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Abstract

In this paper, using orthogonality of Tchebychev polynomials, we present an

orthonormal wavelet basis for L2[0, 1]. We use this basis for solving Neumann

problems with Galerkin method. The property of this basis is that a variety of

integral operators is represented in this basis as sparse matrices, to high precision.

Some examples are solved to illustrate the efficiency and accuracy of this method.
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1 Introduction

The boundary value problems of classical potential theory are ubiquitous in engineering

and physics. Most such problems can be reduced to boundary integral equations which

are, from a mathematical point of view, more tractable than the original differential

equations. Although the mathematical benefits of such reformulations were realized and

exploited in the 19th century, until recently boundary integral equations were rarely

used as mathematical tools, since most integral operators upon discretization turn into

dense matrices. By using fast algorithms such as wavelet methods, we can greatly
1Corresponding Author. E-mail Address: babolian@saba.tmu.ac.ir
2E-mail Address: m.r.fadaei@iauvaramin.ac.ir
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reduce the cost of applying dense matrices resulting from solving boundary integral

equations by other methods. In this paper we present Tchebychev multi-wavelet as an

orthonormal basis and numerical implementation of the fast wavelet Galerkin method

for solving Neumann problems. one advantage of using Tchebychev multi-wavelet is

that it has a close form which provides convenience for computation, and another

advantage is that the matrix representation of a large class of integral operators in this

basis is sparse. In particular, an integral operator K whose kernel is smooth except

along a finite number of singular bands has a sparse representation (see Alpert[1]). Let

D be a bounded open simple connected region in the plane, and let its boundary, S be

a simple closed curve and f ∈ C(S) be a given boundary function. We consider the

interior and exterior Neumann problems as follows :

The Interior Neumann Problem. Find u ∈ C1(D) ∩ C2(D) that satisfies ∆u(P ) = 0, P ∈ D

∂u(P )
∂nP

= f(P ), P ∈ S
(1)

The Exterior Neumann Problem. Find u ∈ C1(De) ∩ C2(De) that satisfies ∆u(P ) = 0, P ∈ De

∂u(P )
∂nP

= f(P ), P ∈ S
(2)

with f ∈ C(S) and De ≡ R2 \D.

We can rewrite (1) as an integral equation of second kind (see [2]),

u(p) +
1
π

∫
S

u(Q)
∂

∂nQ
[log |P −Q|]dsQ =

1
π

∫
S

f(Q) log |P −Q|]dsQ, P ∈ S (3)

where it’s kernel has logarithm-like singularity along the diagonal s = t but is contin-

uous on the unit square. The interior Neumann problem is solvable if and only if the

boundary function f satisfies the condition
∫
S f(Q)ds = 0 [2]. The simplest way to

lead with the lack of uniqueness in solving (1) is to introduce an additional condition

such as u(P ∗) = 0 for some fixed point P ∗ ∈ S [2]. The exterior Neumann problem can
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be rewritten as following, if u satisfies u(∞) = 0, (see [2])

u(p)− 1
π

∫
S

u(Q)
∂

∂nQ
[log |P −Q|]dsQ = − 1

π

∫
S

f(Q) log |P −Q|]dsQ, P ∈ S (4)

that is, a second kind integral equation which is uniquely solvable.

We will present Tchebychev multi-wavelet in sec. 2 and sec. 3 first, in sec. 4 we will

describe numerical implementation of wavelet Galerkin method for equations (3) and

(4). The second problem that we investigate in sec. 5 is the convergence and error

analysis of our proposed method. Lastly in sec. 6 we provide numerical examples to

demonstrate the efficiency and accuracy of described methods.

