 = 4c3e2 + 12coc3€3 +
(16¢ocy + 9c3)ed + (20cacs + 24czcq)ed + - - -,
(2c2e,, + 3cze2 + 4eged + Besed 4 6eged + - -)3 = 8c3ed + 36c3czen+
(480%04 -+ 54620%)62 +e

(2c2e, + 3cze? 4 deged + Besed + 6eged + - - ')4 = 16che + 96¢3czed
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_i_...’

5
(2c2en 4 3cze2 4 deged + Besel + 6eged +---) = 32c5ed 4 -+

By substitution of above expansions in (11), we have

1 1

f'(@n)  f'(a)

—5¢5 + 16c9¢s + 9c2 — 36¢3cs + 16¢3)e + (—6c6 + 20cacs + 24cscy — 48¢2¢y
3 2 2/)%n 2

[1—2coen + (—3c3 4 4cd)e + (—4deq + 12¢oc3 — 8¢3)ed +

—5deacd 4+ 96¢3es — 32¢5)ed + -+, (12)

and from (6) and (12), we compute

f(zn)

= e, — coe? + (263 — 2¢3)ed + (—3cq + Teaez — 4c3)ek + (—4es + 10cacy

+6¢2 — 20c5¢3 + 8ca)ed 4 - - (13)

Furthermore, we have

f(x) = f(a)[(x — a) + ca(x — a)2 + cs3(z — a)3 + cq(x — a)4 + c5(z — a)5 4+,
then
_f($n>_/a e_f(xn) ce—f(xn)2 Ce_f($n)3
f(zn f/(xn)) = f'(a)[(en f’($n))+ 2(€n f’(xn)) + cs(en f,(xn))
)
+C4(en f/(xn)) + ]? (14)

wherein

(en — f(@n) ) = o€ 4 (2¢3 — 2¢3)e3 + (3eq — Teacs + 4cd)ed + (4es — 10cacy

f'(zn)

—6¢3 4 20c3c3 — 8c3)ed + - - -,
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( —f(in))2—0264+(4c —4ced + -
n f/(xn) — 26n 2C3 Co)€n )

(en - f,(xn)

thus according to (14), we get

= Ty = flaleach + (200 — 280l + (B — Teacn 4 5t

(4cs5 — 10cocy — 6¢3 + 24c5c3 — 12¢3)ed + -+, (15)
also
Tn
o) + o = L) = fa)fen-+ 2026 + (302 = 230 + (dex — Teae
+5c93)ed + (55 — 10cacq — 6¢3 + 24c3c3 — 12¢3)ed + - - -. (16)
By using (12) and (16), we give the following equation
fan) + flon = $E5)
Ies) Fen)” en — 203e3 + (=Teaez + 9¢3)ed + (—10cocs—
63 + 44c3cs — 30c3)ed + - - -, (17)
this equation implies that
fan) + flan — $1525)
hn = e, — ) fan)’ 2c3e3 4 (Teaez — 9e3)ed + (10cocy+
6c3 — 44c3cs + 30ch)ed + - - -, (18)
hy = O(ep), (19)

by using above expansions and (8), we can write

f(zn) = fl(Q)[2¢3€2 + (Teacs — 9¢3)ed + (10cacq + 6¢3 — 44cies + 30c3


www.SID.ir

196 Mathematical Sciences Vol. 3, No. 2 (2009)

Jen® + ). (20)

Now for computing ]{,((';’;)), we use (8) and (12) and we have

f(zn)

) = 2c3e3 + (Teaes — 13¢3)en + (10cacs + 65 — 64c3es + 56c3)ed + -+, (21)
also
_f(zn) Y _f(zn) _f(Zn) 24 ...
T = i,y = F M =g el =gy 22
wherein
(hyy — f(2n) ) = 4csep + (20c3es — 26¢3)ed + -+ -
n f/(xn) — 226 203 2)%n )
- f(Zn) 2 -0 8
(hn f/(xn)) (en)7
thus
Fn — Ly (o) acked + (2063es — 26¢d)el + -] (23)
n f/(xn) - 26n 2C3 2)%n ’
also
f@@+ﬂ%—ﬁjpszméa+mmr%®é+«%@%+%%