2 Multi-wavelet bases

By reviewing some papers with Alpert [1], Mallat [9], Meyer [10] and Daubechies [5] and

using, orthogonality of Tchebychev polynomials we construct an orthonormal multi-

wavelet basis for L2[0, 1]. This basis comprised of dilates and translates of a finite set

of functions h1, ..., hk and this basis consists of orthonormal systems

hn
j,m = 2m/2hj(2mx−m) j = 1, ..., k; m,n ∈ Z (5)

where the functions h1, ..., hk are piecewise polynomials, vanishing outside the interval

[0, 1], and orthogonal to low-order polynomials (have vanishing moments),∫ 1

0
hkx

idx = 0 i = 0, ..., k − 1. (6)

We suppose k is a positive integer and m = 0, 1, 2, ..., we define a space V k
m of piecewise

polynomial functions,

V k
m = {f : f(x) =

 a polynomial of degree less than k, n
2m < x < n+1

2m ;n = 0, . . . , 2m−1

0, otherwise
}

It is apparent that the space V k
m has dimension 2mk and

V k
0 ⊂ V k

1 ⊂ ... ⊂ V k
m ⊂ ....i.e. (7)
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For m = 0, 1, 2, ... we defined 2mk dimension space W k
m to be orthogonal complement

of V k
m in V k

m+1,

V k
m ⊕W k

m = V k
m+1, V k

m ⊥ W k
m. (8)

So we inductively obtain the decomposition

V k
m = V k

0 ⊕W k
0 ⊕W k

1 ⊕ ...⊕W k
m−1 (9)

and we can write, (see [1])

L2[0, 1] =
∞⋃
i=0

V k
i . (10)

Suppose that the real functions h1, ..., hk, defined on R, form an orthogonal basis for

W k
0 . Since V k

0 is orthogonal to W k
0 , the first k moments of h1, ..., hk vanish,∫ 1

0
hkx

idx = 0, i = 0, ..., k − 1.

The 2k dimensional space W k
1 is spanned by the 2k orthogonal functions h1(2x), ..., hk(2x),

h1(2x− 1), ..., hk(2x− 1), of which the first k functions have the support [0, 1
2 ] and the

second k functions have support [12 , 1]. In general, the space W k
m is spanned by 2mk

functions obtained from h1, ..., hk by translation and dilation. There are some freedom

in choosing the functions h1, ..., hk within the constraint that they be orthogonal, by

requiring normality and additional vanishing moments, we specify them uniquely, up to

sign. In the following we exploit only the property that h1, ..., hk form an orthonormal

basis for W k
0 .

In preparation for the definition of h1, ..., hk, we construct k functions f1, ..., fk :

R → R, supported on the interval [−1, 1], with the following properties :

1. The restriction of fi to interval (0, 1) is a polynomial of degree k − 1.

2. The function fi is extended to the interval (−1, 0) as an even or odd function

according to the parity of i + k − 1.

3. The functions f1, ..., fk satisfy the following orthogonality and normality conditions∫ 1

−1
fi(x)fj(x)dx ≡ 〈fi, fj〉 = δij , i, j = 1, ..., k.
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4. The function fj has vanishing moments,∫ 1

−1
fj(x)xidx = 0, i = 0, 1, ..., j + k − 2.

Properties 1 and 2 imply that there are k2 polynomial coefficient that determine the

functions f1, ..., fk, while properties 3 and 4 provide k2 (non-trivial) constraints. It

turns out that the equations uncoupled to give k nonsingular linear systems that may

be solved to obtain the coefficients, yielding the functions uniquely.

If the sequence {fj} satisfy the above properties, defining h1, ..., hk : R → R, by

the formula

hi(x) =
√

2fi(2x− 1), i = 1, .., k, (11)

then we have

W k
0 = Linear span{hi(x) : i = 1, ..., k} (12)

and more generally,

W k
m = Linear span{hn

j,m(x) : hn
j,m(x) =

√
2mhj(2mx−n), j = 1, .., k;n = 0, ..., 2m−1}.

(13)

In [1] it is shown that dilates and translates of the piecewise polynomial functions

h1, ..., hk form an orthogonal basis for L2(R). Furthermore, a subset of these dilates

and translates, combined with a basis for V k
0 , form a basis for L2[0, 1].

3 Construction of Tchebychev Multi-wavelet basis

It is well known that Tchebychev polynomials of the first kind Tm : [−1, 1] → R (m ≥

0) defined by the formula

Pm(x) = cos (m arccos (x)),

and are orthogonal with respect to the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)

1√
1− x2

dx
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and satisfy the following formula

P0(x) = 1, P1(x) = x,

2xPm(x) = Pm+1(x) + Pm−1(x), m ∈ N. (14)

We let normalized Tchebychev polynomials in [0, 1] as

Tm(x) =
√

2Pm(2x− 1)
4
√

π2(x− x2)
,

which are orthonormal on [0, 1] with respect to the inner product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx

Now we can obtain functions h1, ..., hk by the above discussion. In this work we consider

normalized Tchebychev polynomials in [0, 1] as an orthonormal basis for V k
0 and by

dilates and translates of the obtained functions and we introduce a new basis for L2(R)

which we call Tchebychev Multi-Wavelet Basis using 1- 4 introduced in section 2.

For example for Case (k = 3):

h1(x) =
1

4
√

x− x2


−10.05425 + 30.0671x− 20.7404x2 0 < x < 1

2

0.72761− 11.4138x + 20.7404x2 1
2 < x < 1

0 otherwise

h2(x) =
1

4
√

x− x2


17.048672− 44.62946x + 28.085650x2 0 < x < 1

2

0.504859− 11.54184x + 28.085650x2 1
2 < x < 1

0 otherwise

h3(x) =
1

4
√

x− x2


−13.779968 + 33.55531x− 19.984565x2, 0 < x < 1

2

0.209227− 6.413824x + 19.984565x2, 1
2 < x < 1

0 otherwise

W 3
0 = Linear Space{h1(x), h2(x), h3(x)}.
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Case (k = 4):

h1(x) =
1

4
√

x− x2


30.612− 147.80x + 224.4x2 − 108.00x3 0 < x < 1

2

−0.761 + 22.95x− 99.6x2 + 108.00x3 1
2 < x < 1

0 otherwise

h2(x) =
1

4
√

x− x2


−76.632 + 324.82x− 443.22x2 + 195.64x3 0 < x < 1

2

−0.610 + 25.30x− 143.70x2 + 195.64x3 1
2 < x < 1

0 otherwise

h3(x) =
1

4
√

x− x2


93.20601− 370.2467x + 478.1984x2 − 201.5097x3, 0 < x < 1

2

−0.35206 + 18.3791x− 126.3308x2 + 201.5097x3, 1
2 < x < 1

0 otherwise

h4(x) =
1

4
√

x− x2


−61.25014 + 230.75890x− 284.9064x2 + 115.51472x3, 0 < x < 1

2

−0.11705 + 7.49022x− 61.63774x2 + 115.51472x3, 1
2 < x < 1

0 otherwise

W 4
0 = Linear Space{h1(x), h2(x), h3(x), h4(x)}.

Generally we let

W k
m = Linear Space{hn

i,m(t)|hn
i,m(x) =

√
2mhi(2mx−n), i = 1, 2, . . . , k, n = 0, . . . , 2m−1}

V k
0 = Linear Space{T0(x), T1(x), . . . , Tk−1(x)}

and

V k
m = V k

0

m−1⊕
j=0

W k
j .

The orthonormal system

Bk = {Tj(x) : j = 0, ..., k − 1} ∪ {hk
j,m : j = 1, ..., k; m = 0, 1, 2, ...;n = 0, ..., 2m − 1}

(15)

span L2[0, 1]; we refer to Bk as the Tchebychev multi-wavelet basis of order k for

L2[0, 1]. The figures 1. and 2. show the graph of functions h1, ..., hk for k = 3 and

k = 4.
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Figure 1: Functions h1, . . . , h3 Figure 2: Functions h1, . . . , h4

4 Wavelet Galerkin Method for Neumann Problems

In this section, we apply Galerkin method with using Tchebychev multi-wavelet basis

as an orthonormal basis to solving equations (3) and (4).

Let D be a bounded open simply connected region in the plane, and let its boundary

S be a simple closed curve with parametrization

r(t) = (ξ(t), η(t)), 0 ≤ t ≤ L (16)

with r ∈ C2[0, L] and |r′(t)| 6= 0 for 0 ≤ t ≤ L.