10cocq + 6c3)el +---]. (24)
Now, by using (12) and (24), we can write

f'(wn)

= 2c3e3 + (Teaes — 9¢3)er + (10cacy + 663 — 4dcdes+
22¢3)ed + - - . (25)
The proof of theorem will be complete if we substitute (18) and (25) in (3), i.e.,

F(zn) + fzn — Lndy
Tp+1 = Zn — f/(xn) I(@n) )

then

and hence

ent1 = 8czed + O(en).
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3 Numerical Examples

All computations were done MATHEMATICA using 120 digit floating point arith-
metic (Digits:=120). We accept an approximate solution rather than the exact root,
depending on the precision (¢€) of the computer. We use the following stopping criteria

for computer programs:

(Danss —anl <€, ()| f(@ns1)] < e,

and so, when the stopping criterion is satisfied, x,+1 is taken as the exact root «
computed. For numerical illustrations, we used the fixed stopping criterion e = 10715,
We present some numerical test results to illustrate the efficiency of the new iterative
method in Table 1.

We compare the Newton’s method (NM), the Grau and Diaz-Barrero’s method
[3] (GM) defined by

o I @) ([ () 4 f(z0)) ) f@n) + f2n)
17 N N 2
_ lf”(xn)f(xn) f(zn)
zn = — (14 > () )f/(xn), (27)
Noor and Noor’s method [4] (NNM) defined by
() G
P D ) — [F(an) + b)) .
M) = F(@) — Fan) — (& = ) (2) — & (2 — 22 f 20), (29)
o =wn— (145 i(fzﬁn)) /((a;:)) (30)
_ ["(@n) f(wn)
t($n> - f’z(l’n) ’ (31)
the method of Kou and Li [2] (KM) defined by
Tyl = 2n — (1 + M(zn)  f(zn) (32)

1+ M(a;n)>f’(xn)’
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Zn =2n — (14 % 1 i(i?gzn))j“e’((z))’ »
t(zn) = W (34)
. "

Yoon Mee Ham and Changbum Chun’s method [5] with D = -1, A=1,B=3,C =5

(YCM) defined by

. f'(yn) +3f"(xn)  f(yn)
T = Yn T S T f(an) )’ (36)

— f(xn)
R ) o

and (EAM) method defined by (3)-(4), introduced in the present contribution. We

used the following test functions and display the approximate zero x, found up to the

26th decimal places.
fi(z) = 3+ 422 — 10, ., = 1.36523001341409684576080682,

fa(z) = 22— €% — 3z 42, . = 0.25753028543986076045536730,
f3(x) = e — sin? (z) + 3cos (x) + 5, 2, = —1.20764782713091892700941675,
fa(z) = sin (z)e® + In (22 + 1), xy =0,
fs(x) = (x — 1)3 —2, =z, =2.25992104989487316476721060,
fo(x) = (x + 2)e” — 1, z, = —0.44285440100238858314132800,

fr(z) = sin®(x) — 2%+ 1, z, = 1.40449164821534122603508681.

Table 1. Comparison of the number of iterations (NIT) in (NM), (GM), (NNM),
(KM), (YCM) and (EAM) methods
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NIT
f(z) NM GM NNM KM YCM EAM
fi(z),xo =1 6 4 6 4 3 4
fa(z),zo=1 |5 4 5 4 3 3
f3(x),z0=—-11 6 4 6 Failed 4 4
fal@),z0=2 || 7 Failed 7 4 4 4
fs(z),m0=3 || 7 4 7 4 4 4
fo(z),z0=2 | 9 5 9 Failed 5 5
fr(x),z0 =1 7 Failed 7 5 4 6

4 Conclusion

In this paper, we defined and analyzed a simple new iterative method for solving non-
linear equations and proved that the order of convergence of this method is at least

five.
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