Using above parametrization for S, we can rewrite (3) and (4) as following equations

u(t) +
1
π

∫ L

0
K(t, s)u(s)ds =

1
π

g(t), 0 ≤ t ≤ L (17)

u(t)− 1
π

∫ L

0
K(t, s)u(s)ds = − 1

π
g(t), 0 ≤ t ≤ L (18)

such that,

K(t, s) =
η′(s)[ξ(t)− ξ(s)]− ξ′(s)[η(t)− η(s)]

[ξ(t)− ξ(s)]2 + [η(t)− η(s)]2
, s 6= t (19)

K(t, t) =
η′(t)ξ′′(t)− ξ′(t)η′′(t)

2[ξ′(t)2 + η′(t)2]
, (20)

g(t) =
∫ L

0
f(r(s))

√
ξ′(s)2 + η′(s)2 log |r(t)− r(s)|ds. (21)
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For notation simplicity we restrict our attention to the interval [0, L] = [0, 1] and assume

that (17) and (18) as the following form

u(t)−
∫ 1

0
K(t, s)u(s)ds = g(t), 0 ≤ t ≤ 1. (22)

By the Galerkin method, we seek an approximate solution un ∈ V k
n to (22) by requiring

that the residual

en = un(t)−
∫ 1

0
K(t, s)un(s)ds− g(t)

be orthogonal to V k
n . We choose a basis for V k

n denoted by {wl : l = 1, ..., 2nk}, then

we seek coefficients cn
l , l = 1, ..., 2nk for

un(t) =
2nk∑
l=1

cn
l wl(t), t ∈ [0, 1] (23)

such that

〈en, wl〉 = 〈un(t)−
∫ 1

0
K(t, s)un(s)ds− g(t), wl〉 = 0, l = 1, ..., 2nk. (24)

That is, we need to solve the following linear algebraic system for the unknown coeffi-

cient vector Cn = (cn
1 , ..., cn

2nk)
T

(I−An)Cn = Gn (25)

where I is the 2nk-identity matrix, An = (al,l′ ), and Gn = (g1, ..., g2nk) with

al,l′ =
∫ 1

0

(∫ 1

0
K(t, s)wl′ (s)ds

)
wl(t)dt and gl =

∫ 1

0
g(t)wl(t)dt. (26)

Entries al,l′ for l, l
′

= 1, ..., 2nk will be computed numerically. It is well-known [2]

that if u ∈ H2 (Sobolev space) and kernel function K(t, s) is such that the operator∫ 1
0 K(t, s)u(s)ds is compact on L2, such an approximate solution un has the error

estimate

‖un − u‖L2 = O(2−2n). (27)
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The multi-resolution nature of the wavelet approximations is clearly displayed in this

linear system. From level n to level n + 1, the coefficient matrix An and right-hand-

side vector Gn are expanded to An+1 and Gn+1 by adding new blocks to An and Gn

respectively

An+1 =

 An *

* *

 , Gn+1 =

 Gn

*


where the new blocks (marked with ∗) all contain information from the new (n+1)-level

resolution and are of the same size as their corresponding parts An and Gn respectively.

It should be noted though that the solution vector Cn+1 usually does not have the same

structure as Gn+1 above.

5 Convergence and Error Analysis

5.1 Second Kind Integral Equations

A linear Fredholm integral equation of the second kind is an expression of the form

f(x)−
∫ b

a
K(x, t)f(t)dt = g(x), (28)

where we assume that the kernel K is in L2[a, b]2 and the unknown f and right- hand-

side g are in L2[a, b]. For notational simplicity, we restrict our attention to the interval

[a, b] = [0, 1]. We use the symbol K to denote the integral operator of Eq. (28), given

by the formula

(Kf)(x) =
∫ 1

0
K(x, t)f(t)dt,

for all f ∈ L2[0, 1] and x ∈ [0, 1]. Suppose that {b1, b2, . . .} is a complete orthonormal

basis for L2[0, 1], the expansion of K in this basis is given by the formula

K(x, t) =
∞∑
i=1

∞∑
j=1

Kijbi(x)bj(t), (29)
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where the coefficient Kij is given by the expression

Kij =
∫ 1

0

∫ 1

0
K(x, t)bi(x)bj(t)dxdt, i, j = 1, 2, . . . . (30)

Similarly, the functions f and g have expansions

f(x) =
∞∑
i=1

fibi(x), g(x) =
∞∑
i=1

gibi(x),

where the coefficients fi and gi are given by

fi =
∫ 1

0
f(x)bi(x)dx, gi =

∫ 1

0
g(x)bi(x)dx, i = 1, 2, . . . .

The integral equation (28) then corresponds to the infinite system of linear equations

fi −
∞∑

j=1

Kijfj = gi, i = 1, 2, . . . .

The expansion for K may be truncated at a finite number of terms, yielding the integral

operator R defined by the formula

(Rf)(x) =
∫ 1

0

n∑
i=1

n∑
j=1

(Kijbi(x)bj(t))f(t)dt, f ∈ L2[0, 1], x ∈ [0, 1],

which approximates K. Integral equation (28) is thereby approximated by the system

fi −
n∑

j=1

Kijfj = gi, i = 1, 2, . . . n, (31)

which is a system of n equations in n unknowns. system (31) may be solved numerically

to yield an approximate solution to Eq. (28), given by the expression

fR(x) =
n∑

i=1

fibi(x).

How large is the error eR = f − fR of the approximate solution?

We follow the derivation by Delves and Mohamed in [1]. Defining gR by the formula

gR(x) =
n∑

i=1

gibi(x),
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we rewrite Eqs. (28) and (31) in terms of operators K and R to obtain

(I − K)f = g

(I −R)fR = gR.

Combining the latter equations yields

(I − K)eR = (K −R)fR + (g − gR).

Provided that (I − K)−1 exists, we obtain the error bound

‖eR‖ ≤ ‖(I − K)−1‖.‖(K −R)fR + (g − gR)‖. (32)

The error depends, therefore, on the conditioning of the original integral equation, as is

apparent from the term ‖(I −K)−1‖, on the fidelity of the finite-dimensional operator

R to the integral operator K, and on the approximation of gR to g.

5.2 Convergence of the Multi-wavelet basis

For a function u ∈ L2[0, 1], a positive integer k, and n = 0, 1, 2, ..., we define the

orthogonal projection Qk
nu of u onto V k

n by the formula

(
Qk

nu
)

(x) =
2nk∑
l=1

〈u, wl,n〉.wl,n(x) (33)

where {wl,n} is an orthonormal basis ( in this work we use Tchebychev multi-wavelet

basis) for V k
n . The projection Qk

nu converges (in the mean) to u as n → ∞. If the

function u is several times differentiable, we can bound the error, as established by the

following lemma.

Lemma 1: [1] Suppose that the function u : [0, 1] → R is k times continuously

differentiable, u ∈ Ck[0, 1]. Then Qk
nu approximates u with mean error bounded as

follows:

‖Qk
nu− u‖ ≤ 2−nk 2

4kk!
sup

x∈[0,1]
|u(k)(x)| (34)
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5.3 Error Analysis of the Quadrature Rule

Since the entries of the coefficient matrix An are obtained numerically, we are actually

solving a perturbed version of the linear system (24), say,

(I− Ãn)C̃n = G̃n (35)

where

Ãn = (ãl,l′ ) with ãl,l′ = al,l′ + εl,l′

G̃n = (g̃l) with g̃l = gl + εl

and εl,l
′ and εl denote the quadrature error for computing the double integral al,l

′ and

single integral gl, respectively. in the following we analyze the effect of such quadrature

error on approximation solution ũn. By (24) and (34) we can write

(I−An)(Cn − C̃n) = (Gn − G̃) + (An − Ãn)C̃n

‖(Cn − C̃n)‖2 = ‖(I−An)−1‖2 ‖(Gn − G̃) + (An − Ãn)C̃n‖2

therefor we have

‖(Cn − C̃n)‖2 = O(‖(Gn − G̃n)‖2) + O(‖(An − Ãn)‖2) (36)

If we let,

ε2
n = max

l,l′
{|εl|2, |εl,l′ |

2}

we can write

‖Gn − G̃n‖2

2
=

2nk∑
l=1

|εl|2 ≤ ε2
n2nk ≤ 22nk2ε2

n (37)

and

‖An − Ãn‖2

2
=

2nk∑
l=1

2nk∑
l′=1

|εl,l′ |
2 ≤ 22nk2ε2

n (38)

On the other hand since we use the Tchebychev multi-wavelet basis, we have

‖un − ũn‖L2 = ‖(Cn − C̃n)‖2 . (39)
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Now by (35)− (38) we have

‖un − ũn‖L2 = O(2nεn). (40)

In order for ũn to be an approximation to un in order as in (27), we need that quadrature

error εn be as

εn ∼ 2−3n

as n increases. Note that this estimate provides only the rate of decrease for quadrature

errors as resolution level increases , and does not specify on the absolute errors of the

quadrature for a given k.

6 Numerical results

In this section we apply the method discussed in the pervious sections to the solutions

of the following problems, using Tchebychev Multi-Wavelet :

6.1 Interior Neumann Problem

Consider the interior Neumann problem (1) such that

D = {P = (p1, p2) : p2
1 + p2

2 < 1}

S = ∂D = {(p1, p2) : p2
1 + p2

2 = 1}.

Consider the following parametrization on S,

P = (p1, p2) = (cos(2πt), sin(2πt)), 0 ≤ t ≤ 1

Q = (q1, q2) = (cos(2πs), sin(2πs)), 0 ≤ s ≤ 1

and we let,

f(P ) = p1 = cos(2πt)
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we can rewrite (1) as the second kind integral equation (22) for the unknown

u(t) = u(cos(2πt), sin(2πt)), 0 ≤ t ≤ 1

and the right-hand-side

g(t) = 2 cos(2πs) log(4 sin2(π(s− t))).

Note that since in this example we have,∫
S

f(Q)ds = 0

therefore the interior Neumann problem (1) with above assumptions, has the unique

exact solution

u(P ) = cos(2πt), P ∈ D.

We then solve (22) by using our method and numerical results are shown in Table.1.

m k ‖u− un‖L2 in V k
m

1 6 0.01443675

2 5 0.00357842

3 4 0.001543250

4 3 0.00037692

5 2 0.00020961

6 1 0.0000812495

6.2 Exterior Neumann Problem

Consider the exterior Neumann problem (2) by the following assumptions,

D = {P = (p1, p2) : p2
1 +

p2
2

4
< 1}

S = ∂D = {(p1, p2) : p2
1 +

p2
2

4
= 1}

P = (p1, p2) = (cos(2πt), 2 sin(2πt)), 0 ≤ t ≤ 1
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Q = (q1, q2) = (cos(2πs), 2 sin(2πs)), 0 ≤ s ≤ 1

f(P ) = − 2
√

2 (cos(2πt) + 3 cos(6πt))
(5− 3 cos(4πt))2

√
3 cos(4πt) + 5

.

Now we can rewrite (2) as a second kind integral equation (22) for the unknown

u(t) = u(cos(2πt), 2 sin(2πt)), 0 ≤ t ≤ 1

with the kernel

K(t, s) = − 4
3 cos(2π(s + t)) + 5

and the right-hand-side

g(t) =
2(cos(2πs) + 3 cos(6πs)) log

(
2(3 cos(2π(s + t)) + 5) sin2(π(s− t)))

)
(5− 3 cos(4πs))2

.

This problem has the unique exact solution

u(P ) =
p1

p2
1 + p2

2

=
cos(2πt)

1 + 3 sin2(2πt)
.

We use our method for current problem and numerical results are shown in Table.2.

m k ‖u− un‖L2 in V k
m

1 6 0.10076491

2 5 0.04522286

3 4 0.00352981

4 3 0.00122951

5 2 0.000374764

6 1 0.00010232

7 Conclusion

In this work, we constructed Tchebychev multi-wavelet basis as an orthonormal basis

for L2[0, 1] and presented a fast Galerkin method for solving boundary integral equa-

tions. We solved interior and exterior Neumann problems by this method . The most
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important advantage of using Tchebychev multi-wavelet basis for solving boundary in-

tegral equations is that the representation of the resulting matrices by this basis is

sparse. Other advantage of using this basis is that it has a closed form which provides

simple computing and produce good results by solving a small linear system. We can

have better solutions by increasing the resolution of this basis (by increase k and m in

V k
m), easily.
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